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JET has now been operated with ohmic , ion cyclotron resonance and neutral 
beam injection heating. A wide range of plasma conditions have been 
studied with ohmic and ion cyclotron resonance heating while neutral beam 
injecti on heating has just recently been applied. 

1 . OHMIC HEATING 

During 1984 and 1985 an extensive series of experiments with ohm!~ heating 
have been carriej out in both Hydrogen and Deuterium discharges [ 1] . 

The ranges of variation in the main plasma parameters covered are : 
Toroidal magnetic field 1. 7 < BT < 3.4 T; plasma current 1 < Ip < 4 MA ; 
line average density 0 . 5 x 10 19 < n < 3 .6 x 10' 9 m-•; elongation 1 < K (• 
b/a) < 1.7; minor radius 0 .8 <a< 1. 23 m; major r adius 2 . 5 < R < 3 . 4 m; 
cylindrical safety factor 1 . 7 < q < 12; effective charge 2 < Zeff < 8; peak 
electron temperature 1.5 < Te < 5 keV; peak ion temperature 1 < Ti < 3 keV . 

The plasma geometry has been varied from fully elli ptical to small circular 
plasmas liml ted on the inside wall or on the limi ter . The discharges 11ad 
long flat tops in current, density and temperature , 4 - 12 secs , which was 
suffici ent in all but the 3 .5 and 4 MA di scharges for the magnetic field 
diffusion to have been completed before the end of the flat top. Values up 
to 0 . 8 s ha ve been achieved f or the energy confinement time def ined by 
~E = W/(Ptot - ~), where W = 3/2 f (neTe + niTi ) dv . 

The scaling of TE wi th density for a f ew characteristic conditions is 
shown in Fig . 1. The general pattern is that at low densities the 
confinement time increases roughly linearly with density and then saturates 
at higher densit! es (n ~ 3 x 10 19 m-•) . The precise reason f or the 
satur ation is not clear , both the impurity radiation and transport losses 
increase as the limiting ~E is reached . Due to the large errors i n 
separating the ion and electron losses at high densities, it is not 
possible to determine which is the dominant loss channel . 

The scaling of TE with the plasma parameters has been i nvestigated , Fig. 
1 shows that the neo-Alcator scaling, 1E a nqR 2 a , is a reasonable fit . A 
marginally better fit can be obtained by a regression analysis in t he f orm 
Tg a B¥qS etc. The result from such an analysi s is (A is t he a t omic mass 
and E = a/R the inverse aspect ratio) 
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(1) 

The range of variation of R and E in the JET da t a set is very small so the 
uncertainty on their indices are rather l arge. The JET data set has been 
combined with the DIII data set to get a better estimate of the scaling 
with dimensions . The scaling law obtained from a regression ana:ysis on 
this combined data set can i n terms of q (cylindrical ) be written as: 

(2) 

From analysis of the l ocal transport proper ties wi th interpretat:ve and 
predictive codes three distinct regions have been clearly identi fied; an 
inner region dominated by sawtooth activity , an intermediate reg:on 
dominated by electron and ion thermal transport and an edge region 
dominated by impurity radiation and other atomic processes . The main loss 
channel at low and moderat e densities in the second region is found t o be 
via the electrons. The ion thermal conducti vity i s between 1 and 8 times 
neoclassi cal with the higher values of this anomaly fact or occur:ng at 
lower densities. The electron thermal conductivity can be approximated by 

Xe -2.5.10 1 9 / n at low densities, whi le for t he hi ghest JET densi ties it 
does not decrease with n. No clear dependence of Xe on toroidal magnetic 
field or plasma current has been observed so f ar . 

2 . ION CYCLOTRON RESONANCE HEATING 

Ion cyclotron resonance heating has been used in JET since the beginning of 
1985. The heat:ng srstem and characteris tics of the different antennas are 
described elsewhere 2] . Various minority heat i ng experiments have been 
performed in deuterium discharges with eithP.r H or 'He as the minority gas. 

It has been poss ible to couple up to 6 MW of RF power, PRF • t o the plasma. 
The i ncrease of t he total plasma energy during ICRH is partly due to a 
density increase. However, both the ion and electron temperatures have 
also been increased significantly . 

In the first experiments the power scaling of Wand 'E was unclear (3]. 
Recent results seem to support a linear scali ng of W with power i n the f orm 

W a W(o) + 1 inc ptot (3) 

Fig . 2 shows W versus Ptot for different plasma currents obtained in 0 
('He ) l i miter d:scharges with Hr~ 3 . 4 T, K - 1. 45 and a~ 1. 2 m usi ng a 
f requency of 33 MHz for central power deposition. The results or fitting 
eq. (3) to the RF- points only ar e shown by dotted lines . The incremental 
confinement time ' inc ' obtained thi s way, ranges from 128 ms - 192 ms with 
no obvious current dependence . 

At present no strong dependenci es of 'inc with res pect to PRF• B1 , Ip and 
n have been observed, however, comparing with results from other t okamaks 
tfier e must clearly be a st rong dependence on the plasma size [4 ]. The 
degradation of t he total 'E during ICRH is clearl y seen in Fig . 3. 

From Eq . (3) we may express the confinement of both ohmic and additional 
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heated plasmas in the form 
OH Pn(O) Pn(O) 

'E ~ 'E l'""t"Ot+ 'tnc (1 -~) 

where ,~H and P0(0) are the ohmic heating confinement time and power, 
respectively, in the absance of auxiliary heating. The present 'tnc is 
typically one third of 'E , which means we need to couple more than 10 
times the ohmic power in order to confirm the saturation of 'E · 

By performing an exponenti al fit of the form W(t) = W
0 

+ ~W (1-exp(-t/t)) 
to the time evolution of W from the time of a change in RF-power level, we 
can estimate the fraction f = (~W - t~P0 )1t6PRF of RF-power which 
contributes t o the increase in stored energy. This fraction f was 
typically - 70% in the experiments shown in Figs . 2 , 3 . 

3 . NEUTRAL BEAM INJECTION HEATING 

Neutral beam injection heating (45 - 65 keV H into D pl asma) has now been 
successfully a p?lied to JET discharges [5]. Identical target plasmas have 
been used for NBI and ICRH making it possible to compare the two methods. 
Fig. 4 shows W versus Ptot for NBI heating, i . e. the equivalent of Fig . 
2. Again a linear dependence of W with Ptot (eq. (3)) fits the data. In 
addition 'tine s:1ows an apparent current dependence which is present in all 
the estimates of the total plasma energy as is shown in Fig . 5. 

In conclusion all NBI and ICRH experiments so far have produced values of 
'inc in the range 100 - 300 ms. Future heating experiments with more 
input power are needed to determine the dependence of 'inc with power. 
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Figure 5 1 The lncre111ental confinement tllfle , 
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versus plasoa current, t or the NBI 
heating exper i ment . 


