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Thermometry of ultracold atoms via nonequilibrium work distributions
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Estimating the temperature of a cold quantum system is difficult. Usually one measures a well-understood
thermal state and uses that prior knowledge to infer its temperature. In contrast, we introduce a method of
thermometry that assumes minimal knowledge of the state of a system and is potentially nondestructive. Our
method uses a universal temperature dependence of the quench dynamics of an initially thermal system coupled
to a qubit probe that follows from the Tasaki-Crooks theorem for nonequilibrium work distributions. We provide
examples for a cold-atom system, in which our thermometry protocol may retain accuracy and precision at
subnano-Kelvin temperatures.
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I. INTRODUCTION

Many technological applications utilizing quantum sys-
tems, e.g., analog quantum simulators [1], require precise
and accurate measurements of their temperature, making
thermometry of quantum systems a fundamental task. Con-
ventional thermometry proceeds by bringing a small probe
of known temperature dependence into equilibrium with a
thermal system and then measuring that probe. For accurate
thermometry, this requires that the characteristic energy of the
probe is precisely known and tuned near the thermal energy
[2]. This can be challenging at the low temperatures relevant
for experiments on ultracold atoms.

Instead, the temperature of ultracold gases is often in-
ferred by directly measuring observables whose temperature
dependence is well understood. For instance, time-of-flight
imaging of the momentum distribution is used to obtain
the temperature of weakly interacting cold atoms [3,4].
Meanwhile, for strongly interacting atoms in a lattice, tem-
perature is inferred from fluctuations of lattice-site occupation
numbers [5]. However, such an approach is only feasible
if the system Hamiltonian or its thermal states are well
characterized and sufficiently simple, so that the temperature
dependence of observables can be calculated and compared
with measurements. Unfortunately, these requirements are
frequently unmet in cold-atom experiments, where the system
can be strongly correlated and established perturbative or
numerical techniques typically fail. What is missing is a
generic approach for thermometry of cold atoms that does
not need prior understanding of the thermal state.

To fill this gap we return to the idea of bringing probes
into contact with an initially thermal quantum system, this
time focusing on the ensuing nonequilibrium dynamics. This
increasingly studied [6–9] and potentially nondestructive
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approach to investigating quantum systems has been used
to analyze the parameters [10] and spectrum [11] of a
Hamiltonian, and the non-Markovianity of an open quantum
system [12]. Applications of this approach to the thermometry
of cold atoms [13–16] show that focusing on nonequilibrium
dynamics can avoid the requirement of precisely tuning the
characteristic energy of the probe near the thermal energy.
However, the particular approaches put forward so far rely on
the system having a well-understood Hamiltonian.

In this article we show how to use a nonequilibrium probe
to infer the temperature of a cold-atom system, which may
in principle have an arbitrary Hamiltonian. Our approach
exploits the Tasaki-Crooks theorem [17–20]: a universal
temperature-dependent relationship between nonequilibrium
work distributions that may be embedded in the state of a qubit
probe [21–23]. We demonstrate that this versatile method is
naturally suited to thermometry of cold atomic gases, and is
both accurate and robust in the presence of imperfect data.
Importantly, no detailed knowledge of the internal dynamics
of the system is needed. The only requirement is control
over the coupling between the system and the two states of
the qubit thermometer, which is readily achieved by using
an atomic impurity as the probe. Our protocol thus realizes
near-ideal thermometry within its domain of applicability,
which corresponds to temperatures commensurate with or
lower than the characteristic energy scales of the system. This
is precisely the temperature regime of greatest interest for
cold-atom physics, and also a challenging one for conventional
thermometry.

We gauge the accuracy and precision of our protocol by
simulating its application to a paradigmatic ultracold-atom
system. Specifically, we consider a Bose-Hubbard model
(BHM) and localized impurity qubit, as could be realized by
cold bosons in an optical lattice and, for example, two internal
states of a separately trapped atom of a different species
[24–27]. Our protocol maintains accuracy and precision to a
few percent in all regimes investigated. This includes when
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the thermal energy is one or two orders of magnitudes
lower than the hopping energy of the BHM, where the latter
might typically correspond to tens of nano-Kelvin. Moreover,
it includes intermediate interaction strengths for which the
nature of the thermal state is poorly understood and neither
time-of-flight nor number-fluctuation measurements reveal the
temperature. This work thus opens the door for thermometry
of generic cold-atom systems at extreme temperatures and
the technologies, e.g., quantum simulation, that require such
thermometry. We begin with a general description of our
scheme, before proceeding to a detailed study of its application
to the BHM.

II. DESCRIPTION OF THE PROTOCOL

A. Nonequilibrium work distributions

Our thermometry protocol is based on a relationship
between distributions of the work done by quenching a system
away from equilibrium. We write PQ(W ) for the distribution
of the work W done on a system, e.g., a cold atomic gas, due
to a quench Q. In the quench, the parameter λ appearing
in a system’s Hamiltonian Ĥ (λ) = ĤS + λV̂ is varied as
λQ(t) for t ∈ [0,τ ] driving the system away from an initial
thermal state ρ̂β(λQ(0)). Here β is the inverse temperature,
ρ̂β(λ) = e−βĤ (λ)/Zβ(λ) is a thermal state of the system,
and Zβ(λ) = tr{exp[−βĤ (λ)]} is the corresponding partition
function.

The forward distribution PF (W ) for some quench λF (t)
from λi to λf is related to the backward distribution PB(W )
of its reverse λB(t) = λF (τ − t) from λf to λi via the Tasaki-
Crooks relation [17–20]

ln{R(W )} = ln

{
PF (W )

PB(−W )

}
= β(W − �F ). (1)

The ratio R(W ) of the work distributions therefore depends
only on β and one other constant, the free energy difference
�F = F (λf ) − F (λi), with F (λ) = β−1 ln [Zβ(λ)]. Note that
this relation holds generally for a coherent quench; it is not
based on assumptions of linear response or adiabaticity.

B. Qubit interferometry

To directly measure quantum work distributions [28–30],
and thus their ratio R(W ), requires overcoming significant
challenges, namely the realization of often prohibitively large
numbers of difficult projective energy measurements [31,32].
We instead consider an indirect approach to measuring R(W )
using qubit interferometry [21–23]. The system of interest
is brought into contact with a probe qubit, giving total
Hamiltonian ĤT (t) = −(�/2)σ̂z + ĤS + ĤI (t). Here � is the
difference in energy between the ground and excited states |↓〉
and |↑〉 of the qubit, ĤS is the Hamiltonian of the system of
interest, and the interaction ĤI (t) takes the form

ĤI (t) = [g↓(t)|↓〉〈↓| + g↑(t)|↑〉〈↑|] ⊗ V̂ . (2)

The combined system is initialized at time t = 0 in the state
ρ̂ = |s〉〈s| ⊗ ρ̂β(λQ(0)), with the qubit in some superposition
|s〉 = s↓|↓〉 + s↑|↑〉. This could be achieved by first reaching
equilibrium with β� � 1 and g↓(0) = g↑(0) = λQ(0), then

applying a rotation σ̂s = s↑σ̂x + s↓σ̂z to the qubit. The state-
dependent couplings g↓(t) and g↑(t) are then both varied
according to the quench λQ(t) to be investigated, but with
the latter delayed by a time u, i.e.,

g↓(t) =
{
λQ(t), 0 � t � τ,

λQ(τ ), τ � t � τ + u,

g↑(t) =
{
λQ(0), 0 � t � u,

λQ(t − u), u � t � τ + u.

At time τ + u, when both quenches are complete, the qubit
has the reduced density operator, in units where � = 1,

ρ̂q = |s↓|2|↓〉〈↓| + s∗
↑s↓ei�(τ+u)χ∗

Q(u)|↓〉〈↑|
+ s∗

↓s↑e−i�(τ+u)χQ(u)|↑〉〈↓| + |s↑|2|↑〉〈↑|. (3)

Here we have introduced the dephasing function

χQ(u) = tr{Û †
QeiuĤ (λQ(τ ))ÛQe−iuĤ (λQ(0))ρ̂β(λQ(0))},

where ÛQ = T exp[−i
∫ τ

0 dtĤ (λQ(t))] evolves the system ac-
cording to the time-dependent quench Hamiltonian Ĥ (λQ(t))
and T is the time-ordering operator.
Close examination reveals that χQ(u) is none other than the
characteristic function, or Fourier transform, of the work
distribution [21,22]

PQ(W ) = (2π )−1
∫

due−iWuχQ(u).

Hence it is possible to measure PQ(W ) from χQ(u), and the
latter from expected values

〈σ̂x〉 + i〈σ̂y〉 = trq{(σ̂x + iσ̂y)ρ̂q} = 2s∗
↓s↑e−i�(τ+u)χQ(u),

for the qubit state [Eq. (3)] at the end of the interference
protocol. In what follows, we set s∗

↓s↑ = 1/2 and � = 0,
with the more general case treated in the Supplemental
Material [33].

C. Thermometry

The main result of this article is that we are able to use
the above relations to systematically, precisely, and accurately
infer temperature from realistically noisy data, without any
knowledge regarding the thermal states ρ̂β(λ) of the quantum
system. One needs only to have good control over a single qubit
and its interaction with the system, which can be achieved by
using an atomic impurity as the probe.

Let us analyze these claims in order. Our protocol is robust
in the presence of two fundamental sources of error, analyzed
in detail in the Supplemental Material [33]. First, it is only
possible to estimate χQ(u) for a finite number of times uj . Here
we assume Nsteps times uj = jT /Nsteps for j = 1, . . . ,Nsteps.
Second, each estimate of 〈σ̂x〉 and 〈σ̂y〉 used to estimate χQ(uj )
will have some error. Here we assume that errors are due to
the finite number Nmeas of measurements used to estimate each
expectation value. However, other known qubit measurement
errors can be treated in the same framework.

The first point means that rather than estimating PQ(W ),
we instead estimate pQ(W ), a copy that is subject to spectral
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leakage, due to the finite time-window T , and aliasing, due to
the discreteness of uj . We show that provided typically modest
values of T and Nsteps are chosen such that πβ/T is on the
order of unity and T/Nsteps 
 τQdeph = 1/σQ, then any effect
on the ratio is negligible, i.e., R(W ) ≈ pF (W )/pB(−W ) (see
Supplemental Material [33]). Here τQdeph is the delay u needed
for the qubit to significantly dephase and is the inverse of σQ,
the width of the work distribution PQ(W ).

The second point means our estimate of χQ(uj ) will
be an unbiased Gaussian random variable with variance
[2 − |χQ(uj )|2]/Nmeas, which then propagates linearly into an
unbiased Gaussian estimate of pQ(W ) with variance scaling
as T 2/NstepsNmeas. In a Bayesian approach detailed in the
Supplemental Material [33], we show how this knowledge, to-
gether with the Tasaki-Crooks relation and the non-negativity
of the work distributions, can be used to build the probability
distribution P(β) for β given a set of estimates of χQ(uj ). It
is also possible to include any prior knowledge of β and �F ,
though here we assume no prior knowledge. Our approach is
found to be well calibrated and accurate, to a few percent, given
a modest number of times Nsteps and measurements Nmeas.

The universality of the Tasaki-Crooks temperature de-
pendence allows the thermometry protocol to be applied in
complete ignorance of the quantum system’s thermal state
ρ̂β(λ) and even its Hamiltonian ĤS . It only needs to be
ensured that both states of the impurity couple to the same
operator V̂ [Eq. (2)], that the coupling strengths g↓(t) and
g↑(t) trace the same path with some delay, and that the
backwards path mirrors the forward path. Such properties
may be understood theoretically in advance or confirmed
experimentally by observing how the qubit, in eigenstate
|↓〉 or |↑〉, behaves when interacting with the system. The
choices of perturbing Hamiltonian V̂ and quench λQ(t) used
for thermometry are arbitrary in principle, since they affect
�F not β. In fact, provided the relationships above hold, the
actual values of V̂ and λQ(t) need not be known.

In practice, any thermometer benefits from optimization,
and our protocol is no exception. In particular, the quench
should be chosen so that the fluctuations of the nonequilibrium
work are on the order of the temperature or larger. This ensures
that the ratio of work distributions, R(W ) in Eq. (1), can be
accurately and precisely inferred over a large enough range
of values of the work W to extract a good straight-line fit
for β. Faced with an unknown system, the experimenter may
therefore need to make some adjustments in order to find an
appropriate quench. We emphasise that this optimization can
be based purely on observations of the qubit evolution, without
resorting to direct measurements on the system of interest.
Nevertheless, it is clearly important to use a probe qubit whose
interaction with the system is highly controllable and well
understood over a range of energies.

In the context of cold atomic gases, a probe qubit com-
prising an atomic impurity satisfies these requirements well.
In the following, we consider density-density coupling, as
appropriate for an impurity interacting with a host gas of
a different species. At low temperatures, this interaction is
characterized by a small number of parameters, such as s-wave
scattering lengths, which may be accurately measured via
independent experiments and controlled by means of external
fields. Furthermore, the range of interaction energies between

the impurity atom and the atomic gas naturally coincides with
the characteristic energies of interaction between the gas atoms
themselves. It is therefore apparent that the nonequilibrium
work fluctuations induced by an atomic impurity are well
suited to characterize temperatures that are on the same order
or smaller than the natural energy scales of the cold-atom
system.

III. EXAMPLE WITH COLD ATOMS IN A LATTICE

For concreteness, from here on we take our system to
be a cold atomic gas confined by an optical lattice, and the
qubit to be formed by two internal states of an impurity
atom of a different species, which a strong trap localizes to
density nq(r) [24–27]. Both impurity states |↓〉 and |↑〉 couple
via the contact interaction to the weighted density operator
V̂ = ∫

drnq(r)
̂†(r)
̂(r) with different interaction strengths
g↓ and g↑. Here 
̂†(r) and 
̂(r) are the field operators for
the atoms comprising the system. Thus it is possible to realize
a combined Hamiltonian ĤT of the form required for our
protocol. The qubit gate σ̂s , and the measurement of σ̂x and
σ̂y , can be performed, e.g., using Rabi pulses combined with
state-dependent fluorescing.

The separate time dependence of the coupling strengths
g↓(t) and g↑(t) could be controlled by Feschbach resonances
[24–27]. Another option is to realize the time dependence of
the coupling strengths effectively by changing the properties of
their trap, which may be state selective. A further possibility is
to forgo using internal states to form the qubit, instead splitting
the wave function of an impurity, passing two copies through
the system, and then interfering them [34].

For our specific example, we consider a one-dimensional
Bose gas in a simple periodic lattice, which reduces to the
Bose-Hubbard model [35]

ĤS = −J
∑
〈jj ′〉

â
†
j âj ′ +

M∑
j=1

(
U

2
â
†
j â

†
j âj âj − μâ

†
j âj

)
. (4)

Here â
†
j and âj create and annihilate a particle at site j

of a total of M , the hopping and interaction energies and
chemical potential are written J , U , and μ, respectively,
and 〈jj ′〉 represents a sum over nearest neighbors. Assuming
the impurity to be localized at a single central site c, the
system’s interaction Hamiltonian is V̂ = ηâ

†
c âc, where η =∫

drnq(r)|wc(r)|2 and wc(r) is the Wannier function at the
central site.

A. Superfluid phase

In the superfluid regime nU/J 
 1, with n the number of
bosons per site, we can describe the system approximately in
terms of phononic Bogoliubov excitations above the uniform
condensate of density n. To second order in these excitations
and terms that create them, the system and interaction
Hamiltonians simplify [36], up to a constant, to

ĤS =
∑

k

ωkb̂
†
kb̂k,

V̂ = ηn +
∑

k

(η∗
k b̂

†
k + ηkb̂k).
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FIG. 1. Superfluid phase. (a) Characteristic function χF (u) of
the forward quench. (b) Work distributions pQ(W ). (c) The joint
distributionP(β,�F ) inferred from the estimates of pQ(W ), together
with the corresponding marginal distributions P(β) and P(�F ).
(d) The fractional standard deviation σβ/β and bias (μβ − β)/β
of the β estimates observed over 1000 simulated experiments,
plotted against the actual β. The values of T are shown in the
figure. Unless stated otherwise, for all figures, the system parameters
are M = 1000, U/J = 0.1, and n = 1, the quench parameters are
λiη/J = 0, λf η/J = 0.5, and τJ = 1, and the protocol parameters
are Nsteps = 500, Nmeas = 500, and T J = 2.9π .

Here b̂
†
k and b̂k create and annihilate a phonon at quasimomen-

tum k, ωk = √
εk(εk + 2Un) is the phonon dispersion written

in terms of single-particle energies εk = 2J (1 − cos ka), and
ηk = η

√
nεk/Mωke

−ikac is the relative coupling of each
phonon mode to the impurity, with a the lattice parameter.

With the Hamiltonians ĤS and V̂ in this form, the
characteristic function χQ(u) can be calculated exactly (see
Supplemental Material [33]) from time integrals of
the form �Qk = ωk

∫ τ

0 dtλQ(t) exp(−iωkt). The specific
quench considered here is λQ(t) = λQ(0) + [λQ(τ ) −
λQ(0)] sin2(πt/2τ ).

We demonstrate the protocol first for a temperature corre-
sponding to the typical energy scale of the system, βJ = 1,
with the results shown in Fig. 1. In Fig. 1(a) we have plotted the
known characteristic function values χF (uj ) for the forward
quench. Also shown are the estimated values and associated
errors from a single simulated experiment, consisting of 2Nmeas

measurements at Nsteps times. In Fig. 1(b) we show the
corresponding work distributions, both forward pF (W ) and
backward pB(W ), obtained from exact and estimated values
of χF (uj ) and χB(uj ), again with error bars. Figure 1(c) shows
the joint distribution P(β,�F ) of β and �F conditioned upon
the estimates of pQ(W ) obtained. From this, the marginal
distribution P(β) for β, also shown, is calculated. The
distribution of this example is consistent with the known value,
containing uncertainty in β of only a few percent. This can be
reduced by increasing Nsteps or Nmeas.
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FIG. 2. Stronger interactions. The contents and parameters of this
figure are identical to Figs. 1(b) and 1(c), but for a smaller M = 11
system, featuring stronger interactions U/J = 4 and λf η/J = 2, and
a shorter τJ = 0.1 quench and longer window-size T J = 15.

The Bayesian prediction is remarkably well calibrated.
For each of several values of β between 1 and 50, we have
simulated 1000 experiments of the above type. In Fig. 1(d) we
plot the average mean and standard deviation of the inferred
distribution P(β), with the average taken over the different
experiments. This shows that consistent accuracy of a few
percent can be obtained even as β is reduced over two orders of
magnitude. We also count the fraction of times in which the true
β value lies in each decile of the Bayesian prediction. Ideally
this would be exactly 0.1 for each decile and our predictions
conform to this, staying between 0.8 and 1.2. Plots of these
values are given in the Supplemental Material [33].

B. Stronger interactions

We now study the success of the protocol when the bosons
are more strongly interacting. In this case the Bogoliubov
approach is not valid, and instead our analysis proceeds using
time-evolving block decimation [37–39] to evolve a matrix
product operator [40–42] representation of the state of the
bosons. Using this we near exactly calculate the characteristic
function χQ(u) for the exact Bose-Hubbard model [Eq. (4)]
and interaction Hamiltonian. See the Supplemental Material
[33] for details on this tensor network method [43].

The results for strongly interacting bosons, close to the
critical point, are shown in Fig. 2. Compared to superfluid
bosons, we see that, despite stronger impurity-boson coupling,
the qubit dephasing takes place over a longer time scale
due to the absence of a broad spectrum of low-energy
excitations. Correspondingly the work distributions pQ(W ),
shown in Fig. 2(a), are more featured than for the superfluid
case, with positive skewness resulting from a high-frequency
shoulder. However, as shown in Fig. 2(b), the accuracy of the
thermometry procedure remains largely indifferent to these
changes.

IV. DISCUSSION

We have shown that using a nonequilibrium probe over-
comes two challenges in the thermometry of ultracold gases.
First, the need to precisely control the internal energy of
the probe on scales corresponding to the thermal energy of
the system. Second, the need to understand the temperature
dependence of the system’s thermal state in advance. To
demonstrate this, we showed that the temperature of bosons in
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a lattice could be estimated using the protocol, for temperatures
in the nano-Kelvins or even lower. We also found that accuracy
and precision are largely unaffected by moving close to a
critical point, in this case the crossover between superfluid
and insulating phases, a regime that is less well understood.

These advantages come at a cost, namely the need for
exquisite control over the interaction between the probe qubit
and the cold-atom system. Furthermore, it must be possible
to perform a quench such that the nonequilibrium work
fluctuations are comparable to the thermal energy of the
system. We have argued that atomic impurity probes can
be expected to satisfy the aforementioned requirements quite
generally, and are therefore excellent candidates for generic
thermometry of cold atoms at very low temperatures.

Instead of performing repeated measurements on a single
qubit probe, multiple measurements could be performed
simultaneously using multiple probes. These could be prepared
in an array using a lattice and used either to reduce the number
of measurements per probe or to probe a spatially varying
temperature profile resulting from, e.g., heat currents during
nonequilbrium transport [44,45]. Alternatively, if the qubit
probe is implemented by interfering atoms passing through
the system at shifted times, then a steady stream of atom
probes could near continuously monitor the temperature of
the system.

An essential assumption underlying our thermometry pro-
tocol is that the system is in thermal equilibrium. However, the
protocol could potentially be used to assess whether this is the
case. The protocol is used to find the most likely pairs β and
�F given that the Tasaki-Crooks relation holds, but it could
also evaluate the likelihood that the relation is satisfied for any
β and �F , thus allowing the testing of thermalization [46].
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