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Abstract Coevolving systems are notoriously difficult to
understand. This is largely due to the Red Queen effect that
dictates heterospecific fitness interdependence. In simulation studies
of coevolving systems, master tournaments are often used to obtain
more informed fitness measures by testing evolved individuals
against past and future opponents. However, such tournaments still
contain certain ambiguities. We introduce the use of a phenotypic
cluster analysis to examine the distribution of opponent categories
throughout an evolutionary sequence. This analysis, adopted from
widespread usage in the bioinformatics community, can be applied to
master tournament data. This allows us to construct behavior-based
category trees, obtaining a hierarchical classification of phenotypes
that are suspected to interleave during cyclic evolution. We use the
cluster data to establish the existence of switching-genes that control
opponent specialization, suggesting the retention of dormant genetic
adaptations, that is, genetic memory. Our overarching goal is to reiterate
how computer simulations may have importance to the broader
understanding of evolutionary dynamics in general. We emphasize
a further shift from a component-driven to an interaction-driven
perspective in understanding coevolving systems. As yet, it is unclear
how the sudden development of switching-genes relates to the gradual
emergence of genetic adaptability. Likely, context genes gradually provide
the appropriate genetic environment wherein the switching-gene
effect can be exploited.

1 Introduction

The study of the coevolution of competitive pursuit and escape behavior has attracted the interest of
several researchers in the area of robotics and artificial life [29]. This can be explained by considering
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that pursuit and evasion behaviors do not only represent one of the most common and challenging
problems for natural organisms but also provide an ideal challenge for robotics and embodied cog-
nition. Indeed, the need to face highly dynamic, largely unpredictable, and hostile environments re-
quires the development of fast, robust, and adaptable solutions [27, 9].

In this article, we report a series of coevolutionary computer simulations in which two populations of
predator and prey robots were evolved for their ability to pursue and escape each other. We use a phe-
notypic cluster analysis to characterize coevolutionary progress.1 The obtained results confirm previous
findings that the coevolutionary dynamics converge toward cycles in which specific classes of behavioral
strategies alternate. However, compared to previous studies, our results were obtained in a more auto-
mated and formal fashion. The obtained results indicate that evolving robots converge toward solutions
that are effective against strategies displayed by the competitors. In addition, the evolved robots display
a certain readiness for change in order to cope with variant strategies that competitors are likely to
exhibit in future generations. This is achieved through the synthesis of genetic organizations character-
ized by switching-genes, that is, genes that enable rapid shifts between different strategies through a few
single point mutations. Finally, we demonstrate that such switching-genes gradually evolve when species
are exposed to an environment wherein challenges are periodically recurring.

For our study, we make use of a class of evolutionary algorithms (EAs) known as coevolutionary
algorithms (CoEAs). These algorithms evolve multiple species in a shared environment [9]. Thus, they
can be used to approximate the natural situation more accurately than regular EAs. However, their
application necessitates addressing two important issues. First, since a speciesʼ fitness in a CoEA is
interdependent with other species, measuring progress is more difficult than when using a regular
EA [8]. Previously, master tournaments (MTs; Section 2.2) were used to obtain more reliable fitness
estimates. But, while they certainly add informativeness, MTs also exhibit some ambiguities [7] (cf.
Section 2.2). Secondly, in nature, competitively coevolving systems are hypothesized to lead to evo-
lutionary arms races [11] that represent an important drive for change and innovation in evolution [16].
However, simulations with CoEAs do not a priori lead to the emergence of these arms races in all
cases. Instead, cycling dynamics are often observed (Section 2.2) [13, 30].

When discussing complex systems such as those showing cycling dynamics, meta-analyses are in-
valuable. A concept that is particularly useful is that of the phenotype. In our study, we describe the phe-
notype as the set of behavioral traits that lead to the MT fitness score of a single individual (Sections 2.3
and 3.2). If a species (hereafter the subject species) is confronted with an opponent species that is cycling
between behavioral categories (hereafter phenotypic categories), it could be beneficial for the subject species
to be able to quickly adapt to such category alternations, for example, by cycling between phenotypes as
well. If such rapid adaptations were to be purely genetic in nature (excluding, e.g., developmental effects
such as neural plasticity), a reliance on merely a few switching-genes that express a specialization from
one opponent to the next would be more efficient than having a dependence on numerous ones. This is
because such genes would enable quick specialization shifts.

Even when switching-genes might enable a species to increase its evolvability (i.e., increase adap-
tive genetic predispositions) as evolution progresses, it does not immediately follow that they would
evolve abruptly. In fact, the emergence of any pseudo-Baldwinian genetic predisposition to adaptability
expressed by switching-genes might require long-term exposure to a considerable number of oppo-
nent cycles (Section 2.4). Unfortunately, since any genetic change might only be expressed in the
phenotype (i.e., become behaviorally differentiable) against some specific opponent categories, iden-
tifying switching gene evolution is not a simple task. As a solution, we propose to use a phenotypic
cluster analysis (Section 3.3) to examine the distribution of opponent categories throughout an evo-
lutionary sequence. Following this, we can investigate which particular subject genes are expressed
against which particular opponent categories (Section 3.4). In other words: If temporal fluctuations
in certain genes and in opponent specialization in the phenotype strongly correlate, we have to con-
sider the existence of switching-genes.

1 We emphasize the use of the term “phenotypic” here, that is, relating to observable traits. Thus, we do not use the cluster analysis to
reconstruct phylogenies. Instead, we use it as a tool to group individuals that share similar behavioral (phenotypic ) traits.
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Somewhat problematically, even with the clustering technique we propose, it remains challenging
to exercise enough control over evolutionary dynamics to answer the questions we just posed. This
is because fitness interdependence between coevolving species can give rise to chaotic interactions
[1]. Here, the cluster analysis offers additional utility. If we extract an opponentʼs categories from a
previously coevolved scenario, we can present these in alternating intervals and let a new subject
species evolve against them. Effectively, we use the extracted categories to serve as an emulated cycling
opponent (Section 3.5) so we can more precisely control which opponent categories are encountered
by the subject species, and at what time intervals. Thus, we can systematically manipulate a funda-
mental variable that codetermines the selective pressure to evolve switching-genes.

The remainder of this article is organized as follows: Section 2 will give a more thorough
theoretical background on the analytical techniques used with CoEAs, the biological plausibility
of Baldwinian evolution and cyclic evolution, and the concept of the phenotype. Section 3 discusses
a novel interpretation of CoEA analytics and introduces the formal concept of the functionally extended
phenotype. It also examines how this provides a conceptual justification for the cluster analysis and its
derivative techniques. Section 4 demonstrates the results obtained from applying these techniques to
a case study (detailed in Appendix 1) and discusses multiple interpretations. Finally, Section 5 pro-
vides a general conclusion regarding the findings.

2 Background

2.1 Evolutionary Robotics
Evolutionary robotics (ER) is an engineering approach where autonomous agents are developed
following a proximal (i.e., from the agentʼs) point of view [40]. This perspective describes agents
in terms of internal states (e.g., neural activation), and thus ER is very much an approach that takes
a dynamical systems outlook on agent design [4]. More specifically, while an agent can have very
simple internals, it is able to give rise to complex behavior through a sensorimotor loop. The agentʼs
behavior thus has to be understood as its being situated in its environment, possibly interacting with
other agents. The behaviors that are then displayed are said to emerge out of these interactions. In
contrast, an agent can also be regarded from a distal perspective [40], which involves the use of
behavioral terms such as “approaching” or “evading,” or even of psychological ones such as having
“intentions” or “desires” [23]. The aim is to understand the system by interpreting it as a collection
of components [4]. However, while useful in their own right, distal descriptors can impose unwar-
ranted constraints or predispositions on robot design.

A similar multiplicity of epistemological descriptive levels is also seen in many other fields, like
animal ethology. Animals can, for instance, be described on a suborganism (e.g., genes, neurons,
organs), organism (e.g., behaviors, intentions) or superorganism level (e.g., populations, societies,
ecosystems) level [34]. As we will emphasize in this study, ER not only offers a promising approach
to study natural evolution that highlights the proximal perspective, but also draws a parallel with the
suborganism and, through our analysis (Section 3), the superorganism level. Surprisingly, then, while
there is thus significant overlap between the field of ER and the biological sciences, ER makes little
use of tools developed by the bioinformatics community. For instance, cluster algorithms have
found widespread application, with demonstrated usefulness when addressing phylogenetics, group-
ing organisms on genetic similarity, and thereby deriving ancestral lineages [47]. Analyses like these
might prove valuable to ER and might be used to overcome certain ambiguities (Section 2.2).

Altogether, further formalization and automation by incorporating techniques from bioinformatics
into ER is a logical step in the attempt to understand dynamical systems through a proximal, interaction-
driven perspective. More specifically, as we will demonstrate, autonomous agents can develop through
the process of self-organization that the CoEA provides (Appendix 1), while they are analyzed by a
cluster analysis and derivative techniques (Section 3). Thus, both agent development and analysis de-
pend less on subjective interpretations.
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2.2 Long-Term Coevolutionary Dynamics
Competitive coevolution could spontaneously lead to a form of self-sustained incremental process
that in turn might cause the coevolutionary process to outgrow standard evolutionary ones. Indeed,
according to some authors, the establishment of arms races between and within species could be one
of the main sources of evolutionary innovation in nature [45, 11, 37].

However, a continuous increase in complexity is not guaranteed. Computer simulations show
that coevolving populations may in fact drive one another along twisting pathways where each
new solution is just good enough to counterbalance the current strategies discovered by the oppo-
nent species, but is not necessarily more and possibly even less effective than solutions discovered
some generations earlier. Thus, species are often found to be evolving cyclically: continuously re-
sorting to previously discovered and then discarded strategies, without any apparent long-term in-
crementality arising (Figure 1) [13, 30].2

Another difficulty in competitive coevolution concerns the intrinsic complexity of the evolution-
ary dynamics that makes the analysis challenging. In coevolving populations, changes in one species
affect the reproductive value of specific trait combinations in the other species. This effectively cor-
responds to a modification of the fitness landscape. It might thus happen that progress achieved by
one lineage is reduced or eliminated by the competing species. Such bilaterally exerted selective pres-
sure between species might lead to a reciprocal feedback loop, which is referred to as the Red Queen
effect [45, 37]. This fitness interdependence makes it hard to monitor progress by using conventional
indicators: Apparent oscillations of fitness values throughout generations might hide true progress,
and periods of stasis might correspond to tightly coupled coevolutionary changes in both species.

Due to their inherently complex interaction, simulations on coevolving systems are often analyzed
using MTs (Section 3). However, MTs are mainly used to demonstrate cycling or incrementality (e.g., [14]).
To understand these dynamics, on the other hand, one has to address the variables influencing evolution-
ary progress, such as sensorimotor constraints, environmental richness, and ontogenetics (developmen-
tal effects) [29], as well as the feedback loop between genes and the phenotype.

2.3 Phenetics
Our focus on the phenotype and the use of the concept itself (Sections 1 and 3.2) might appear
unconventional. Historically however, the term “phenotype” has had different interpretations,
depending on the field of study as well as on the time frame. In the context of ER, phenotypes

2 The term “cyclic evolution” does not necessarily imply a strictly circular, linear recurrence of strategies. The precise order in which
strategies (or variants thereof) are revisited is not of prime importance for our study. What matters is that the rediscovery of historical
phenotypes can be a valid alternative to a progressive refinement or accumulation of traits. Thus, we use the term “cyclic evolution”
primarily for the sake of consistency with the existing literature.

Figure 1. Systematization of limit cycle dynamics. The same strategies (Al and A2 in population A, and Bl and B2 in population
B) may be selected over and over again throughout generations. Strategy Al enables population A to outperform
competitors displaying strategy Bl but not B2. B2 on the other hand enables population B to outperform competitors
displaying strategy Al but not A2. (From [30].)
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are associated with the robotʼs body and/or controller (i.e., the actual instantiation of those param-
eters subjected to the EA). This parallels the use of the term in its originating, biological domain
where it was used to distinguish it from the Mendelian genotype [21]. As such, the genotype was
historically considered the unit that would be directly transmitted in ancestral heritage, while the
phenotype was understood as the mere expression of the genotype.

However, the binary classification between genotype and phenotype has long been recognized to
be rather limited and arbitrary, and the concept of the phenotype is nowadays considered from dif-
ferent (epistemological) viewpoints. For example, a phenotype that is closer to actual genetics would
be the endophenotype that describes, for example, markers for heritable diseases not necessarily ap-
parent as salient, conspicuous symptoms [22]. A simple example like this illustrates that the concept
of a well-defined, fundamental level at which “the” phenotype resides is an oversimplification, as the
term is very much context-dependent and should be considered to follow a continuum. After all,
genes can be expressed in different domains, such as the (sub)cellular (e.g., RNA, proteins, cells),
functionally descriptive (e.g., aerobic capacity, cardiac rhythm), or behaviorally characteristic [32].

As a product of genes and their interaction with their environment (cf. epigenetics), phenotypes can
even be said to extend beyond a single organism. For example, a (hypothetical) termiteʼs gene that
would result in the behavioral inclination to build termite mounds would improve the survivability
of that gene, regardless of the individual termite it resides in. Thus, the realization of a termite mound
should be considered an expression of an extended phenotype of the whole collection of homologous,
mound-building genes in an entire termite colony [10]. We emphasize that, in order to understand cyclic
evolution, it is vital to pay specific attention to such extended phenotypic features. More specifically, we
will regard the phenotype from a functionally extended perspective, instead of restricting ourselves to
mere physicality. For this reason, we use the term “phenotype” to indicate a speciesʼ capability to evolve
individuals to cope with rapidly alternating opponent behavior (Section 3.2).

2.4 Genetic Predispositions to Environmental Variation
Ontogenetics (i.e., developmental effects within an organismʼs lifetime) add a layer of complexity that is
hard to dismiss when evaluating computer models on their biological plausibility. While there are varying
interpretations of the specifics of the Baldwin effect [2], it can be, simply put, bisected into two phases [44]:
First, species might evolve phenotypic plasticity (e.g., callosity, ectothermism, or intelligence), enhancing
their adaptability and increasing their survivability. This would provide a degree of flexibility that genet-
ics alone cannot, allowing exploration of ecological niches that would take generations for genetics.
Following this, traits that are ontogenetically acquired and that have demonstrated utility might be ge-
netically assimilated (i.e., a species might become so predisposed to acquire a particular trait that it comes
to appear innate). Thus, fitness is increased at the cost of reduced flexibility.

We, instead, hypothesize a conceptual variant of the Baldwin effect that operates at the genetic
level only and that consists in the predisposition to cope with environmental variations through
minimal genetic change. This might be realized through the selection of genotypes that include
switching-genes (cf. Section 1) that can enable significant phenotype reorganization. In this case,
no phenotypes are assimilated, because all change is, fundamentally, genetic in the first place.

It is promising that the assimilation component of the (ontogenetic) Baldwin effect (cf. [46]) has
been reproduced in computer simulations by using regular (i.e., not coevolving) EAs [18]. More
recent studies, however, stress a dependence of assimilation on the rate of genetic as well as envi-
ronmental change [3]. Finally, and more concretely, the development of ontogenetics in coevolving
predator-prey simulations has been demonstrated in [15]. Thus, altogether, we are confident in hy-
pothesizing that a purely genetic variant of the Baldwin effect should be reproducible in CoEAs as
well. If so, this would provide an opportunity to explore the existence of switching-genes and how
they might relate to cyclic evolution in a computational model. Models such as these have already
received considerable academic interest, starting with the Lotka-Volterra equations [26].

In nature, cycling can be observed on what we classify as three distinct levels: A well-established
example of (conspecific ) population size cycling is found in the common side-blotched lizard,
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Uta stansburiana [41, 42], structurally comparable to heterospecific cycling in CoEAs: ultra-dominants
seduce females from dominants, dominants are adept at defending their females from sneakers, and
sneakers in turn steal mates from ultra-dominants. A similar example of (heterospecific) population size
cycling can be found in antibiotic production by different strains of the enteric bacterium Escherichia coli
[25]. Interestingly, these patterns were first predicted by computer models before being confirmed
in vitro [24].

Hybrid cycling (having a genetic component in addition to population size cycling) was already
acknowledged as a plausible outcome of arms races when they were first popularized [11]. For ex-
ample, species of the Anolis lizard (found dispersed over the Caribbean islands) that are bigger pos-
sess higher fitness, since they can eat larger insects, but at the cost of having to sustain a large body
mass [39, 6]. Consequently, on islands that are only inhabited by one species, the lizards would only
have a modest, solitary size. However, when a larger species invades such an island, the solitary-sized
species is outcompeted by the invaders, being forced to move into a different ecological niche by
reducing its size, followed by size reduction in the invaders. Eventually, the original, native species
goes extinct and the invaders take its place, to await a similar turn of events.

Finally, an example of genetic cycling, mostly grounded on computational modeling and less estab-
lished in vitro, can be found in parent-offspring conflict [36, 35]. In this scenario, offspring might
evolve conflictor genes that exploit parental attention (e.g., birds that display begging behavior ). Parents
would in response evolve suppressor genes that enable them to conserve energy by ignoring conflictor
gene expressions (and divide attention equally among offspring). The conflictor genes would then
disappear (since they are costly and no longer of use), followed by the disappearance of the sup-
pressor genes, after which the cycle repeats.

We postulate that conflictor and suppressor genes should be regarded as examples of genetic
dispositions to evolvability, as an instance of the genetic pseudo-Baldwinism we discussed earlier.
More specifically, conflictor and suppressor genes would evolve in order to cope with parent and
offspring expressions, respectively. Since quick adaptations to opponent changes are beneficial, this
suggests that a small number of conflictor or suppressor genes is advantageous compared to having
to rely on a large number of them. Thus, conflictor and suppressor genes can be considered in-
stances of the more general class of switching-genes (Section 1). In the case of hybrid cycling, how-
ever, switching-genes would of course be less likely to emerge, since there is no genetic continuity in
the cycling dynamic (since species go extinct).

3 Experiment and Analysis

3.1 Overview
We evolved two populations of predator and prey robots (Section A1.1) for the ability to pursue and
escape each other, respectively. The robots were controlled by artificial neural networks (NNs;
Section A1.2) that allowed them to map input from the visual camera and infrared sensors to wheel
speed activation. We used a CoEA (Section A1.3) to adjust the connection strengths of this NN,
thereby changing the robotʼs behavioral response to environmental stimuli. The fitness of each in-
dividual was evaluated while it was allowed to interact with all opponents of the current generation,
one at a time. We replicated the evolutionary process several times, starting from different randomly
initialized genotypes (hereafter seeds). We realized the simulations using the Evorobot* tool [31].
More details on the implementation can be found in Appendix 1.

We conducted two sequential series of experiments. The first one is the genuinely coevolving exper-
iment (GENU), where both predator and prey were subjected to the evolutionary process as simu-
lated by the CoEA. Subsequently, in a series of emulated coevolving experiments (EMUs), we evolved
only a population of predators against fixed prey displaying selected behavioral strategies. In the
EMUs, we extracted the prey individuals from the GENU run earlier.

Parameters were determined in a pilot study so that the evolutionary process converged to an
equilibrium in terms of fitness values obtained [20]. Certain parameters were fixed on account of
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theoretical considerations. For instance, in [9] the morphology of a robotʼs visual sensorsʼ position
and angle of view was evolved. This showed that predators evolved anterior eyes, with narrow angle
of view, while prey evolved lateral eyes, with wide angle of view. This parallels what we often see in
nature. Because morphological evolution was not the focus of our study, we fixed the robotsʼ visual
sensors in a configuration that we deemed realistic.

In the context of artificial coevolution, where all the data are available to the researcher, specific
measures have been proposed to evaluate the coevolutionary dynamics. In particular, [27] proposed
to monitor progress by testing the performance of the best individual at each generation against all
the best competing ancestors. The measurements obtained in this way have been called CIAO (cur-
rent individual versus ancestral opponents) data. An extended version of this measure, in which the
best individual of each generation is tested against the best competitors of past and future genera-
tions, is known as a master tournament (MT) [13].

MT data provide hints on whether variations occurring during a certain evolutionary phase rep-
resent real progress (i.e., enable individuals of successive generations to successfully cope with a
larger number of competitors) or they enable individuals to gain advantage over the current com-
petitors only. In this way, they provide indications of whether the coevolutionary process is char-
acterized by a continuous refinement of traits (Figure 2a) or by a cyclic dynamic (Figure 2b).

CIAO and MT analyses, however, can only give indirect indications on evolutionary dynamics,
since they do not provide a way to identify qualitatively different classes of strategies and counter-
strategies. Thus, we propose to use a phenotypic cluster analysis (Section 3.3) to partition MT data
so that the strategies displayed by the two species can be categorized into functionally different
classes (where “functionally” refers to the ability of these strategies to cope with counterstrategies
of specific classes). The cluster analysis can be used to identify the number and type of classes and
subclasses in which the evolved behaviors are organized. In doing so, we can construct behavior-
based “family trees” (hereafter, category trees3 ). We can then examine which (if any) genes are in con-
trol of alternating between these categories (Section 3.4).

In Section 3.2, we introduce a definition of MT data that demonstrates a species-dependent per-
spective on the MT (first informally raised as “subject” and “opponent” species in Section 1). We
define the notion of a phenotype in the context of MT data. We also introduce the concepts of
genosequences and phenosequences. We then use these definitions to measure phenotypic distances to be
used in the cluster analysis (Section 3.3). Subsequently, we explain how to use the acquired clusters

Figure 2. MT data. Each pixel represents the outcome of a post-evaluation test between the best predator and prey of
two corresponding generations (black and white pixels indicate trials won by the predator or the prey, respectively)
(from [30]). (a) In a prototypical arms race, an MT plot would show a diagonal bisection. This should be interpreted as
each subject elite from generation g outperforming all opponent elites from previous generations {g 0 : g 0 < g}. (b) An
actual example of a limit cycle dynamic, visible as distinct rectilinear banding, obtained from running a coevolution
computer simulation.

3 We use the term “category tree” to avoid confusion with phylogenetic family trees, which our cluster analysis does not address.
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to investigate correlations between genosequences and phenosequences in order to examine the
existence of switching-genes (Section 3.4). Finally, we demonstrate how to use the same clusters to
set up the EMUs, where we simulate a coevolutionary situation but where we are able to exert more
control over long-term evolutionary dynamics (Section 3.5).

3.2 Perspectives on Master Tournament Data
We introduce the notation

S;Oh i ¼ PD; PYh i if predator is subject
PY ; PDh i if prey is subject

�
(1)

as a perspective-dependent but species-neutral reference (cf. Section 1). Following this, we denote
nonspecific individuals as s 2 S and o 2 O.

We ran the GENU for 500 generations (Section A1.3), thus producing |S| = 500 elites with
which to organize a MT (Section 2.2). We can consider the genetic data representing Sʼs elites a
sequence of |S| genotypes, each instantiating 28 genes (Section A1.3), denoted as an |S| × |g|
matrix GS (Equation 2). Thus, gs,g

S (where g = 1, 2, …, |g|) denotes the allele corresponding to the
gth gene of the sth individual of species S, and we have

GS ¼

gS1;1 gS1;2 … gS1; gj j
gS2;1 gS2;2 … gS2; gj j
⋮ ⋮ ⋱ ⋮

gSSj j;1 gSSj j;2 … gSSj j; gj j

0
BBBBB@

1
CCCCCA (2)

Here we genetically describe a single individual s 2 S with a genotype: a vector containing |g| alleles:

Definition 1. Genotype: gs,*
S = h gs,1S , gs,2

S , …, gs,|g|
S i.

Over the course of evolution, a particular gene can mutate from one generation to the next, in
what we can consider a genosequence: a vector denoting a gene g 2 gʼs temporal sequence of alleles
over |S| generations:

Definition 2. Genosequence: g*,g
S = h g1,gS , g2,g

S , …, g|S|,g
S i.

Similarly, we represent the data of a MT between two competing species by an |S| × |O| matrixMS:

MS ¼

mS
1;1 mS

1;2 … mS
1; Oj j

mS
2;1 mS

2;2 … mS
2; Oj j

⋮ ⋮ ⋱ ⋮

mS
Sj j;1 mS

Sj j;2 … mS
Sj j; Oj j

0
BBBBB@

1
CCCCCA (3)

When we would shift perspective (i.e., when switching subject and opponent assignment as declared
in Equation 1), we transpose and modify values as in Mji

O = 1 − Mij
S.

Comparably to how we describe an individual s 2 S as a genotype (Definition 1), we can describe
it phenetically as a phenotype, consisting of |O| phenes that each correspond to a certain fitness score
against an opponent in the MT:

Definition 3. Phenotype: ms,*
S = hms,1

S , ms,2
S , …, ms,|O|

S i.
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Just as we describe temporal variations in genes as a genosequence (Definition 2), we can likewise
describe phenes as a phenosequence.4 Thus, whereas we consider an individual s 2 Sʼs phenotype
(Definition 3) as a sequence of different phene values against all MT opponents, we consider its
phenosequence as the complete sequence of temporal changes over |S| generations in one partic-
ular phene (i.e., against one particular opponent individual o 2 O):

Definition 4. Phenosequence: m*,o
S = hm1,o

S , m2,o
S , …, m|S|,o

S i.

To reiterate, the definitions of phenotypes and phenosequences vary according to which speciesʼ
(i.e., the subjectʼs or opponentʼs) perspective the MT is interpreted from. The reason for this is that,
when considering genotypes and genosequences, no ambiguities in perspective arise, since each spe-
cies has a unique genetic code, whereas both species share a single phenetic “code” (i.e., MT data).
For instance, what would be a predator individualʼs phenotype would be the prey speciesʼ pheno-
sequence of one particular phene (and vice versa). This consideration thus provides the conceptual
justification of correlating between subject genosequences and opponent phenotypes (i.e., subject
phenosequences), and subsequently averaging such correlations over opponent category distribu-
tions (Section 3.4).

To conclude, it follows from Equation 3 and Definitions 3 and 4 that the MT data contain a
description of all the phenotypes and phenosequences that were displayed during the tournament.
This, first of all, allows us to cluster phenotypes on the basis of MT data (Section 3.3). Secondly, if
switching-genes exist, there should be patterns in the relations between genosequences of certain
genes (i.e., temporal changes in alleles) and phenosequences of certain phenes (i.e., temporal changes
in terms of fitness scores against particular opponent individuals). More concretely, a change in
switching gene should be accompanied by a marked change in phenotype. Thus, correlating between
genosequences and phenosequences (Section 3.4) should enable identification of switching-genes.

3.3 Cluster Analysis
The cluster analysis we applied in this study (Algorithm 1) is based on the unweighted pair group
method with arithmetic mean (UPGMA) algorithm, an agglomerative (i.e., bottom-up) hierarchical
clustering algorithm [43] that allows building well-informed, phenotypic category trees. Agglomer-
ative cluster algorithms construct hierarchies by iteratively grouping the two most similar clusters in
a collection until all clusters are grouped under one big root cluster, thereby forming a binary tree. In
it, each node in the phenotypic tree represents an (abstract) category of individuals, and each leaf (i.e.,
singleton cluster) represents a (concrete) individual, that is, a phenotype (Definition 3).

The cluster algorithm (Algorithm 1) used a distance matrix to keep track of newly formed clusters
and their similarity to the other known clusters. The algorithm works by iteratively merging the two
closest clusters into a new cluster. We calculated any newly formed clusterʼs unweighted average
(Equation 5 below) and updated the distance matrix. We simultaneously stored cluster representa-
tions in a binary tree data structure. We continued this process until every cluster is grouped under
one, all-encompassing root cluster.

Species Sʼs categories are initially represented by singleton clusters (i.e., concrete individuals). The
dissimilarity between two such singleton clusters ms,*

S and ms 0,*
S (Definition 3) is equivalent to their

Euclidean distance to each other,

dist mS
s;�;mS

s 0;�

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXOj j

o¼1

mS
s;o −mS

s 0;o

 !2
vuut (4)

4 While the phenes in the simulation are not independent entities, they require independent measurements in view of the dynamical
systems nature of the experiment. More specifically, while the simulation is a fully deterministic system, it would be practically impossible
to predict what phenotypes emerge from what genotypes.
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Distance computation between compound clusters necessitated the formulation of an appropriate
averaging measure that specifies how nested clusters can be represented by a single vector to be used
in Equation 4. Let (S0 ∪ S00 ) ⊆ S be a compound cluster (i.e., a phenotypic category), where S 0 or S 00

can either represent another (nested) compound cluster or a singleton cluster ms,*
S (i.e., a concrete

individual). The averaging measure for a compound cluster is now formulated as follows:

lu S0 ∪ S 00ð Þ ¼ 1
2

1
S0j j
X
s2S 0

mS
s;� þ 1

S00j j
X
s2S 00

mS
s;�

 !
(5)

Conceptually, this unweighted average reflects the idea that categoriesʼ phenotypic profiles are equally
important when combined to form a new supercategory, regardless of the subcategoriesʼ size.

To visually draw the phenogram, we converted the binary tree to a Newick formatted string [12],
which we then visualized using the Environment for Tree Exploration (ETE) toolkit [19]. We in-
serted small average-fitness histograms at the treeʼs nodes. This allows for quick observation of the
overall performance of the category corresponding to that node against the opponent. For this vi-
sualization, we are however interested in the weighted performance rather than the unweighted
(since a categoryʼs fitness performance is an average over all its members, not solely a binary one
of its two subcategories:

Aw S0 ∪ S00ð Þ ¼ 1
S0j j þ S00j j

X
s2S0

mS
s;� þ

X
s2S00

mS
s;�

 !
(6)

3.4 Geno-Pheno Correlations

3.4.1 Identification
We denote the Pearson product-moment correlation coefficient (PCC; cf. [38]) between a subjectʼs
genosequence and phenosequence (i.e., opponent phenotype) as U (g*,g

S , mo,*
O ). To investigate whether

switching-genes might exist, we average the correlations between a single genosequence and a whole
set of subject phenosequences (i.e., category of opponent phenotypes) O 0, following

UA gS�;g;O0� � ¼ 1
O0j j

X
o2O 0

U gS�;g;m
O
o;�

� � !
(7)

Importantly, note that while the aim is to measure a correlation between subject genosequences and
phenosequences, the averaged PCC calculation in Equation 7 uses the opponent matrix MO. This is
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because, since a subject phenosequencem*,o
S is equivalent to the opponent phenotypemo,*

O (Section 3.2),
cluster data on the opponent species (Section 3.3) can be justifiably used to determine which subject
genes got strongly expressed as which category of subject phenosequences (i.e., category of opponent
phenotypes). Since we use the averaging measure (7) for exactly this purpose (Section 4.3.1), the
notation is of pragmatic, explicit origin.

3.4.2 Transplantation
Once we suspect a (set of) switching gene(s) g0 ⊆ gS to control the subject category S0ʼs special-
ization, we can extract the corresponding alleles {gs,g

S : s 2 S0, g 2 g0} and then randomly distribute
those over the complete conspecific population S (i.e., stochastically varying the originating individ-
ual s, each time copying sʼs complete set of alleles).

If switching-genes indeed control opponent specialization, the associated alleleʼs transplanta-
tion should force the entirety of S to assume the category S 0ʼs specialization, regardless of pre-
transplantation category membership. Conversely, if we distribute non-switching alleles, this should
not result in any switch in specialization.

3.5 Opponent Cycling Emulation
Results show that genetic adaptability, possibly controlled by switching-genes, appears to emerge
slowly as the subject species is exposed to an increasing number of opponent category cycles (cf.
Sections 4.1.2 and 4.3.2). To investigate, we extracted the opponent categories against which switching-
genes got strongly expressed in the preceding GENU. We randomly sampled opponents from these
categories and presented those in alternating fashion to the subject species to evolve against de novo.
We switched the opponent categories every 75 generations (an approximation of the cycling interval
in the GENU) for a total of 1000 generations (Section 4.1.1).

For example, two extracted opponent categories O 0 ⊆ O and O 00 ⊆ O could be presented in the
alternation sequence hO 0,O 00,O 0,O 00,…i. Each cycle (i.e., every 75 generations), the opponent category
is switched. If adaptability in the subject species increases throughout evolution, there should be an
increase in fitness performance against both categories. More specifically, the difference in either of
the opponent categoriesʼ consecutive cyclesʼ fitness maxima and minima should increase as evolution
progresses (Figure 3). Having fixed, alternating categories served to emulate cycling dynamics in the
opponent species, thereby gaining more control over selective pressure on the subject species. More-
over, we now used the Gaussian mutator (A= 0, j= 4) for the subject mutations instead of the random
bitwise one used in the GENU (Section A1.3). Again, this was done in order to attain a higher degree of
control over evolutionary progress and subsequent exploration of the geno space.

4 Results and Discussion

We will demonstrate the results following the methods elaborated on in Appendix 1 and Section 3.
Our focus is mainly on one experiment replication (seed 6), since it shows promising initial results
using the cluster analysis and provides a clear example of cycling dynamics.5 First, we briefly discuss
the classical, online fitness measurements and MT data in Section 4.1.1. These raw data are then used to
obtain the cluster analysisʼ category classifications in Section 4.2.1. In Section 4.3.1, we examine the
correlations between subject (predator) genosequences and phenosequences, mapped on the previously
obtained opponent (prey) categories, and their influence on opponent specialization in situ. Finally, in
Section 4.4.1, we will address the emergence of genetic adaptability by emulating opponent cycling.

5 For some suggestions on generality, see Appendix 2.
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4.1 Classical Analysis

4.1.1 Results
Figure 4a shows the online fitness measures in the GENU of seed 6, which displays large fluctu-
ations that would be expected in cycling scenarios. The fitness averages (over 10 seeds; Figure 4b)
are shown to be approximating an equilibrium of ≈0.5 (fine-tuned in a pilot study [20]). The MT
shows a more informed representation of evolutionary progress (Figure 5).

4.1.2 Discussion
Not only is the Red Queen effect hypothesized to lead to arms races [45]; online fitness measures
are also not particularly informative because of it. Neither the results from seed 6 (Figure 4a) nor the
fitness averages over 10 seeds (Figure 4b) show any increase in fitness values as evolution pro-
gresses, while the results from seed 6 also show considerable noise. The other seed-specific results,
not shown here, all display so much variation such that any general interpretations regarding cycling
or incrementality are hard to justify.

The results from seed 6 (Figure 5a) show the rectilinear patterning that is often interpreted as indic-
ative of cyclic progress (Section 2.2). The seed-averaged MT results (Figure 5b), on the other hand,
display a subtle, yet clear diagonal bisection that resembles the arms race scenario (cf. Figure 2a),
preliminarily confirming that, on the most general level, coevolution can indeed lead to long-term

Figure 3. The hypothesized subject fitness progression in the EMU. The opponent category is manually alternated between
O0 and O00 every 75 generations (x-axis; shaded areas). Opponent cycling is visible as sudden drops in subject fitness,
followed by a period of readaptation against another opponent category. The rate of adaptability against a particular
opponent category in a particular cycle is denoted by D; it becomes larger as evolution progresses. Note that fitness
between different opponent categories need not per definition increase consecutively (i.e., performance against
one category (e.g., O00) can be worse than against the other (e.g., O0) in a preceding cycle, while overall adaptability is
still increasing).
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progress (in both predator and prey species). Taken both the seed-specific and averaged results into
account, one could thus suggest that evolution is characterized by a subtle degree of incrementality
while at the same time cycling among phenotypic categories. In other words, evolution can be said
to display cyclic incrementality.

Figure 5. Visualization of MT data (i.e., performance of the predator elite of each generation against the prey elite of each
generation). Each pixel represents the fitness value in terms of predator performance. The higher the value, the faster
the predator caught the prey. The lower the value, the longer the prey managed to escape the predator. (a) Seed 6
fitness values. Each outcome (pixel) is an average over 25 trials. (b) Averages over 10 replications. Note the resemblance
to Figure 2a.

Figure 4. Fitness values of the predator and prey elites throughout the generations. Solid and dashed lines plot elite fitness
and elite weighted average over 50 generations (A), respectively. Dark lines plot predator fitness; light ones plot
prey fitness.
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4.2 Cluster Analysis

4.2.1 Results
We apply the cluster analysis (Section 3.3) to the phenotypes (Definition 3) expressed during the MT
of seed 6 (Figure 5a). Figure 6 shows how the predator species of that seed is clustered. Each node
in the predator dendogram shows a histogram displaying the weighted average (Equation 6) of the
fitness score of that predator category against all 500 prey elites in the MT (the preyʼs originating
generation is thus denoted on the histogramsʼ x-axes).

The fitness characteristics of the different predator and prey categories are shown in vertical
alignment in Figure 7. The fitness progression displays a clear alternation between the two sets
of categories. For the predator species, the alternation is visible in all categories (Figure 7a). For
the prey species, differences between individual nodes (Figure 7b) are larger. Still, an alternating
pattern is visible here as well, notably between the categories PY1, PY3, and PY4 on one side,
and the categories PY2 and PY6 on the other. Not only do we see an alternating pattern in the
averaged performances of categories; they also appear to be distributed over time accordingly
(Figure 8). In particular, the distribution of the categories PY1 and PY6 (Figure 8a) aligns with
the performance of PD1 and PD2 (Figure 7a), while the distribution of PD1 and PD2 (Figure 8b)
corresponds symmetrically to performance changes in PY1 and PY6 (Figure 7b). Averaged hetero-
specific fitness values are shown in Table 1.

4.2.2 Discussion
When observing results of the cluster analysis of the predator species (Figure 6), note that the higher
in the treeʼs hierarchy, the larger the difference in fitness performance between two sibling catego-
ries is. This is to be expected, since the tree is constructed bottom-up, that is, the most similar
individuals and categories were clustered first, the most dissimilar ones last (Section 3.3).

Figure 6. Visualization of the categorization tree resulting from the cluster analysis of predator strategies. Nodes show
the average performance of a categoryʼs members against all opponent strategies (cf. Figure 7). For each category, its size
(i.e., the number of strategies belonging to the category) is shown in italics, and the category id (which corresponds to
the labels on the y-axis of Figures 7 and 8) in upright text. Branch length is proportional to the Euclidean distance
between categories. The tree has been visualized up to the fourth level only. At this level, some categories include
only a single individual (e.g., PD7, PD13, and PD14).
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Seed 6 seems to have produced two very large, well-demarcated predator categories that are hard
to further differentiate. This follows from a number of observations: First, the two most dissimilar
sibling categories (at level 1 in the tree) are equally large in terms of the individuals they represent.
Furthermore, the tree is notably unbalanced down from level 1 (Figure 6). Finally, both speciesʼ
category performance (Figure 7) and distributions (Figure 8) show a clear alternating pattern. Over-
all, these observations strongly suggest that the two level 1 nodes (PD1 and PD2) capture the pred-
atorʼs cycling categories to a reasonable extent.

When we inspect numerical fitness averages of PD1 and PD2 on one hand, and PY1 and PY6

on the other (Table 1), we see a clear heterospecific cross-specialization. More specifically, fitness
averages indicate that categories are circularly related as PD1 > PY1 > PD2 > PY6 > PD1. These

Figure 7. Average performance of selected predator and prey categories against opponents. The labels (y-axis) correspond
to the labels used in Figure 6. Only nodes up until a depth of level 3 are shown.
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results are in line with previously established conceptualizations of cyclic evolution, both in simu-
lated (Section 2.2 and Figure 1) and in natural settings (Section 2.4).

We can now draw a number of conclusions. First, the elites representing distinct categories are alter-
natingly distributed in the MT. This indicates a similar distribution in their originating population during
the actual evolutionary run.6 Secondly, the alternating performance of categories corresponds to alter-
nations in the opponent category distribution. Finally, on average, there exists a heterospecific cross-
specialization between categories. In conclusion, the results demonstrate that the cluster analysis is able to
capture fitness dynamics such as cyclicity, paving the way for further exploration (cf. Sections 4.3.1 and 4.4.1).

On a more conceptual note, the definition of a phenotype as a sequence of behavior-derived
fitness values (Section 3.2), and the following empirical operationalization through the cluster analysis
(Section 3.3), fit well with the underlying philosophy of doing ER. Since we evolved agents using the
“algorithm” of natural selection, while we determined their phenotypic categorization through a (com-
parably automated) cluster algorithm, we increase our distance from subjective, distal interpretations

Figure 8. Distribution of category membership throughout generations. For example, the prey individual from generation
300 belongs to categories 0, 1, and 3. The labels (y-axis) correspond to the labels used in Figures 6 and 7. Only nodes up
until a depth of level 3 are shown.

6 In order to make this inductive inference, we are (fairly) assuming that the elites are phenotypically representative of their originating
generation.

Table 1. Heterospecific fitness performance of selected (cycling) categories.

PD1 PD2

PY1 0.71 0.34

PY6 0.34 0.70
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(Section 2.1). This observation, however, requires two issues to be addressed. First, the definition of
a phenotype we propose (Section 3.2) might appear unconventional. In Section 2.3, however, it was
argued that constraining an organismʼs phenotype to, for example, its physical body can restrict oneʼs
understanding to that of the individual as the sole level of selection. As the classical extended pheno-
type considers a geneʼs effects on the environment as part of the phenotype, the functionally extended
phenotype (formalized in Section 3.2) more abstractly considers the (hypothetical) performance of an
organism against opponents from different time periods to be part of the phenotype.

Secondly, we should emphasize that any definition of behavior, or indeed of a phenotype, is in
effect an arbitrary one and might not per definition correspond to human intuition (cf. Section 2.3).
For instance, we might regard two robot strategies (e.g., encircling the opponent either clockwise or
counterclockwise) as different from each other from a distal perspective, but we would consider
them similar from the proximal one (Section 2.1). The strength of using the cluster analysis thus
lies in the fact that it lessens ambiguities that may arise from an external observer trying to interpret
an agentʼs situated behavior. Furthermore, as in our case, the behaviors displayed might actually be
very hard to clearly differentiate, because they differ from each other in ways so subtle it would be
hard to justify any interpretation. Moreover, note that for each generation, to arrive at a full under-
standing of the behaviors displayed, there would be 400 combinations to check, times 500 gener-
ations. It is for precisely these reasons that the cluster analysis is useful in abstracting away from the
finer details of the behavioral dynamics displayed. Thus altogether, the question exactly what kind
of cluster analysis is used is subservient to the usability of the results. More specifically, we used a
basic hierarchical cluster algorithm and obtained workable findings. Future studies might explore
more informed clustering variants, but this decision should be mainly pragmatic and well motivated
(e.g., if a hierarchical algorithm proved to be inadequate).

In conclusion, we have proposed a usage of the term “phenotype” that extends the classical con-
cept further (Sections 2.3 and 3.2). More specifically, we made the observation that, in cyclic evo-
lution, a subject individual would obtain a particular fitness performance against a particular
opponent. This performance is based on the behavior displayed by the individual, which in turn
is based on the individualʼs genetically determined “brain.” Of course, it could be that an individual
displays similar performance against a number of different opponents, but generally speaking, every
subject individual should be definable by a very distinct sequence of fitness scores.

Thus, we define a phenotype as a sequence of behaviors in different contexts, identifying the
corresponding individual. When clustering, individuals are therefore grouped on (functionally ex-
tended) phenotypic qualities.

4.3 Geno-Pheno Correlation

4.3.1 Results
Identification If switching-genes exist, there should be a correlation between genotypes and the
phenotypes shown during the MT. To investigate, we calculated the PCCs between every geno-
sequence and every phenosequence for the predator species (Section 3.4.1). Results show that some
of seed 6ʼs predator genosequences, particularly g*,25

PD and g*,26
PD , correlate up to U ≈ |0.7| with predator

phenosequences, when averaged (Equation 7) over prey category distributions (Figure 9). The cor-
relations are notably positively expressed against prey categories PY3, PY8, PY17, and PY18 (UA ≥ 0.7;
Table 2a), but notably negatively against PY6, PY14, PY27, and PY28 (UA ≤ −0.5; Table 2b).

Of these categories, we selected two sets ({PY3, PY6} and {PY8, PY14}) for further investigation
by EMUs (Section 4.4.1). We selected categories based on the criteria that (a) they are highly cor-
related and represent large categories, following the weighted correlation coefficient

u ¼def PY 0j j
PYj j

1
2

U gPD
*;25
; PY 0

� �
þ U gPD

*;25
; PY 0

� �� �� 	
(8)
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—implying that the aforementioned correlations are not trivial—and (b) each set contains categories
showing inverse correlation signs, which suggests opposing specializations.

Transplantation Looking at the data in Section 4.3.1, we might now suggest that predator
genes g*,25

PD and g*,26
PD control opponent specialization. To test that, we sampled pairs of those genesʼ

alleles from either PD1 or PD2 and distributed those over the entire predator population. We eval-
uated the effect on predator performance in two sets of two MTs each (Section 3.4.2).

In the first set (Figure 10a,b and Table 3a), we extracted alleles from the genes g*,25
PD and g*,26

PD ,
while in the second set (Figure 10c,d and Table 3d), we extracted alleles from all genes except
g*,25
PD and g*,26

PD . For each set, the allelesʼ originating category was varied (PD1 or PD2). We
selected alleles from random members of a category, and then distributed them over the entirety
of PD.

Figure 10a,b show that allele transplantation leads to an approximation of the fitness character-
istics of the genesʼ originating category. In other words, the entire population now becomes special-
ized in coping with one particular opponent category (Table 3a). Correspondingly, transplanting
less-correlating genes results in little change in the MT: Although opponent specialization becomes
less pronounced, no actual switch is apparent (Figure 10c,d and Table 3d). Altogether, this indicates

Figure 9. Correlation coefficients between seed 6ʼs 28 predator genosequences and the 29 highest-level (i.e., up until
level 5 in the cluster hierarchy) prey categories.

Table 2. Notably strong PCCs between predator genosequences and predator phenosequences expressed against
various prey categories (following UA (g*,g

PD , PY 0); Equation 7).

(a) Strongly positive PCC values
(i.e., U ≥ 0.7)

(b) Strongly negative PCC values
(i.e., U ≤ −0.5)

PY3 PY8 PY17 PY18 PY6 PY14 PY27 PY28

|PY 0| 149 144 75 39 |PY 0| 209 176 104 72

g*,25
S 0.70 0.72 0.71 0.73 g*,25

S −0.50 −0.59 −0.66 −0.50

g*,26
S 0.55 0.58 0.59 0.56 g*,26

S −0.48 0.55 −0.56 −0.55

u 0.186 0.187 0.098 0.050 u −0.205 −0.201 −0.127 −0.076
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that (the combination of) predator genes g*,25
PD and g*,26

PD can indeed be considered to fulfill the role-
switching-genes that we first hypothesized in Section 1. Possible conflictor and suppressor genes
that might emerge in conspecific parent-offspring conflict (Section 2.4) could control phenotypic
expressions through a similar mechanism.

Figure 10. MT plots after predator allele transplantation (compare with Figure 5a).
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4.3.2 Discussion
Although we deliberately did not address the distal perspective (Sections 2.1 and 4.2.2), a brief elab-
oration of how switching-genes can influence behavior is appropriate. Upon closer inspection, genes
g*,25
PD and g*,26

PD express the strength of the NN connections between the center-right and right
camera sectors in the input layer and the output turning neuron (Sections A1.1 and A1.2). Thus,
by modifying just these two weights, the EA is able to realize quick adaptations to different opponent
categories. Of course, this setup only works if the rest of the NN provides the right background for
such a mechanism to take effect. Therefore, we can say that the NN has evolved to a state that is
predisposed to enable large change in the phenotype through small structural (i.e., genetic) change.
More speculatively, more complex NNs might realize genetic adaptability in a more “exotic” fashion.
For instance, one could imagine switching-genes controlling neural “gates” that could either block or
facilitate downstream neural activity. This way, a neural network could encode the responses for
multiple opponent strategies, while only one gets promoted as actual motor activation.

Adaptive mechanisms such as the ones observed and hypothesized are not unlike the functioning
of some genes in nature. For example, while the current study used a simplified model where genes
and neural connections correspond isomorphically, gene expression in actual organisms is dependent
on the interactions between many genes (epistasis) that form complex regulatory networks (cf. [33]).
Striking examples of transcription factors involved in these networks are hox genes that control mor-
phogenesis in embryonic development [5]. Intriguingly, traits that are suppressed can still remain
dormant in a speciesʼ genome. For example, a single mutation in a particular hox gene might lead
to examples of chickens growing teeth, or horses growing toes [17]. This reexpression of ancestral,
dormant features is known as atavism and can be said to parallel the retention of dormant special-
izations in specific opponent categories, which forms the basis of cyclic incrementality (further dis-
cussed in Section 4.4.2). The difference from switching-genes emphasized in the current study is that
hox genes do not directly encode phenotypic features, but instead promote or suppress gene
sequences that do. Mechanistically, however, they appear to play comparable roles, and might be
of value in enhancing a speciesʼ evolvability.

4.4 Opponent Cycling Emulation

4.4.1 Results
To determine whether a genetic predisposition for adaptability might slowly evolve (and how
switching-genes might play a role in this), we emulated cycling in the prey opponent (Section 3.5).
So, instead of evolving both species (as in the GENU), we now only evolved the predator species.
The prey individuals, on the other hand, were randomly sampled from the previously evolved cate-
gories {PY3, PY6} (Figures 11a and 11b) and {PY8, PY14} (Figures 11c and 11d). Every 75 gener-
ations, we manually alternated the prey category that was sampled from. This presented the predator
with a series of opponents indistinguishable from a genuinely cyclically coevolving prey.

Table 3. Heterospecific performance (compare with Table 1) after allele transplantation (Section 3.4).

(a) Transplantation of highly correlating predator
genes 25 and 26 (or: hg*,25PD , g*,26

PD i).
(d) Transplantation of all predator genes except

genes 25 and 26 (or: hg*,25PD , g*,26
PD i∁).

(b) PD1 as originating
category

(c) PD2 as originating
category

(e) PD1 as originating
category

(f ) PD2 as originating
category

PD1 PD2 PD1 PD2 PD1 PD2 PD1 PD2

PY1 0.62 0.49 PY1 0.39 .33 PY1 0.62 0.38 PY1 0.49 0.33

PY6 0.35 0.33 PY6 0.58 0.63 PY6 0.35 0.58 PY6 0.34 0.63
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We ran each experiment 25 times with random initial conditions (prey genotypes were fixed after
having been sampled). Then we ran a MT (switching prey categories following the same 75-generation
interval) to measure fitness progress more accurately. So, in this MT, we tested the elites of the
newly evolved predators against the prey elites from the same category samples manually presented
during the EMU.

The data obtained show that the predator species displays an increase in fitness obtained against
both prey categories as evolution progresses (Figure 12 and Table 4), except against PY14 during the
prey sequence hPY8, PY14, …i (Figures 11c and 12c). The increase is less pronounced against the
first prey category when including the first cycle (i.e., generations 0–75), and in fact shows an ap-
parent fitness drop.

Figure 11. Master fitness of evolved predator species and evolved prey categories during the EMU. Solid and dashed lines
mark cycle maxima and minima respectively. Vertically shaded areas mark the prey cycle interval. Each value represents
an average over 500 trials. See also Figure 3.
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4.4.2 Discussion
We might explain the initial fitness drop (Section 4.4.1) by observing that it is, crucially, due to an
increase in the minimum fitness and not due to a decrease in maximum (Figure 11), and is therefore
advantageous. This is a plausible progression because, according to the observations, the predator
gets primed against the first prey category it encounters, as seen in a consistent performance de-
crease from the first cycle to the second (when it encounters the second category for the first time).
When encountering the third cycle, the predator is adapted to the second category. While then hav-
ing to readapt to the first prey category from the second is of course a challenge, it is better than
having to adapt from a randomly initialized state; hence the increase in the minimum fitness (and the
apparent fitness drop). This explanation provides a justification for disregarding the first cycle when
determining the overall increase in adaptability (Table 4); only from the second cycle onwards is the
predator species able to “realize” it has to cope with multiple opponent categories.

Figure 12. Relative master fitness increase of predator species against prey categories during the EMU. Shown is the within-
cycle difference between cyclesʼ minima and maxima as observed in Figure 11 (D in Figure 3). Vertically shaded areas
mark the prey cycle interval. Each value represents an average over 500 trials.
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More generally speaking, however, the increase in evolvability (Table 4) must be attributed to
either an increase in fitness maxima or a decrease in minima. Particularly in prey sequences hPY6,
PY3, . . .i (Figure 11b) and hPY14, PY8, . . .i (Figure 11d) (where PY14 ⊂ PY6 and PY3 ⊂ PY8), the
effect is clearly visible, due to a large initial fitness difference between the first and second prey
categories. More specifically, adaptability against the first category increases due to a decrease in
cycle minima from ≈0.6 to ≈0.5, while maintaining the maxima of ≈0.8. Conversely, adaptability
against the second category increases due to an increment in cycle maxima from ≈0.4 to ≈0.6, while
maintaining cycle minima of ≈0.2. When prey sequences are reversed (Figure 11a and 11b), the
effect is less demarcated and results from both a gradual decrease in minima and an increase in a
maxima. Thus, in the latter case, the increase in adaptability seems to maintain the initial fitness
equilibrium against both prey categories, while in the former the equilibrium is approached from
the initially unbalanced distribution.

In the genetic domain, if we look at the allele distribution of switching gene 25 of seed 18
(Figure 13a), we see that the within-cycle prey response is characterized by linear genetic change. In
the phenotypic domain, these within-cycle changes correspond to seemingly sigmoidal growth pat-
terns that get interrupted by sudden drops caused by the opponent changing strategy (Figure 11d).
Between these interruptions, however, the initial response is consistently acute. In a more long-term
phenotypic time frame, however, we observe a between-cycle linear change (Figure 12), in the sense
that the distance between the sigmoidsʼ onset and upper asymptote generally increases when more
alternations are encountered. The responseʼs long-term linear profile shows us there is a notable
delay between the actual encounter of a cycling opponent and the eventual development of an adap-
tive, pseudo-Baldwinian strategy. A long-term parallel is not immediately visible in the genetic do-
main, possibly, due to many genes being a factor in the phenotype (cf. complex traits).

Looking more closely at the allele distribution of gene 14 of seed 18, we can observe a more grad-
ual genetic drift (Figure 13b). In contrast, the highly correlating allele fluctuations start to follow prey
alternation intervals relatively abruptly (Figure 13b). Since we have already established that evolvabil-
ity emerges gradually, while the allele alternation patterns show switching-genes appearing suddenly,
we can safely reject the notion that the gradual emergence of adaptability is exclusively mediated by
switching-genes. Again, this suggests the existence of complex traits. More specifically, it is likely that,
if switching-genes are developed, the remaining, less correlating context genes co-provide the appropri-
ate genetic environment for switching-genes to shift strategy efficiently. To hypothesize: Switching-
genes control which opponent specialization gets expressed, but they depend on context genes to do
so efficiently. Again, this is not unlike gene regulators such as hox genes or, for example, sex loci,
although, again, our model does not allow for regulatory effects (Section 4.3.2). Overall, then, there
are adaptive processes present at multiple scales, and they manifest differently in the phenotypic and
the genetic domain. All the while, the correspondence between genotype and phenotype, even in our
simplified model, is non-isomorphic. Multiple genes shape traits instead.

However, we need to report one anomaly when discussing the EMUs. First of all, geno-pheno
PCC values obtained during the EMU (Figure 14a) and against the original prey categories in the

Table 4. Overall predator master fitness increase (i.e., the fitness difference between the last and the first cycle of a
particular prey category during a particular prey alternation sequence), in percentage points. Shown is the average fitness
increase D (where D+ indicates that the first cycle is ignored) during the EMU over 500 trials (25 seeds, 20 trials
per generation), and mean squared error (over 25 seeds) between parentheses.

hPY3, PY6, …i hPY6, PY3, …i hPY8, PY14, …i hPY14, PY8, …i
D (fam1) 4.56 (4.88) 7.52 (4.91) 0.92 (4.89) 2.04 (4.37)

D+ (fam1) 12.48 (3.79) 12.76 (4.06) 5.92 (5.18) 6.88 (5.49)

D (fam2) 7.16 (3.91) 14.36 (4.04) −3.92 (4.28) 10.08 (4.17)
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GENU (Table 2) are overall markedly similar. Notably, however, the high correlations of g*,1
PD and

g*,27
PD in the EMU were not observed in the GENU. This can, first of all, be explained by taking into

account that the EMU shows PCC averages over 25 seeds instead of a single one. Furthermore, we
designed the EMU to be more constrained than the GENU; it only presented a subset of prey
opponents to the predator out of the GENU prey population (358 (= |PY3| + |PY6|) out of
500 prey individuals). Altogether, we can expect small deviations in a speciesʼ genome when we
compare the EMU with the initial GENU.

Figure 13. Allele distributions of two predator genes during seed 18 evolved against prey sequence hPY3, PY6, PY3,
PY6, …i (Figure 14b). Allele shading indicates individual origin (20 shades, one shade for each of the 20 predator
individuals). Allele values may be obscured by others. Vertical shaded bands correspond to prey alternation interval.
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In conclusion, the gradual increase in predator adaptation against alternating prey categories dem-
onstrates that species are not merely adapting to a particular situation in a strictly ad hoc fashion
(Section 2.4). Instead, genotypes that allow for quick shifts in opponent specialization develop grad-
ually as species are exposed to an increasing number of opponent cycles. Since individuals were
controlled by simple perceptrons (Section A1.2), exploitation of phenotypic (e.g., neural) plasticity
historically associated with the Baldwin effect (Section 2.4) is ruled out, and thus the increase in
evolvability must be of a purely genetic nature. Furthermore, the demonstrated retention of historical

Figure 14. Geno-pheno correlation coefficients of the 28 predator genes evolved against the prey sequence hPY3, PY6,
PY3, PY6, …i.
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adaptations implies an instance of genetic memory, mechanistically not unlike that seen in cases of
atavism (Section 4.3.2).

5 Conclusion

We investigated the evolutionary dynamics characterizing competitive coevolutionary scenarios
through computer simulations involving two populations of predator and prey robots. By proposing
and formalizing the concept of a functionally extended phenotype (Section 2.3) and the subsequent uti-
lization of a cluster analysis technique (Section 3.3), we showed that the evolutionary process can con-
verge toward limit cycling dynamics in which the two populations periodically rediscover previously
discarded strategies. Thus, the evolutionary process does not lead to any arms races characterized by
progressive complexification of agentsʼ competence as is often hypothesized to occur in nature. In
contrast to previous studies, our own study shows a high degree of formalization and automation in
the analysis leading to these conclusions.

We hypothesized that the need to adapt to periodic variations in the environment could lead to
the synthesis of genetic organizations characterized by a readiness to change toward specific direc-
tions (Section 1). We speculated that this form of evolvability could be realized through the utiliza-
tion of switching-genes, that is, a limited number of genes enabling large shifts in the phenotype
through only a few mutations. We first explored this idea by analyzing the temporal correlations
between genetic and phenetic sequences (Section 3.4). If switching-genes exist and they control
opponent specialization (i.e., they control large shifts in the phenotype), changes in those genes over
time should correspond to changes in phenetic qualities (phenes). While we indeed showed that
such correlations exist (Section 4.3), they did not appear to be distributed evenly against all opponent
individuals. Here, we used the cluster analysis data (Section 4.2.1) to map correlations onto the cat-
egory level. This showed that some genes show strong correlations only against certain opponent
categories. Transplanting such highly correlating genes into individuals the genes did not originate
from caused a shift in opponent specialization, providing further evidence for their role as switching-
genes (Section 4.3). Conversely, transplanting less-correlating genes had negligible effect.

In conclusion, we proposed and demonstrated that switching-genes express specialization to dif-
ferent opponents (Section 4.3.2). This is made possible by retaining historical adaptations to previ-
ously encountered opponents. While our model abstracts away from reality and in particular does
not include gene-regulatory mechanisms or any form of ontogenetics, this nevertheless parallels the
idea that certain properties can remain dormant in an organismʼs genotype, possibly reexpressed by
a single mutation such as is seen with hox genes. More conceptually, the fact that we observe the
emergence of switching-genes only in some of the experiment replications (Section 4) demon-
strates that they, in interaction with other genes, act as critical parameters in cyclic evolution. Like
any dynamical system, the emergence of such heavily interaction-dependent organizations very much
relies on initial conditions and on-line perturbations, and therefore does not develop in every case.

Finally, we investigated whether a disposition for evolvability, possibly mediated through switching-
genes, would emerge abruptly or gradually. To this end, we used the cluster analysis to extract oppo-
nent categories with high geno-pheno correlations from a GENU conducted earlier (Section 3.5).
We then presented these categories to the subject species in a controlled, alternating fashion,
enabling fine-tune control over cycling dynamics. Here, it was shown that evolvability emerges grad-
ually as evolution progresses (Section 4.4). Furthermore, it appeared that identical switching-genes
that were observed during the GENU emerged now as well (the latter as a subset of the former).
This provides yet another indication that these genes play a fundamental role in opponent speciali-
zation. Correspondingly, allele distributions showed switching-genes following an alternating pattern
mirroring the opponent alternation interval but, somewhat unexpectedly, emerging quite abruptly.
Less-correlating genes on the other hand showed a more gradual genetic drift (Section 4.4.2). This
suggests that switching-genes control opponent specialization, provided that the remaining context
genes supply the appropriate genetic background for switching-genes to shift strategy effectively.
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In conclusion, it is clear that coevolving dynamics, while a plausible explanation for complexity in
nature, is less self-evident than is often assumed, and involves highly interaction-driven interdepen-
dences that require further advances in evolutionary thinking and subsequent analyses. Our study is
an attempt to show how computer modeling can be of use in this effort.
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Appendix 1: Simulation Implementation

A1.1 Robots and Environment

We situated two 75-mm-diameter e-puck robots [28] in a 60 × 60-cm environment surrounded by
walls. We equipped both the predator and prey robots with eight infrared sensors (spaced 45° apart)
that enabled them to detect nearby objects, a camera that enabled them to detect the relative
position of the other robot, and two actuators controlling the speed of two corresponding wheels
(Figure 15). The relative position of an object (i.e., wall or opponent robot) to an infrared sensor was
matched to a sample table that contained activation measurements from real infrared sensors of
the e-puck. The state of each sensor was encoded in a corresponding sensory neuron. The state
of the neural controller, of the sensors, and of the actuators is updated every 100 ms.

The predator and prey differed in themaximum speed at which the robots couldmove, and in the field
of view of the camera. We set the robotsʼmaximum speed to smax= 80mm/s for the predator and to smax=
100 mm/s for the prey; we set the camerasʼ view fields to 45° and 360°. We divided the camerasʼ angles
of view into five sectors of 9° and 72°, respectively. The state of each of the five sectors was fed into
five sensory neurons that encoded the average gray level of the corresponding 1° photoreceptors.

The offset in speed between the predator and the prey was set so to balance the relative efficacy
of respectively catching or escaping the opponent. The difference in the field of view was set to take

Figure 15. Layout of sensors and actuators (predator configuration shown). The arrows show the robotʼs forward
direction. (a) Infrared sensors, linear camera, and the two wheels are represented by dotted lines, dashed lines, and the
two dotted rectangles respectively. (b) Layout of the linear camera. Solid lines and dashed lines represent sectors and
photoreceptors, respectively.
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into account that evasive behavior generally requires a larger field of view than pursuant behavior.
This mirrors binocular vision in predators and prey in nature, as also demonstrated in the context of
morphological evolutionary robotics [8].

Two motor neurons were used to encode the desired speed and turning angle of the robot, re-
spectively. The wheel speeds sleft (Hn) and sright (Hn), where −smax ≤ sleft, sright ≤ smax, was translated
from the motor neuron activations or(Hn−1) and oω(Hn−1) (both in the range [0, 1]) at time step Hn−1
(Section A1.2). Neuron or encoded the baseline robot speed (Equations 9 and 10). Neuron oω en-
coded the robot turning-rate: When oωʼs activation started to deviate from ≈0.5, one of the wheels
decreased or reversed speed, causing the robot to turn (Equation 11 and Figure 16). Turning neuron
oωʼs falloff rate c = 1 determined how abruptly a robotʼs velocity changed when turning. Calculated
wheel speeds were matched with an empirical sample table.

sleft Hnð Þ ¼ smaxor Hn−1ð ÞE oω H n−1ð Þð Þ if oω Hn−1ð Þ < 0:5
smaxor Hn−1ð Þ otherwise

�
(9)

sright Hnð Þ ¼ smaxor Hn−1ð ÞE oω Hn−1ð Þð Þ if oω Hn−1ð Þ > 0:5
smaxor Hn−1ð Þ otherwise

�
(10)

E xð Þ ¼ −22cþ1 x − 0:5ð Þ2c þ 1 (11)

A1.2 Robot Neural Network Controller

We provided both predator and prey robots with a perceptron neural network controller with an input
layer I of 13 neurons xi (i = 1,…, 13) and an output layer with two neurons yj ( j = 1, 2) (Figure 17).

Figure 16. Schematization of the relation between the activation state of the turning motor neuron (oω (Hn−1)) and the
desired speed of the left (sleft (Hn)) and right (sright (Hn)) wheels, when smax = 1, or = 1, and c = 1. The dashed and solid
lines show the left and right wheel speeds, respectively.
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The input and output layers were fully connected by 26 connections with weights wij 2 W. We
parameterized two motor neurons each with a responsiveness parameter hj 2 B. Connection
weights and responsiveness parameters varied in the range [−5.0, 5.0]. The state of the sensor neurons
was scaled in the range [0.0, 1.0]. Sensors and motor neurons were updated at each time step Hn . The
activation of the output neurons was computed according to

yj Hnð Þ ¼ j hj

XIj j
i

wij xi Hnð Þ
 ! !

(12)

using the sigmoid function j (a) = 1/(1 + e−a), and where hj 2 B denotes yjʼs responsiveness
parameter, which determines the steepness of the sigmoid. The output nodes correspond to the
motor neurons ( y1 = or and y2 = oω) and determine the rotation speed of the wheels (Section A1.1).
The 28 NN parameters (encoding 26 connection weights and two responsiveness parameters) were
genetically encoded and evolved (Section A1.3).

A1.3 Evolutionary Algorithm

We initialized (random genotypes) and evolved two populations (predator and prey), each of size A=
20 in the GENU (Table 5 and Algorithm 2). Subsequently, we evolved only the predator in a
second series against a fixed, alternating opponent (prey) during the EMU (Section 3.5). In the
EMU, we extracted the prey individuals from the GENU using the cluster analysis (Section 3.3).
The NNʼs connection weights W and output neuronsʼ responsiveness parameters B (Section A1.2)
were encoded in a genotype g = hg0, g1, …, g28i of 28 (= |W| + |B|) integer values 0, 1, …, 255
(see also Definition 1), and subsequently evolved by the EA.

First, we assigned pairs of predator and prey fitness scores by evaluating them exhaustively (A2) in
the simulated environment (Section A1.1); each individual was evaluated against each opponent of
the current generation during A trials. At the beginning of each trial, the position and the orientation
of the robots were randomly initialized. The state of the robots was updated in discrete, 100-ms
time steps 0 ≤ Hn ≤ Hmax. Each trial ended at Hmax = 500 or when the prey got caught. In
order to instantiate the robot controllers, each allele was linearly transformed into the NNʼs range
of [−5, 5].

The fitness function scored for the predator was inversely related to the time required to catch
the prey (i.e., 0 when the predator failed to catch the prey), and for the prey was proportional to the

Figure 17. The NN architecture. Arrows indicate layers are fully connected. Graded neurons denote an evolvable
responsiveness parameter.
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time required to be caught (i.e., 1 when the prey was not caught). The predator and prey fitnesses
therefore complementarily summed to 1 for a single trial:

fittrial pð Þ ¼
1−

H p

H max
if p 2 PD

H p

H max
if p 2 PY

8><
>: (13)

The total fitness of an individual was computed by averaging the fitnesses obtained during all trials
(possibly spanning multiple generations).

After we evaluated all parents in a generation, each one produced an offspring by means of mu-
tation (Figure 18b, pointer 1). This offspring was then evaluated against the entire opponent pop-
ulation (Figure 18b, pointer 2; the opponentʼs fitness was not updated in this phase, to avoid
introducing fitness inflation), resulting in 2A2 trials (A per offspring, two species). For the first gen-
eration, no offspring were produced, in order to establish a more solid fitness baseline.

Table 5. The EA summarized.

Representation Integer-valued (0, 1, . . . , 255) vector (i.e., 8-bit numbers)

Population size A = 20

Recombination None

Mutation Random bitwise, Gaussian

Parent selection Exhaustive

Survivor selection A times A + 1

Termination condition 500 or 1000 generations
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During the GENU we used a random bitwise mutator. This allowed for relatively unrestrained
yet unguided exploration of the genospace while simultaneously not deviating too much from ran-
dom genetic mutations in nature. Each gene in the genotype got base-2 converted from an integer to
a vector of eight bits. Every bit had a 0.02 chance of being flipped, averaging to ≈4.2 mutations in an
entire genotype. Depending on the representational position i of a mutated bit, the change in the
geneʼs integer value it represented would increase or decrease with a value of 2i when that bit got
mutated, where 0 ≤ i ≤ 7. In the EMU we used a Gaussian mutator to provide more control in that
the genospace would now be explored in a more structured way while also allowing experimental
manipulation of the speed with which the subject species could change opponent specialization.
Contrary to the bitwise mutator, the Gaussian one (A = 0, j = 4) was applied to every gene and
then rounded to the nearest integer value 0, 1, …, 255.

Offspring replaced the worse parent if the latter was outperformed (Figure 18b, pointer 3). The
other offspring were discarded.7 We repeated the selection and reproduction process for 500 gen-
erations in the GENU, and for 1000 generations in the EMU.

Appendix 2: Generality of Seeds

There is some variation in cycling dynamics between seeds (Figure 19), but they all show similar
patterns to that of seed 6 that was the focus of our study. Compared to Figure 5a, Figure 19a
and c show more high-frequency cycling, and Figure 19c also shows a transition into a phase where
the prey is slightly dominant (darker coloring in the later generations). Figure 19c and d show more
chaotic dynamics; in Figure 19b the earlier predator generations seem notably susceptible to varia-
tions in prey strategies (indicated by the black and white blocks at the top of the plot). All cases,
however, show rectilinear banding associated with cycling dynamics and so should be perfectly
amenable to the methods we propose in this study.

Figure 18. The EA in a schematic visualization. Shown are the steps in progressing from one generation to the next. The
dotted boxes represent the predator and prey populations, while the solid ones represent individuals. The solid arrows
mark the pairs of opponent species playing in the trials. (a) The first step in producing a new generation is to establish the
fitness of both parent populations. Alphanumerics indicate the sequence of evaluation (1 versus a, 1 versus b, 1 versus c,
2 versus a, etc.). Solid arrows indicate evaluations. (b) The second step involves evaluating the offspring. The dotted
arrows (1) show the creation of offspring (only the first individual is shown here), in the order of alphabetic lettering.
The solid arrows (2) show how that offspring is evaluated against all opponent parents. The dashed arrows (3) show how
the newly generated offspring might replace a conspecific parent individual.

7 Note that the parent population was updated continuously, on an offspring-by-offspring basis. Thus, no distinct offspring population
exists, and no survivors are actively being selected from distinct parent and offspring populations. Thus, it might happen that an offspring
got promoted to the parent population, and was immediately replaced by another offspring from the same generation (if the latter out-
performed the former ). Most importantly, however, both parents and offspring have a fair chance to survive into the next generation,
maintaining genetic diversity as well as emphasizing fitness-based selection criteria.
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Figure 19. MTs of four seeds other than seed 6. Seeds shown were selected on the basis of a fair representation of the
diversity within all ten seeds.
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