
Supplemental material

This Supplemental Material contains some additional
details relating to the calculations presented in the main
text and is organized in the following way. We briefly in-
troduce the relationship between the characteristic func-
tion and moments of the work distribution in Sec. A.
Then, in Sec. B, we give details regarding how estimates
of the work distributions are obtained from estimates of
the characteristic function, together with properties of
these estimates. Section C concerns how these estimates
are used to infer the temperature, in both a frequentist
and Bayesian approach. Then finally in Sec. D we explain
how the characteristic function is calculated for the spe-
cific case of the Bose-Hubbard model, using Bogoliubov
theory and tensor network theory.

Appendix A: Properties of the work distribution

In what follows we will refer to a few generic prop-
erties of the work distribution PQ(W ), namely its cu-
mulants κm and principally its first κQ1 = µQ and sec-
ond κQ2 = σ2

Q cumulants. The cumulants κQm of the

work distribution PQ(W ) are related to the derivatives
of the logarithm of the corresponding characteristic func-
tion χQ(u), according to

κQm =
1

im
dm

dum
logχQ(u)

∣∣∣∣
u=0

. (A1)

We note two properties of the work distribution
PQ(W ), one relevant to each of µQ and σ2

Q. First, the sec-
ond law of thermodynamics expressed in terms of mean
work and free energy ensures that µF ≥ ∆F ≤ −µB ,
where ∆F = F (λf ) − F (λi) is the free energy differ-
ence. Second, though this is just a re-expression of
Eq. (A1) for m = 2, the second cumulant is related to
the so-called dephasing time τQdeph by σQ = 1/τQdeph,
where τQdeph is here defined by the short-time behavior
of the dephasing function |χQ(u)| = exp(−ΓQ(u)), with
ΓQ(u) = (u/τQdeph)2/2 +O(u3). This gives us a way of
assessing the size of the second cumulant σ2

Q from observ-

ing a small part of χQ(u) directly. We assume that this
is done, at a small overhead to our thermometry protocol
discussed in the next section, and thus σQ and τQdeph are
quantities that are, at least approximately, known when
implementing the protocol.

Appendix B: Estimating the work distribution

1. Deterministic errors

Here we discuss how to estimate the work distribution

PQ(W ) = F{χQ(u)}(W ) =
1

2π

∫
due−iWuχQ(u),

from estimates of the characteristic function χQ(u) ob-
tained in a (numerical or actual) experiment, where F
denotes a Fourier transform.

It is infeasible to study the characteristic function
χQ(u) continuously over all times. More realistically the
characteristic function χQ(uj) is studied at a finite num-
ber Nsteps of discrete times uj = j∆u for integer j =
1, . . . , Nsteps in some domain [−T, T ] with T = Nsteps∆u.
Noting that χQ(0) = 1 and χQ(uj) = χ∗Q(−uj), we then,

instead of PQ(W ), construct a discrete and finite-time
Fourier transform

pQ(W ) =
∆u

2π

Nsteps∑
j=−Nsteps

e−iWujχQ(uj)w(uj)

=
∆u

2π

1 + 2<


Nsteps∑
j=1

e−iWujχQ(uj)w(uj)


 ,

where we have introduced a windowing function w(u).

As we will now discuss, pQ(W ) differs significantly
from PQ(W ). However, the forward and backward dis-
tributions only enter into our thermometry protocol
through their ratio. We show below that the ratios
pF (W )/pB(−W ) and R(W ) = PF (W )/PB(−W ) can be
made identical, meaning we are able to work with the al-
ternative distributions pQ(W ) rather than PQ(W ). For
the rest of this subsection, we consider how to choose T
and Nsteps for our protocol such that this is the case.

The two Fourier transforms pQ(W ) and PQ(W ) are
related, using the Poisson summation formula and the
convolution theorem, by

pQ(W ) =

{
F{w(u)}(W ) ?

∞∑
k=−∞

PQ(W + k∆W )

}
(W ),

where ∆W = 2π/∆u and ? represents a convolution.
This demonstrates the two sources of error in going from
PQ(W ) to pQ(W ). First, aliasing, where frequencies dif-
fering by ∆W cannot be distinguished by looking at a
function at a discretized set of points. Second, spectral
leakage, where contributions from one frequency leak to
those nearby on a scale π/T due to the finite resolution
offered by the window of finite size T . The former leads
to the sum and the latter to the convolution.



2

For the effects of aliasing to be small, we must have
that σQ/∆W � 1 or σQ∆u � 2π so that the widths
σQ of the work distributions is much smaller than the
periodicity of its approximation pQ(W ). Another way to
write this, in terms of the dephasing time τQdeph = 1/σQ
is ∆u/τQdeph � 2π or Nsteps � T/τQdeph. In all exam-
ples used in our work, the number of time-steps Nsteps

is easily large enough to ensure the effects of aliasing are
negligible.

The effects of spectral leakage on pQ(W ) will always be
significant for a finite system with a discrete set of energy
levels. Importantly for our protocol, the same is not true
for their ratios, as we now show. Consider aliasing to
have a negligible effect, then

pF (W )

pB(−W )
=
{F{w(u)}(W ) ? PF (W )} (W )

{F{w(u)}(W ) ? PB(−W )} (W )

=
{F{w(u)}(W ) ? PB(−W )R(W )} (W )

{F{w(u)}(W ) ? PB(−W )} (W )

≈{F{w(u)}(W ) ? PB(−W )} (W )R(W )

{F{w(u)}(W ) ? PB(−W )} (W )

=R(W ).

In going from the second to the third line we have only
used that R(W ) = eβ(W−∆F ) does not vary too much
on the scale of the characteristic width ∆WFw ≈ π/T
of the smoothing kernel F{w(u)}(W ), i.e., β∆WFw � 1
or T � πβ. However, even this criterion is sometimes
overly strict and may be loosened depending on the re-
lationship between σQ, β and ∆WFw. For example, con-
sider the case that both pQ(W ) are effectively flat on
scale ∆WFw i.e. σQ/∆WFw � 1 assuming pQ(W ) to be
unimodal. Then even having β∆WFw ≈ 1 would lead
only to small errors, as errors due to variations in R(W )
within the convolution would largely cancel. Note that if
an incorrect choice is made and spectral leakage does in-
troduce errors, then this will be clear from the non-linear
behavior of L(W ) = ln(R(W )) and thus a larger T can
be chosen.

In this work, we find that a good rule of thumb is to
choose T to be sufficiently long that the qubit has fully
dephased. Specifically, for the superfluid calculations,
we use a phenomenological and unoptimized expression
based on the above discussion

T = πβ[1 + (5− 1)e−σβ ], (B1)

with σ = σF = σB . The effect is that spectral leakage,
like aliasing, has a negligible effect on errors. In a real
experiment, β is not known in advance and so T must
be chosen using the considerations above and some prior
expectations about β. We find that the thermometry
protocol is typically robust to changes in T by factors of
the order of unity.

2. Random errors

From now on, we assume that T and Nsteps have been
chosen, such that R(W ) = pF (W )/pB(−W ). We focus
on the fact that χQ(uj) will not be known exactly and
that instead we only have access to an estimator χ̄Q(u)
based on expectation values estimated from a finite num-
ber Nmeas of measurements each. We will always use a
bar to indicate an estimate that is a random variable
obtained stochastically from measurements made during
the protocol. Propagating this forward according to

p̄Q(W ) =
∆u

2π

1 + 2<


Nsteps∑
j=1

e−iWuj χ̄Q(uj)w(uj)


 ,

(B2)

we obtain an estimate p̄Q(W ) of pQ(W ). The remain-
der of this subsection addresses how to choose a set of
work values Wk such that p̄Q(Wk) are independent, un-
biased E[p̄Q(Wk)] = pQ(Wk), and of known variance
Var[p̄Q(Wk)]. Here expectation values are always taken
with respect to the distributions generating the measure-
ment outcomes.

Let us begin by considering how χQ(uj) are estimated.
In an experiment we estimate

χQ(u) =
eiφ(u)

2s∗↑s↓
(〈σ̂x〉+ i〈σ̂y〉) ,

with φ(u) = ∆(τ+u) by first estimating expectation val-
ues 〈σ̂µ〉, for µ = x, y, with respect to the state ρ̂q of the
qubit at the end of the interferometric protocol. Specif-
ically, each 〈σ̂µ〉 is estimated from Nmeas independent
measurements of σµ, which returns 1 or −1 with prob-
ability p = (1 + 〈σ̂µ〉)/2 and 1 − p, respectively. Then
the average σ̄µ of the measurements is an estimator of
〈σ̂µ〉 that is unbiased, i.e., its mean is E[σ̄µ] = 〈σ̂µ〉, and
has variance Var[σ̄µ] = (1−〈σ̂µ〉2)/Nmeas. In accordance
with the central limit theorem, for large enough Nmeas

the estimator σ̄µ is normal and so its properties are fully
characterized by its mean and variance.

The linear combination

χ̄Q(u) =
eiφ(u)

2s∗↑s↓
(σ̄x + iσ̄y) ,

is thus also an unbiased (E[χ̄Q(u)] = χQ(u)) Gaussian
estimator of χQ(u) and has variance (using the general-
ized definition Var[z̄] = E

[
|z̄ − E[z̄]|2

]
of variance for a

complex random variable z̄)

Var[χ̄Q(u)] =
Var[σ̄x] + Var[σ̄y]

4|s∗↑s↓|2

=
2− 4|s∗↑s↓|2|χQ(u)|2

4|s∗↑s↓|2Nmeas
,

(B3)
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where the first line holds due to the independence of σ̄x
and σ̄y.

Note that this variance Var[χ̄Q(u)] = Var[<{χ̄Q(u)}]+
Var[={χ̄Q(u)}] is divided between those of the real and
complex parts, but how exactly this division occurs de-
pends on the phase φ(u) = ∆(τ + u), and thus ∆, and
the phase of s∗↑s↓. The effect of ∆ is quantitative but not
qualitative, and the ∆ for a particular implementation
can be known. For the purposes of our plots, we assume
φ(u) = ∆ = 0. Further, Eq. (B3) makes it obvious that

s∗↓ and s∗↑ should be chosen such that |s∗↑s↓|2 takes its

maximum possible value, 1/4, and in all plots we assume
the choice s∗↑s↓ = 1/2 is made.

This variance propagates forward into our estimator
p̄Q(W ) of pQ(W ) according to Eq. (B2). Since this again
a linear sum, the estimators are unbiased and Gaussian,
characterized by the expectations E[p̄Q(W )] = pQ(W )
and covariances

E
[

(p̄Q(W )− pQ(W )) (p̄Q(W ′)− pQ(W ′))
]

=
2

4|s∗↑s↓|2Nmeas

(
∆u

2π

)2∑
j

|w(uj)|2 cos ((W −W ′)uj) (2− 4|s∗↑s↓|2|χQ(uj)|2)

− 2

4(s∗↑s↓)
2Nmeas

(
∆u

2π

)2∑
j

w2(uj)<
{

e−i(W+W ′)uje2iφ(uj)<
{

e−2iφ(uj)4(s∗↑s↓)
2χ2

Q(uj)
}}

.

(B4)

The first term arises from the interference of random
deviations in χQ(uj) at different uj . The second term,
which is much smaller, arises due to the fact that, to en-
sure that p̄Q(W ) is real, we have used χQ(−uj) = χ∗Q(uj)

rather than generate independent estimators for χQ(uj)
and χQ(−uj).

When W and W ′ are close, approximating W = W ′,
we obtain the variance. The dominant term is given by

Var [p̄Q(W )] ≈ 2

4|s∗↑s↓|2Nmeas

(
∆u

2π

)2∑
j

|w(uj)|2

×
(

2− 4|s∗↑s↓|2|χQ(uj)|2
)
.

(B5)
Notably, this scales as Var [p̄Q(W )] ∼ T 2/NstepsNmeas.
Compare this to the conditions T/τQdeph � 2πNsteps

and T & πβ for avoiding systematic errors due to aliasing
and spectral leakage. The form of Var [p̄Q(W )] suggests
increasing Nsteps, which would also reduce the aliasing
error. However, Var [p̄Q(W )] suggests taking a smaller
window size T , which would come at the cost of higher
spectral leakage. We leave a discussion of the trade-off
of these two errors until later.

When W and W ′ are separated by more than roughly
π/T , the cosine term in Eq. (B4) will oscillate rapidly
enough that the covariance is significantly reduced. Thus
π/T represents the range in W over which our estimates
p̄Q(W ) are correlated. Thus there is little information
added by generating estimates p̄Q(W ) for W separated
by less than this correlation range π/T . As a result,
in our inference protocol we consider only the values
p̄Q(Wk) taken at an array of points Wk = kπ/T sep-
arated by this amount. These values should only be
weakly-correlated. Conveniently, but not crucially, these

are exactly the same values Wk for which p̄Q(Wk) can be
found using the fast Fourier transform. This discussion
suggests increasing T in order to increase the density of
points Wk. Again, a discussion of the trade-off of this
with the other factors affecting the choice of T is left
until later.

Appendix C: Inferring the temperature

Here we detail the core of the thermometry protocol,
giving the precise procedure to go from the estimates of
the work distributions pQ(Wk) discussed in the previous
section to an estimate of the inverse temperature β. Note
that the protocol uses no knowledge specific about the
distributions PQ(W ) and characteristic functions χQ(u)
other than the width σQ and dephasing time τQdeph de-
scribed above.

1. Outline

The essential fact on which we base our inference is
that

L(W ) = ln(R(W )) = ln

{
pF (W )

pB(−W )

}
= β(W −∆F ),

(C1)
where we refer to the work distributions pQ(W ), ratio
R(W ) and log-ratio L(W ) discussed in the previous sec-
tion.

The information we collect during our protocol is a set
of near-independent estimates p̄Q(Wk) of pQ(Wk) and
their variances at a discrete set of energies Wk. The
essential idea is to use these estimated values of the work
distribution, together with our knowledge of how they
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relate to β and ∆F via Eq. (C1), to infer the values, or
distribution of values, of β (and ∆F if desired).

We consider two approaches to this inference problem,
frequentist and Bayesian. The Bayesian approach is used
for all results we present in the main text, but methods
along the lines of the frequentist approach are more com-
monly found in the literature. Our presentation of the
frequentist approach thus serves to highlight the bene-
fits our Bayesian approach, and also provides a simpler
setting in which to analyze the dependence of errors on
parameters e.g. T used in the protocol.

a. Frequentist

The frequentist approach is most similar to how ∆F
has previously been estimated from work distributions.
The approach is to use p̄Q(Wk) to obtain estimates
L̄(Wk) of L(Wk) for many values of work Wk. For now,
let’s assume, these estimates L̄(Wk) are independent, un-
biased E[L̄(Wk)] = L(Wk), and Gaussian with known
variance Var[L̄(Wk)]. Assuming this, the knowledge of
Eq. (C1) means that we can use weighted linear regres-
sion to construct the maximally likely β̄ and ∆F as the
pair of values that minimize the least-squared error∑

k

(L̄(Wk)− β(Wk −∆F ))2

Var[L̄(Wk)]
, (C2)

and take them as our estimates of β and ∆F . This is
shown in Fig. 1. The procedure then boils down to ob-
taining estimates L̄(Wk) whilst ensuring no bias and es-
timating Var[L̄(Wk)].

As a starting point, consider the estimator L̄′(W ) =
ln{p̄F (W )/p̄B(−W )}. Due to the non-linear nature of
the inverse and logarithm functions, L̄′(W ) is neither
Gaussian nor an unbiased estimator of L(W ). The
errors resulting from the bias can be small, but ide-
ally we would like to construct an unbiased estima-
tor L̄(W ) = L̄′(W ) − ∆L(W ), which removes the bias
∆L(W ) = E[L̄′(W )] − L(W ). We would also like to
characterize the remaining mean-zero random errors in
L̄(W ) and find when they are approximately Gaussian.

To do this, we approximate the bias and variance by
simulating the sampling of p̄Q(W ), by adding Gaussian
noise of zero mean and variance Var[p̄Q(W )] to p̄Q(W )
before taking the logarithm. From these values, we then
estimate the bias ∆L(W ) and variance Var[L̄(W )], and
assess the non-Gaussian character of the distribution of
L̄(W ). As is expected, we find L̄(W ) is reasonably Gaus-
sian when Var[p̄Q(W )]/p2

Q(W ) is small. For larger values
the distribution is very skewed and least-squares min-
imization may not correspond to the maximally likely
parameters.

A further flaw in this approach is the possibility of
obtaining negative values p̄Q(W ), whose logarithm is
undefined. We simply ignore values of Wk for which
p̄F (Wk) or p̄B(−Wk) is negative, and we ignore nega-

tive values arising in our estimate of the bias and vari-
ance. This comes at a cost of potentially inducing a bias.
Balancing the need to avoid such a bias with the de-
sire to have as many points as possible for the fit, in
our frequentist calculations presented here we only con-
sider values Wk where Var[p̄F (Wk)]/p2

F (Wk) > 1 and
Var[p̄B(−Wk)]/p2

B(−Wk) > 1. The results in Fig. 2 show
that this bias is perhaps acceptable but not small. A
better approach for dealing with negative values is the
Bayesian approach of the next subsection, which makes
full use of the information provided by obtaining a nega-
tive value for p̄F (Wk) or p̄B(−Wk). For now, we continue
our analysis of the frequentist approach ignoring any bias
introduced by these negative values.

We have shown how to choose a set of Wk for which we
have approximately independent, unbiased, and Gaus-
sian random estimators L̄(Wk) of L(Wk) whose variances
Var[L̄(Wk)] we know approximately. From these, we then
obtain a maximally likely β̄ and ∆F as the pair of val-
ues that minimize the least-squared error of Eq. (C2)
and take them as our estimates of β and ∆F . Let us
now turn to discussing how the variance in β̄ should be-
have, including how it depends on some of the parameter
choices we make in our protocol, particularly T , since the
dependence of the error on Nmeas and Nsteps is clear.

It is well known that, for least-squares estimation, the
fitted parameter β̄ provides an unbiased estimate of β
with variance

Var[β̄] =
1/ς1

ςW 2/ς1 − (ςW /ς1)2
,

ς1 =
∑
k

1

Var[L̄(Wk)]
,

ςW =
∑
k

Wk

Var[L̄(Wk)]
,

ςW 2 =
∑
k

W 2
k

Var[L̄(Wk)]
.

We obtain a simpler expression for the fractional error√
Var[β̄]

β
=

√
Var[L̄]/NW
β∆Wk

,

that qualitatively captures the basic behavior if we as-
sume uniform variance Var[L̄(Wk)] ∼ Var[L̄] with Var[L̄]
the typical value of the variance over the values of Wk

used. Appearing in the denominator of this equation is
the spread ∆Wk =

√∑
kW

2
k /NW − (

∑
kWk/NW )2 of

the values Wk, where we have written NW =
∑
k for the

number of points used in the estimation.

We can now insert some of the findings from the er-
ror analysis of the previous sections into this expres-
sion. First, demanding independence of points required
us to choose that Wk were spaced by π/T and so NW ∼
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FIG. 1: Superfluid phase; frequentist. (a) The logarithms
ln{pF (W )} and ln{pB(−W )} of the work distributions and
their difference L(W ) = ln{pF (W )} − ln{pB(−W )}. Solid
lines are known values, points are estimates obtained in a
single simulated experiment, and error bars calculated from
those estimates mark expected errors of one standard devia-
tion. The black dashed line is obtained from a weighted least
squares fit. (b) A histogram of β̄ estimates obtained in 1000
simulated experimental runs, together with their mean µβ and
standard deviation σβ , and Gaussian fit. All parameters are
identical to those for Fig. 1 in the main text.

∆WkT/π, giving us√
Var[β̄]

β
∼
√

Var[L̄]/T

β(∆Wk)3/2
.

Second, the range of work values ∆Wk we in-
clude is the range satisfying Var[p̄F (Wk)]/p2

F (Wk) >
1 and Var[p̄B(−Wk)]/p2

B(−Wk) > 1, which corre-
sponds to ensuring that T 2/NmeasNstepsp

2
F (Wk) and

T 2/NmeasNstepsp
2
B(−Wk) are smaller than a threshold

amount. This tells us that this range ∆Wk can decay
quickly with increasing T if pQ(W ) depends sharply on
W at the edge of the region Wk. In turn this means that
T should be chosen to be as small as possible without in-
troducing spectral leakage, which is the solution to one of
the main questions remaining from the above discussion.
We found these optimum values of T to behave roughly
as Eq. (B1), essentially linearly in β, leaving us with√

Var[β̄]

β
∼
√

Var[L̄]

(β∆Wk)3/2
.

It is difficult to ascertain from this simplified analysis
how this fractional error depends on β. In our examples
we find that the relevant width ∆Wk of work values de-
creases roughly linearly with β for large β. The variances
captured by Var[L̄] are the deciding factor. We find that
in our examples they increase with β2 as might be pre-
dicted from Var[p̄Q(W )] ∼ T 2 and our setting of T ∼ β.
Thus the fractional variance of our β estimate increases
roughly linearly with β [Fig. 2].
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FIG. 2: Accuracy at low temperatures; frequentist. Over 1000
simulated experiments for each β, the average fractional stan-
dard deviation σβ/β and bias (µβ − β)/β. All other parame-
ters are identical to those for Fig. 1(d) in the main text.

b. Bayesian

The Bayesian approach is to capture probabilistically
the knowledge we have about β and ∆F conditioned
upon obtaining estimates p̄Q(W ). It also allows us to
include our prior expectations about the system into
the statistical analysis. However, we do not make use
of that feature here, assuming nothing about the sys-
tem. Further, the Bayesian approach outputs a proba-
bility distribution of the values of β and ∆F , which need
not be Gaussian, rather than only returning maximally
likely parameters and an estimate of their variance. The
Bayesian approach therefore can use and provide more
information than the frequentist approach.

In the following we use the shorthand notation pF =
pF (Wk), pB = pB(−Wk), R = R(Wk) and W = Wk. We
write Ok to denote the observations of estimates p̄F and
p̄B for some value of k and O for the combined set of
observations.

The Bayesian approach is based on the expression

P(β,∆F |O) =
P(O|β,∆F )P(β,∆F )∫

dβd∆FP(O|β,∆F )P(β,∆F )
, (C3)

for our assessment of the probability of the system having
temperature β and free energy difference ∆F given obser-
vations O. It uses our assumptions about P(O|β,∆F ),
the probability we would have obtained those observa-
tions for all possible values of β and ∆F , and the prior
P(β,∆F ), capturing our knowledge of the system in ad-
vance of the experiment.

In this paper we make what is called a null prior, set-
ting P(β,∆F ) to be constant, essentially assuming we
have no information about β and ∆F . An experimen-
talist who does have more prior information could easily
adapt our approach to include that information in the
inference scheme.

We are left then to come up with an expression for
the conditional probability P(O|β,∆F ), which, assum-
ing independence, is just a product of the conditional
probability of obtaining pairs of observations at each W .
The next few paragraphs deal with the evaluation of this
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conditional probability. We perform this evaluation by
breaking it up into several parts, in three stages. First
we use that

P(p̄F , p̄B |β,∆F ) =

∫
dRP(p̄F , p̄B |R)P(R|β,∆F )

= P(p̄F , p̄B |eβ(W−∆F )).

Here we have conditioned the obtaining of the estimates
p̄F and p̄B on the ratio R of their true values, and used
fact that this ratio is always equal to eβ(W−∆F ). It is this
piece of information that is the key to the whole protocol.

The second step is to use

P(p̄F , p̄B |R) =

∫
dpFdpBP(p̄F , p̄B |pF , pB)P(pF , pB |R).

Here we have conditioned on the exact values of the work
distributions pQ. We do this because we know that p̄Q
are unbiased and Gaussian with known variance σQ i.e.
P(p̄F , p̄B |pF , pB) = P(p̄F |pF )P(p̄B |pB) with

P(p̄Q|pQ) =
1√

2πσ2
Q

e−(p̄Q−pQ)2/2σ2
Q .

The distribution P(pF , pB |R) of the work distributions
given their ratio can be built in our third and final step.

We use Bayes’ law again

P(pF , pB |R) =
P(R|pF , pB)P(pF , pB)∫

dpFdpBP(R|pF , pB)P(pF , pB)
,

since we know that

P(R|pF , pB) = δ(R− pF /pB) = pBδ(RpB − pF ).

This leaves us having to define some prior P(pF , pB) rep-
resenting our prior knowledge of the work distribution
values. We again essentially assume no prior knowledge,
assuming independence P(pF , pB) = P(pF )P(pB) and a
uniform distribution over positive values

P(pQ) =

{
1
C if 0 ≤ pQ < C

0 otherwise
,

for some C taken to be much bigger than all other values.

We now have all we need. Collecting all of the above
together, after performing two integrals, we obtain

P(pF , pB |R) =

2 max{1, 1 +R2}pBδ(RpB − pF )P(pF )P(pB),

and

P(p̄F , p̄B |β,∆F ) =

max{1, 1 +R2}
2πC2R

(
exp

[
− p′2F

2σ′2F
− p2

B

2σ2
B

]
σ′FσB
πσ′2FB

+ exp

[
− (p′F − pB)2

2σ′2FB

]
p′Fσ

2
B + pBσ

′2
F√

2πσ′3FB

[
1 + erf

(
p′Fσ

2
B + pBσ

′2
F√

2σ′FσBσ
′
FB

)])
,

where we have used the shorthand p′F = pF /R, σ′F =
σF /R and σ′2FB = σ′2F + σ2

B .

All of this can be fed back into our expression for
P(β,∆F |O) [Eq. (C3)] and allows us to plot this dis-
tribution and calculate its properties. Upon testing, the
Bayesian prediction is found to be remarkably well cali-
brated. We have performed 1000 simulated experiments
and the fraction of times in which the true β value lies in
each decile of the Bayesian prediction. Ideally this would
be exactly 0.1 for each decile and our predictions conform
to this, staying between 0.8 and 1.2 for β between 1 and
50, as shown in Fig. 3.

Appendix D: Theoretical values for χQ(u)

In this part of the supplemental material, we provide
details of the two methods used to calculate the charac-
teristic function (as well as other relevant quantities) of

our example system. Specifically, we calculate

χQ(u) = tr
{
Û†QÛ

†(λQ(τ), u)ÛQÛ(λQ(0), u)ρ̂β(λQ(0))
}
,

(D1)
where

ÛQ =T exp

[
−i

∫ τ

0

dtĤ(λQ(t))

]
, (D2)

Û(λ, u) =e−iĤ(λ)u,

ρ̂β(λ) =e−βĤ(λ)/Zβ(λ),

Zβ(λ) =tr{exp[−βĤ(λ)]},
Ĥ(λ) =ĤS + λV̂ .

We begin by discussing the Bogoliubov treatment, rele-
vant to the superfluid phase, and then move on to the
tensor network approach that is necessary when interac-
tions are stronger.
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FIG. 3: Accuracy and precision; Bayesian. The fraction, over
1000 simulated experiments, of experiments in which the true
value of β lies in the deciles of P(β) predicted using Bayesian
analysis. The flatness of the plots, especially for the lower
temperatures, reveals that our null priors are well calibrated.
All parameters are identical to those for Fig. 2.

1. Bogoliubov treatment

a. The free energy

In the Bogoliubov treatment [1] we have the simplified

Hamtilonian Ĥ(λ) = ĤS + λV̂ , where

ĤS =
∑
k

ωk b̂
†
k b̂k,

V̂ =ηn+
∑
k

(η∗k b̂
†
k + ηk b̂k).

Here b̂†k and b̂k, introduced in the main text along with
the other terms, satisfy bosonic commutation relations.

This Hamiltonian can be diagonalized by defining a

new displaced creation operator d̂†k = b̂†k + ληk/ωk, and

its annihilating conjugate d̂k, leading to

Ĥ(λ) =
∑
k

ωkd̂
†
kd̂k + λη

(
n− λ

∑
k

|ηk|2
ηωk

)
.

We can thus immediately write the free energy as

F (λ) = − 1

β
lnZβ(λ)

= λη

(
n− λ

∑
k

|ηk|2
ηωk

)
+ F (0),

F (0) = − 1

β
ln tr

{
exp

[
−β
∑
k

ωkd̂
†
kd̂k

]}

=
1

β

∑
k

ln(1− e−βωk).

b. The characteristic function

Our first step in evaluating χQ(u) [Eq. (D1)] is to sim-
plify by absorbing any displacement of the Bogoliubov
phonons present in the initial state ρ̂β(λQ(0)) into the

Hamiltonian Ĥ(λ). We do this using a method similar
to that used for the free energy. We define a new dis-

placed creation operator d̂†k = b̂†k + λQ(0)ηk/ωk and its

annihilating conjugate d̂k. In terms of these operators,
we re-write the Hamiltonian as

Ĥ(λ) =Ĥ ′(λ′) = Ĥ ′S + λ′V̂ ′,

λ′ =λ− λQ(0),

Ĥ ′S =
∑
k

ωkd̂
†
kd̂k,

V̂ ′ =ηn′ +
∑
k

(η∗kd̂
†
k + h.c.),

n′ =n− 2λQ(0)
∑
k

|ηk|2
ηωk

.

Here n′ represents the reduced background density due
to the initial perturbation, and we have omitted a con-
stant term λQ(0)η(n−λQ(0)

∑
k |ηk|2/ηωk) representing

its energy.

We now have

χQ(u) = tr
{
Û ′†Q Û

′†(λ′Q(τ), u)Û ′Qρ̂
′
β(0)

}
,

where

Û ′Q =T exp[−i

∫ τ

0

dtĤ ′(λ′Q(t))],

Û ′(λ′, u) =e−iĤ′(λ′)u,

ρ̂′β(λ′) =e−βĤ
′(λ′)/Z ′β(λ′),

Z ′β(λ′) =tr{exp[−βĤ ′(λ′)]}.

Note that, by design, λ′Q(0) = 0 and thus we have used

Û ′(λ′Q(0), u) = Û ′(0, u) = 1. In what follows, for clarity,
we drop the primes.

Our second step is to move to the interaction picture,
whereupon

χQ(u) = tr
{
Ũ†Q(0)Ũ†(λQ(τ), u, τ)ŨQ(u)ρ̂β(0)

}
.

Here the tilde indicates an operator in the interaction
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picture, specifically

ŨQ(t) =T exp

[
−i

∫ τ

0

dt′λQ(t′)Ṽ (t′ + t)

]
,

Ũ(λ, u, t) =T exp

[
−iλ

∫ u

0

dt′Ṽ (t′ + t)

]
,

Ṽ (t) =eiĤStV̂ e−iĤSt

=ηn+
∑
k

(η∗kd̂
†
keiωkt + h.c.).

The third step is to simplify the time-ordered expo-
nentials. For this we appeal to the Magnus expansion

Ũ =T exp

[
−i

∫ t

0

dt′λ(t′)Ṽ (t′)

]
= e−iÃ,

in terms of Hermitian operators

Ã =Ã[1] +A[2] + · · · ,

Ã[1] =

∫ t

0

dt′λ(t′)Ṽ (t′),

A[2] =
−i

2

∫ t

0

dt′
∫ t′

0

dt′′λ(t′)λ(t′′)[Ṽ (t′), Ṽ (t′′)],

...

The simplifying feature of the Bogoliubov Hamiltonian,
which we will use repeatedly, is that the commutator

[Ṽ (t), Ṽ (t′)] = −2i
∑
k

|ηk|2 sin(ωk(t− t′)),

is a pure imaginary c-number. Hence we have omitted
the tilde from A[2] to highlight that it is a real c-number
only. This also ensures that all terms Ã[m] for m > 2
vanish from the Magnus expansion. The result is that

χQ(u) =eiA[2](λQ(τ),u)

× tr
{

eiÃ
[1]
Q (0)eiÃ[1](λQ(τ),u,τ)e−iÃ

[1]
Q (u)ρ̂β(0)

}
.

Here, we have used a simplification of the form

eiA
[2]
Q (0)e−iA

[2]
Q (u) = 1, and the other integrals appearing

in the expression are as follows

Ã
[1]
Q (t) =

∫ τ

0

dt′λQ(t′)Ṽ (t′ + t)

=ηn

∫ τ

0

dt′λQ(t′)

+
∑
k

(
η∗k
ωk

Λ∗Qkd̂
†
keiωkt + h.c.

)
,

ΛQk =ωk

∫ τ

0

dtλQ(t)e−iωkt,

Ã[1](λ, u, t) =λ

∫ u

0

dt′Ṽ (t′ + t)

=ηnλu

+
∑
k

(
η∗k
ωk

Λ∗k(λ, u)d̂†keiωkt + h.c.

)
,

Λk(λ, u) =ωkλ

∫ u

0

dte−iωkt

=− iλ(1− e−iωku),

A[2](λ, u) =− λ2
∑
k

∣∣∣∣ ηkωk
∣∣∣∣2 (ωku− sin(ωku)) .

Having simplified each time-ordered exponential, our
third step is to combine them using the Baker-Campbell-
Hausdorff formula

eÃeB̃ = eÃ+B̃+[Ã,B̃]/2,

for the case that [Ã, B̃] is a c-number. Explicitly, we use

eiÃ
[1]
Q (0)eiÃ[1](λQ(τ),u,τ)e−iÃ

[1]
Q (u)

= ei(Ã
[1]
Q (0)−Ã[1]

Q (u))+iÃ[1](λQ(τ),u,τ)

× exp
{
− 1

2

(
[Ã

[1]
Q (u), Ã

[1]
Q (0)]

+ [Ã
[1]
Q (u), Ã[1](λQ(τ), u, τ)]

+ [Ã
[1]
Q (0), Ã[1](λQ(τ), u, τ)]

)}
,

together with

[Ã
[1]
Q (t), Ã

[1]
Q (t′)]

= −2i
∑
k

∣∣∣∣ ηkωk
∣∣∣∣2 |ΛQk|2 sin(ωk(t− t′)),

[Ã
[1]
Q (t), Ã[1](λ, u, t′)]

= −2i
∑
k

∣∣∣∣ ηkωk
∣∣∣∣2={Λ∗QkΛk(λ, u)eiωk(t−t′)

}
.
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This leaves us with

χQ(u) = exp (iηnλQ(τ)u)

× exp

(
−iλ2

Q(τ)
∑
k

∣∣∣∣ ηkωk
∣∣∣∣2 (ωku− sin(ωku))

)

× exp

(
−i
∑
k

∣∣∣∣ ηkωk
∣∣∣∣2 hQk(u)

)

× tr

{
exp

(
−i
∑
k

(
η∗k
ωk
g∗Qk(u)d̂†k + h.c.

))
ρ̂β(0)

}
,

(D3)
where

hQk(u) =− |ΛQk|2 sin(ωku)

−=
{

Λ∗Qk
(
eiωku + 1

)
Λk(λQ(τ), u)e−iωkτ

}
=HQk sin(ωku),

HQk =− |ΛQk|2 − 2λQ(τ)=
{

Λ∗Qke−iωkτ
}
,

gQk(u) =− ΛQk
(
1− e−iωku

)
− Λk(λQ(τ), u)e−iωkτ

=GQk
(
1− e−iωku

)
,

GQk =− ΛQk + iλQ(τ)e−iωkτ .

The final step is to evaluate the trace tr{·ρ̂β(0)}, or ex-
pected value 〈·〉 with respect to state ρ̂β(0). We use that
the exponent of the first term in the trace contains only

terms that are linear in d̂†k and d̂k. The state ρ̂β(0)
with respect to which the expected value is taken, the

other term in the trace, consists of a mixture of differ-
ent occupations of these phonon modes, with all non-

number conserving combinations of d̂†k and d̂k thus hav-

ing zero expected value and 〈(d̂†kd̂k)m〉 = (nk)m with
nk = (exp(βωk)−1)−1 the mean occupation. This means

that for an operator formed for linear combinations of d̂†k
and d̂k, we have〈

exp

(
−i
∑
k

(
η∗k
ωk
g∗Qk(u)d̂†k + h.c.

))〉

= exp

−1

2

〈(∑
k

(
η∗k
ωk
g∗Qk(u)d̂†k + h.c.

))2〉 ,

and the particular expectation value is〈(∑
k

(
η∗k
ωk
g∗Qk(u)d̂†k + h.c.

))2〉

=
∑
k

∣∣∣∣ ηkωk
∣∣∣∣2 |gQk(u)|2 coth

(
βωk

2

)
,

where we note that

|gQk(u)|2 =4 |GQk|2 sin2
(ωku

2

)
.

Inserting this back into Eq. (D3) we arrive at our final
expression

i lnχQ(u) =− ηnλQ(τ)u+
∑
k

∣∣∣∣ ηkωk
∣∣∣∣2 (λ2

Q(τ)ωku+ (HQk − λ2
Q(τ)) sin(ωku)

)
− 2i

∑
k

∣∣∣∣ ηkωk
∣∣∣∣2 |GQk|2 sin2

(
ωku

2

)
tanh

(
βωk

2

) .

c. The work distribution

As discussed above, the cumulants κm of the work dis-
tribution PQ(W ) are related to the derivatives of the log-
arithm of its characteristic function, by Eq. (A1). We
may use this to calculate all cumulants of the work dis-
tribution, but here we report only the first three

µQ = κQ1 =λQ(τ)ηn−
∑
k

|ηk|2
ωk

HQk,

σ2
Q = κQ2 =

∑
k

|ηk|2 |GQk|2 coth

(
βωk

2

)
,

κQ3 =−
∑
k

|ηk|2 ωkHQk.

d. Symmetry

A close inspection of the results reveals that reversing
the quench has no effect on either HQk or |GQk|2 and
thus also on the cumulants κQm for m > 1. This rep-
resents the fact that in the Bogoliubov description the
deviations of the condensate, assumed small, do not to
interact resulting in a symmetry between repulsive and
attractive interactions. This means that the only differ-
ence between the two characteristic functions lies in the
phase ηnλQ(τ)u. The effect of this is merely to shift
the associated probability distributions by the amount
ηnλQ(τ), as we can see in our expression for µQ. Eval-
uating these phase shifts, we find that, for the Bogoli-
ubov case, the forward and backward distributions are
identical up to a relative shift µF − µB = 2∆F , where
∆F = F (λf )− F (λi) is the free energy difference.

This symmetry could be exploited to provide a better
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estimate for β. However, we do not do this here as we
wish to keep our estimation protocol general, so that it
is applicable to situations where this symmetry does not
exist or is not known to exist.

2. Tensor network theory

In regimes where the condition necessary for the va-
lidity of Bogoliubov theory Un � J is not satisfied, we
numerically calculate the characteristic function using a
tensor network representation. We proceed by writing
the quantum state as a matrix product operator (MPO)
[2, 3] and then performing imaginary- and real-time evo-
lution using the time-evolving block decimation (TEBD)
algorithm [4, 5]. In the following, we concisely outline
our method. See Ref. [6] for a detailed pedagogical in-
troduction to tensor-network algorithms.

The state of a quantum lattice system with M sites
and local Hilbert space dimension d can be represented
in MPO form

ρ̂ =

d∑
i1,...,iM=1

d∑
j1,...,jM=1

tr
[
A

(i1j1)
1 · · ·A(iLjM )

M

]
× |i1 . . . iM 〉〈j1 . . . jM |.

(D4)

Here, the matrix elements of the density operator are

given by the trace over a product of matrices A
(iljl)
l of

maximum dimension D ×D, where the bond dimension
D quantifies the correlations between lattice sites. The
states {|il〉} constitute a complete orthonormal basis for
the Hilbert space on lattice site l. The set of matrices

A
(iljl)
l may also be considered as elements of a single com-

bined tensor Al of dimension D×d×D×d. Together the
tensors Al can represent an arbitrary quantum state, for
sufficiently large d and D. In a bosonic system, however,
both the physical dimension d and the bond dimension
D must be truncated, in general, in order to obtain a
tractable numerical representation. In our calculations
we use d = 4 and D = 200.

The time-evolution operator over a small time step δt
is approximated by a product of two-site gates using a
second-order Suzuki-Trotter “staircase” decomposition,
see Ref. [7] for details. The tensor network represent-
ing the time evolution of the quantum state is depicted
schematically in Fig. 4(a). The TEBD algorithm pro-
ceeds by sweeping across this tensor network and ap-
plying two-site gates sequentially to pairs of nearest-
neighbor tensors AlAl+1 appearing in the MPO repre-
sentation of the quantum state in Eq. (D4). The result is
a new tensor Θl,l+1 formed by contracting the A tensors
with two-site gates above and below. A singular value
decomposition (SVD) is then performed on Θl,l+1, re-
sulting in a new pair of tensors A′lA

′
l+1 [Fig. 4(b)]. Only

the largest D singular values at most are retained after
the SVD, so that an efficient MPO representation of the
quantum state is maintained at each time step. Repeat-

FIG. 4: (a) Schematic depicting one part of a tensor network
representing the time evolution of an MPO (red circles) gen-
erated by a product of two-site gates Ul,l+1 and Vl,l+1 acting
on the MPO from the left and right, respectively. (b) Time
evolution proceeds by contraction of nearest-neighbor pairs
of MPO tensors AlAl+1 with two-site gates above and below,
resulting in a new tensor Θl,l+1. This tensor is then decom-
posed into a product of tensors A′

lA
′
l+1 via an SVD. Retaining

only the largest D singular values in the SVD maintains an
efficient MPO representation at each time step.

ing this procedure across the entire system over N small
time steps δt leads to the desired numerical evolution
over a time duration t = Nδt.

In order to find the initial thermal state, we use the
identity

ρ̂β(λ) =
1

Zβ(λ)
e−βĤ/21̂e−βĤ/2.

The right-hand side of this equation can be calculated us-
ing the TEBD algorithm as outlined above, after a Wick
rotation to imaginary time t → −iβ/2 and taking the

initial state to be the system-wide identity operator 1̂.
The MPO representation of the identity operator is given

simply by A
(iljl)
l = δiljl .

The characteristic function [Eq. (D1)] may then be cal-
culated by performing real-time evolution to find the op-
erator

X̂Q(u) = ÛQe−iuĤ(λQ(0))ρ̂β(λQ(0))Û†QeiuĤ(λQ(τ)),

such that χQ(u) = tr
{
X̂Q(u)

}
. The unitary ÛQ =

T exp[−i
∫ τ

0
dtĤ(λQ(t)) [Eq. (D2)] is performed by dis-

cretizing the quench path into steps λQm = λQ(mδt),
with m = 1, . . . ,M and τ = Mδt. Discrete time evolu-
tion under the TEBD algorithm reproduces the quench
unitary, since

ÛQ ≈
1∏

m=M

e−iδtH(λQm),
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for sufficiently small δt.
In order to ensure numerical stability, each matrix

A
(iljl)
l is divided by its matrix norm (the square root

of the sum of its elements) after each time step. The
accumulated product of these norms then multiplies ex-
pectation values to give the correct final result.
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