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Abstract

We propose a systematic procedure for the approximation of density functionals in density functional
theory that consists of two parts. First, for the efficient approximation of a general density functional,
we introduce an efficient ansatz whose non-locality can be increased systematically. Second, we
present a fitting strategy that is based on systematically increasing a reasonably chosen set of training
densities. We investigate our procedure in the context of strongly correlated fermions on a one-
dimensional lattice in which we compute accurate training densities with the help of matrix product
states. Focusing on the exchange-correlation energy, we demonstrate how an efficient approximation
can be found that includes and systematically improves beyond the local density approximation.
Importantly, this systematic improvement is shown for target densities that are quite different from
the training densities.

1. Introduction

The formulation of quantum mechanics in terms of density functionals instead of wave functions, following the
ground-breaking works of Hohenberg, Kohn, and Sham [1, 2], made numerical simulations of quantum
mechanical systems ranging from the microscopic to the macroscopic world feasible [3—5]. The usefulness of
density functional theory (DFT) is certified by the number of works based on the original publications [1, 2] and
on later improvements of the exchange-correlation (xc) energy density functional E,. [6—12].

DFT in its most widely used form, namely Kohn—Sham (KS) DFT [2], requires the xc density functional in
order to be able to compute ground state energies and densities. By virtue of the Hohenberg—Kohn theorem [1],
all ground state observables are functionals of the ground state density #, and so Ex. = Eyc[#]. The ground state
energy E = E [n] ofasystem can be decomposed into a kinetic, an interaction and a potential part. By means of a
fictitious non-interacting system, namely the KS system, the non-interacting part of the kinetic energy,

T® = T*[n], can be obtained efficiently, which represents a large contribution to the full interacting kinetic
energy T. Further, part of the interaction energy is accounted for by the Hartree energy Ey [1]. The potential part
Ey [n] can be exactly computed efficiently for any ground state density . Finally, the remaining part of the total
ground state energy defines the xc density functional, Ey. [n] := E[n] — T%[n] — Ey[n] — Ey[n]. DFTisin
principle exact, but in practice determining the precise form of the xc density functional is QMA-hard [13].
Therefore, KS DFT can only make use of approximations of E,.. The enormous success of DFT is thus deeply
connected to the successful construction of good approximations for the xc energy density functional.

In the history of DFT and quest for a universally applicable approximate Ex. [14], mainly two different paths
have been followed: one is the non-empirical approach pioneered by Perdew [15] and the other is the semi-
empirical approach initiated by Becke [8]. The non-empirical approach makes use of exact conditions, thata

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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physical system must fulfill, to find approximations for the xc density functional. Within this approach a ‘Jacob’s
ladder’ of functionals was built where each functional on a higher rung of the ladder is supposed to improve
upon the ones on the lower rungs [16, 17]. On the lowest rung of the ‘Jacob’s ladder’ resides the local density
approximation (LDA), which was already introduced by Kohn and Sham in [2]. The higher rungs are supposed
to systematically improve upon the LDA, which, in practice, does not always happen [17]. Additionally, at the
moment, the more precise functionals on the higher rungs are so much more difficult to compute that further
improvements of DFT following this non-empirical approach seem very hard to achieve. In the semi-empirical
approach, an ansatz for the functional form of E. is fitted using experimental data, accurate theoretical
reference data, or other constraints. However, often relatively small training sets are used in these fits and then
the resulting functionals can be biased towards their training [ 14].

Alternatively, we might obtain further improvements of E,. away from but using concepts of both the semi-
empirical and the non-empirical approach, e.g. by using a large set of accurate training densities and
corresponding values of Ey., and by fitting an efficient ansatz to these data that includes some exact conditions.
Obviously, a difficulty of this alternative scheme is that it requires a possibly large number of accurate solutions
for the quantum many-body problem. However, nowadays, tensor network states provide precise results for
quantum many-body systems, e.g. [18, 19], in particular with respect to ground state properties. We remark that
tensor network methods are currently limited to low-dimensional, i.e. one- and some two-dimensional,
quantum lattice problems while DFT usually handles three-dimensional continuous quantum systems. Since
DFT can be applied to a wide range of realistic quantum systems, it is a useful algorithm for a large community
and thus worth improving.

In this article, we want to analyze the feasibility of constructing an approximate xc density functional of a
specific form, when large training sets of ground state densities and corresponding values of E,. are available.
The specific form for the ansatz of our approximation is inspired by the non-empirical approach [17]: it includes
the LDA [2, 20] and allows a systematic improvement beyond it. For this feasibility study, we focus on discrete
lattice problems and the one-dimensional case, and we use matrix product states (MPS) for the computation of
accurate ground state energies and densities [21, 22]. The specific discrete lattice problem considered here can be
derived from discretization of continuous space, i.e. the usual scenario of DFT. Then our ansatz can be seen as
the discretized version of a continuous function. Although we could approach the continuum solution by
successively decreasing the discretization, taking the continuum limit is beyond the scope of this work.

The structure of this article is as follows. In section 2 we introduce the considered Hamiltonian and
observables. The corresponding exact LDA is presented in section 3. We then propose, fit, and assess our ansatz
in section 4. Finally, in section 5 we conclude this work and give an outlook.

2.Model

In the following, we consider two species of fermions with long-ranged soft-Coulomb interaction on a finite
one-dimensional lattice of length L with hard-wall boundary conditions, as represented by the Hamiltonian:

A=T+W+V @
with
R L-1
T=—t) > (C]TUCZ+I,U + ClTJrl,UCLU)’ (24)
I=1lo0=1,]
. L L iy fi
W := UZ ity + Z — (2b)
=1 m=1+1+/ (1M — l)z + 1
. L
V = Z(Vth — /~L) . (20)

=1

Here, CITU creates and ¢; , annihilates a fermion of species o = T, | onlatticesite/, 7}, := CITU .0 isthe
corresponding occupation number operator and 7; := 7y + i;,|. The total particle number is denoted by

N = (X}, ). We obtain ground states with different total particle number by choosing different values for the
chemical potential y, which plays the role of a Lagrange multiplier fixing N. Such a Hamiltonian can also
describe the discretized continuous problem with lattice spacing A when in (2a) tis replaced by 1/(2A?) and

in (2b) the denominator /(m — 1)> + 1 isreplaced by \/(m — [)>A? + 1. The solution for different
discretizations can be very precisely computed with MPS [23, 24] and so our approach should yield highly
accurate training densities. If we would like to obtain the solution for continuous space, we would have to run
our computations repeatedly with decreasing lattice spacing A and extrapolate our results to A = 0. Here we
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see (1) as the Hamiltonian of the problem, and not a discrete version of a more fundamental one, thus we set
t = 1/2and U = 1 and fix the number of lattice sites to L = 21 from now on.

On a finite lattice, densities n; := (7)) = (fi,; + fi;,|) can be written into a vector n == (m, 1y, ..., 1) —
where T denotes the transpose—such that every density functional F can be written as a function of such density
vectors F = F (n). In the following, we will consider the universal Hohenberg-Kohn functional Fyy (n), the
Hartree—energy Ey (n), and the non-interacting kinetic energy T* (n), e.g. [20]. For the above Hamiltonian (1)
these functionals read:

Fuk (n) := E(n) — IZL‘T(WM — pw)n, (3a)

By (n) == Uf: moy | (3b)
| (S y OV [

T*(n) = E*(n) — ZL:(VIS — p)n, (o)

=1
where E (1) denotes the ground state energy of an interacting density n, i.e. corresponding to (1) with W, and
E* (n) denotes the ground state energy of a non-interacting density n, i.e. corresponding to (1) without W.
Knowing the values of these functionals (3a), (3b), and (3¢) for a particular density n allows to calculate the xc
energy E, for that density:

Ex.(n) = Fux () — Ex(n) — T*(n). (C))

However, given an arbitrary density vector n, only Ey (n) is trivial to compute: Fy (n) requires the
knowledge of the external potential as a function of the density, v/*' = v (n), and T®(n) requires the
knowledge of the effective non-interacting KS potential v = v/ (n). This process of calculating the external
potential v; (n), in which the ground state has the given density n, is called inversion and can be performed
efficiently only in the non-interacting case or for two fermions [25]. In general, there exists no efficient inversion
procedure for the interacting case and we use a slight modification of the iteration proposed in [26, 27]: aiming at
the target density n®", we iterate v; (i + 1) = v;(i) + v (@) (m () — #*") until||n (i) — n®||—where|| ... ||
denotes Euclidean norm—is below a desired precision threshold. Here, n (i) is the ground state density in the
external potential v (i) at the iteration step 7, and y (i) > 0is adjusted during the iterations to speed up the
convergence. Since interacting inversion necessitates several ground state computations to attain an
approximate solution, it is not efficient. Even more sophisticated iteration schemes cannot circumvent that
some densities require incredibly many iterations, i.e. ground state computations, until convergence [28].
Therefore, in general, interacting inversion represents a computationally demanding task.

3. Exact LDA

As the exact form of E, from (4) is not known, in practice, approximations are used. One of the simplest and
most successful approximations is the LDA [2, 20].
The exact LDA e’ is defined via the homogeneous electron gas, i.e. via exactly homogeneous densities
n= (n, ty,...,n)! = (n, n,...,n)" in the thermodynamic limit L — oo [2,20]:
ePA(n) == lim Ey (n, n,...,n)/L. (5)

L—oo

This quantity is then used to approximate the xc energy of a finite system by
L
Exe(n) = E" (n) = 3 e 2" (). ©)
=1

Because E-"* (n) is the exact xc energy for exactly homogeneous densities in the thermodynamic limit, it
represents a good approximation for relatively homogeneous densities on large lattices L >> 1.

Our feasibility study here assumes a relatively small lattice of size L = 21 with hard-wall boundary
conditions, such that finite size and boundary effects play a role. We therefore derive our own LDA for this
system and do not make use of the existing results in [29]. Figure 1shows our e (1) obtained from numerically
exactly homogeneous densities computed by means of non-interacting (for T* (1)) and interacting (for Fy (1))
inversions on L = 21 lattice sites for all possible total particle numbers N = 0, 1,...,42. To allow for an efficient
evaluation of ELP*, we parametrize the function e (1) using a finite number of parameters. A simple way to
achieve this is to assume a polynomial form p4(n) of certain degree d and to fit our results using different values of
d.In the fit of each polynomial p(n), we impose the physically reasonable constraint p,(0) = 0 = p,(2), which
trivially holds for the exact Ex, as can be seen in (4): Obviously e, (0) = Ey.(0, 0,...,0)/L = 0because

3
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Figure 1. Our exact LDA e, (1) (crosses) and polynomial interpolations p,() of degree d = 2 (dotted), 4 (dashed), and 8 (solid).

every termin (4) vanishes independently for zero total particle number, and e,. (2) = E. (2, 2,...,2)/L =0
because Fyx (2, 2,...,2) = Ey(2, 2,...,2)and T5(2, 2,...,2) = 0 due to impossible tunneling. Apparently, our
exact LDA e, is well approximated by polynomials of low degree d since, on the scale of figure 1, the d = 8 fit
seems indistinguishable from the d = 4fit.

The LDA resides on the lowest rung of ‘Jacob’s ladder’ [17] and the most successful approximations of Ex.
beyond the LDA were built on top of it [6—12]. Analogously, we will use the LDA computed above as our
reference, and we will try to improve upon it with a more general ansatz for the functional.

4. Our ansatz

Our approach for the construction of an improved xc energy approximation consists of two parts. Firstly, it
requires an efficient variational density functional ansatz, denoted by G, to approximate E,.. Secondly, a set of M
external potentials has to be specified, which will be called training scenario, such that the corresponding M exact
ground state densities n’, called training densities, and exact values E,. (n") are used to determine G by
minimizing a cost function

M

d(G) = ) |Exc(n') — G(n)P? @)
t=1
over the variational parameters of G.
We are interested in an ansatz that, firstly, includes the LDA and, secondly, allows for a systematic
improvement over it by including non-local terms. In this spirit, we propose a two-site ansatz of the following

form:
X
GX(n) = > Gk(m) (8
k=0
with
L
GH="(n) := > g(ny), (9a)
I=1
L—k
GF>0(n) = gk (my, mpp). (9b)

I=1

For X = 0,wehave G (n) = G*=%(n) = G*=°(n), which is completely analogous to the LDA (6). And for

X > 0,the k > 0 terms allow for a more general dependence on the density with two-site functions over a range
limited by X. In this way, increasing X allows us to systematically include more non-local information and to go
beyond thelocal LDA.

In order to have a practical functional, we want to write it in terms of a discrete set of variational parameters.
Thus we need to restrict the form of the functions g*. For simplicity we choose here a polynomial form for each
term, as we did in the previous section 3 for the reference LDA. Additionally, in all following numerical
experiments, we simply fix the degree of the polynomial tod = 4.

4
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Figure 2. Local terms g° () from the ‘homogeneous’ training scenario with M = N = 6 (dotted), 12 (dashed), and 30 (solid),
compared to the exact LDA (crosses). Here, ¢’ is a polynomial of degree d = 4.

When G (n) is assumed to be a polynomial of the 1), the variational parameters of G are the polynomial
coefficients. Then the desired argmin_d(G), i.e. the argument of d that minimizes the cost function, results
from the solution of linear equations Ac = E,. where the polynomial coefficients of G are vectorized in ¢, the
exact values are vectorized in E,., and the elements in the matrix A establish the correct connection to the cost
function (7): d(G) = XM [Exc(#) — GO = SM (B — Aoy

We want to emphasize that this approach does not need any computationally demanding interacting
inversion. Because the training densities n’ follow from the training potentials, i.e. from M different choices of
ve¥tin (3a), we know Fyy (n'). While the calculation of Ey (1) is trivial, T® (n") is computed via efficient non-
interacting inversion. Thus, all further ingredients for Ey. (n") of (4) are then efficiently computable.

The first step in our approach is to consider the ansatz G = G°, with g°(n;) := Z?:o ¢! nj apolynomial in
of degree d with coefficients ¢ (and d = 4 in the following). The simplest possible, ‘homogeneous’, training
scenario amounts to setting v*' = 0, in which case we have one training density for each possible total particle
number N = 1, 2,...,2L,i.e.atmost M = 42 for L = 21. Figure 2 demonstrates how training our local term g0
with such ground states reproduces the exact LDA. Remarkably, a very good match between our ¢° and the exact
LDA is achieved already with M = 30 ground state computations. This has to be compared to the several
thousands of ground state computations that were required for figure 1 due to the interacting inversion
iteration.

We can understand that the homogeneous’ training scenario leads to the exact LDA because this scenario
contains relatively homogeneous training densities and because the exact LDA is constructed from exactly
homogeneous densities. Now we want to consider more inhomogeneous densities. For that purpose we propose
the simplest possible extension of the ‘homogeneous’ training scenario: the ‘step’ training scenario shown in
figure 3(a). This scenario contains the simplest external potentials that give rise to inhomogeneous ground state
densities, see figure 3(b) for some example densities. The ‘step’ training scenario allows us to generate much
larger training sets since we define it by free choice of: (a) the step position (from | = 2, 3, 4,...,21), (b) the step
height (from h = 0, 0.1, 0.2, ...,2.0), (c) the step orientation (left or right), and (d) the total particle number
(from N = 1, 2, 3,...,30). We do not include total particle numbers Nlarger than 30 in this training set because
we want it to contain sufficiently inhomogeneous densities that become more inhomogeneous when the step
height increases; clearly, for large total particle numbers such as more than 30 fermions on 21 lattice sites, an
increasing step height quickly creates large homogeneous regions of maximum filling in the density, i.e. having
two fermions per lattice site.

We have investigated two different ways of converging G with this ‘step’ training scenario. In the first way, we
pick M ground states randomly and study the convergence of G as a function of M. In the second way, we fix the
total particle numbers considered to N = 1, 2, ...,12, take all possible step positions and orientations, and
increase M systematically together with the step height. In both schemes, convergence is quantified by
comparison of the solution for M with the solution for the largest considered M.y , which we fixed to 12 800 for
the random and to 9612 for the systematic densities. We can then look at the quantity

e (M) = {|IC;(M) — Ci(Mmax)|/1C; (Mumax) ) (10)

where C{(M) denotes the ith parameter of G after training with M densitiesand (...) == 1/ PZf;1 ... denotes
taking the mean value over all P possible values of i.
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Figure 3. (a) ‘Step’ training scenario: external potentials v/ are characterized by a step of certain height ata certain position. (b)
Ground state density n; for N = 12 (main) and 6 (inset), for a step at position [ = 10 of height i = 0 (dotted), 0.3 (dash-double
dotted), 0.5 (dashed—dotted), 1.0 (dashed), and 2.0 (solid).

000 T ,,H””q'. |

1001000
X M

—-0.15 \ )‘/ —
L S
0.0 0.5 1.0 1.5 2.0

n

Figure 4. Local terms g° (1) from the ‘step’ training scenario with M = 100 (dotted), 400 (dashed-dotted), 1600 (dashed), 6400
(solid), and 12800 (crosses). Inset: mean relative difference ¢ (M) between the coefficients of ¢° after training with M densities and the
coefficients of g° after training with My,,, = 12800 densities. Here, g’ is a polynomial of degree d = 4.

Figure 4 shows our results for random densities. Interestingly, this training scenario gives rise to local terms
¢’ that are very similar to the exact LDA, although many training densities of this scenario are very
inhomogeneous. Furthermore, we can read off from the inset of figure 4 that convergence occurs rapidly.

To go beyond the LDA, we now include the longer-range two-site terms with k > 01in (8) usinga general
polynomial ansatz:

d
k
gh(m, i) = Y eg om0t (1D
50,5k=0

i.e. these terms are general degree d polynomials of the density values on two lattice sites separated by distance k
(and, again, we simply fix d = 4 in the following). While, as discussed above, for X = 0, our ansatz

GO%n) = Z,L: 18° (n)) is completely analogous to the LDA of (6), for X > 0, it contains additional non-local
terms, such that, by systematically increasing X in our ansatz GX (), we can systematically increase its non-
locality beyond the local LDA-like term.
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We enforce in our desired solution G* that the terms g* for increasing k are obtained one after another such
that each additional non-local term (i.e. corresponding to the next larger value of k ) is a correction to the
previous solution. This means that, for given X, we first minimize (7) only via the parameters ¢’ which gives G°.
Then we minimize (7) for the remainder E.. (") := Ey.(n') — G°(n") only via the parameters ¢ which together
with the previous solution ¢’ gives G'. Then we minimize (7) for the remainder EZ (n) := Ey(n") — G!(n")
only via the parameters ¢* which together with the previous solutions ¢ and ¢' gives G*. We continue the scheme
until we have reached c* and thus G*. This procedure ensures that each longer-range term is built on top of all
previous shorter-ranged ones, in the same way as the functionals on higher rungs of ‘Jacob’s ladder’ are more
non-local and are built on top of the more local functionals on the lower rungs [17].

In order to analyze the performance of the ansatz, we adopt now a different strategy. We will now always fit
our ansatz G* with the ‘step’ training scenario of figure 3 and then we will apply it to completely different target
densities. For the latter, we choose ground states of the H, dissociation problem, i.e. Hamiltonian (1) with total
particlenumber N = 2 and external potential

L
V(R) =Y v (R + !

P JRR1 1
1 B 1
JO=-R/2D¥+1  JU—(o+R/2)P+1

(12a)

Vi (R) = —

(12b)

where R denotes the separation between the two H atoms placed in the middle of the lattice such that we set
lp = 11for L = 21. Because this problem represents a realistic physical application that is significantly different
from our training scenario, we consider it to be a very good benchmark for our approach.

From now on, the local terms g° (1) in our two-site polynomial ansatz (8) are fixed to be the exact LDA from
figure 1. And the non-local terms g¥>° (n;, n,) are enforced to fulfill g*>°(0, 0) = 0 = g¥>°(2, 2) aswellas
g0 (ny, my) = g¥>%(ny, my). These properties are physically reasonable and they reduce the number of
variational parameters, which turned out to be beneficial for the convergence of our fit. In particular, this helped
us to avoid the effect known as overfitting. We distinguish two different versions of our ansatz, namely
constrained and unconstrained. In our constrained two-site polynomial ansatz we determine g¥>°(n;, n,) under
the constraint gk>° (n, n) = 0:then GX (n) is exact for exactly homogeneous densities n = (1, n, ...,n)'. Inour
unconstrained two-site polynomial ansatz we do not impose this constraint on the polynomial coefficients: the
unconstrained ansatz has thus more variational parameters than the constrained ansatz.

Figure 5 shows our results after convergence with M systematic densities. As we can see in (a), the
constrained ansatz leads to a visible improvement over LDA close to R = 0, but not for larger R. A convergence
of the non-local terms can be concluded from the inset. In (b), the unconstrained ansatz leads to an
improvement over LDA for almost all values of R, but it produces too low energy values close to R = 0. The inset
of (b) demonstrates that convergence of the non-local terms occurs, however, for k > 1 this convergence is
slower than in (a). With increasing X, our ansatz systematically improves the LDA result at specific values of R:
around R = 0 when the constrained version is used, and at larger R when the unconstrained version is used.
Both versions of our ansatz show a systematic improvement over LDA with increasing X when the mean energy
for all values of R is considered. In fact, such a mean value is the correct figure of merit because the cost
function (7), minimized for ‘step’ training densities by our ansatz, is also a mean value of many xc energies.

Clearly, we would like to use G* () to compute densities self-consistently via the KS cycle. A first step in this
direction is the calculation of the xc potential v;*“ (n) := —OE./On|, for the exact ground state density #. In the
H, dissociation problem, the xc potential for larger values of R is particularly interesting, since its exact form
exhibits a characteristic peak that cannot be reproduced by LDA alone [30]. Figure 6 shows our results for R = 5.
While our constrained ansatz leads to a potential that basically coincides with the one from LDA, our
unconstrained ansatz leads to a small systematic improvement with increasing X.

5. Conclusions

We have analyzed the feasibility of constructing semi-empirical approximations for the xc density functional in
the context of along-range interacting many-electron system on a one-dimensional lattice. Using numerically
exact ground states from MPS simulations, we proposed to fit an ansatz that includes an LDA-like part plus
additional terms of increasing non-locality, by means of reasonably chosen training densities. We observed that
our ansatz converges systematically within the training scenario. Additionally, when applied to completely
different target densities, namely of the H, dissociation problem, our fitted ansatz improved upon the LDA
systematically. This systematic improvement was demonstrated for the ground state energies of the H, problem
and for a xc potential corresponding to a stretched H, molecule.
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Figure 5. H, dissociation energy E(R) as a function of the separation R: from exact LDA (dotted) and from our constrained (a) and
unconstrained (b) ansatz with X = 1 (dash-double dotted), 2 (dashed—dotted), 5 (dashed), compared to the exact solution (solid).
Insets: mean relative difference ¢ (M) between the coefficients of g“>° for k = 1 (dash-double dotted), 2 (dashed—dotted), and 5
(dashed) after training with M systematic densities and the corresponding coefficients of g¥>? after training with M., = 9612
systematic densities—the insets show our results for M = 1212,2412, and 4812. Here, our ansaetze for G are polynomials of degree
d=4.

In this work, we have tested the effect of a systematic inclusion of non-local ingredients in the functional
using very simple ansaetze for the non-local terms, namely only two-site dependences, and for the functional
form, namely only polynomials, and we considered only one training scenario. Our results show that by
systematically including non-local terms, the approximation can without doubt be improved beyond LDA. Our
quantitative results are nevertheless limited to the specific form of the ansatz and training set used. For instance,
the fact that the dissociation curve does not significantly improve by including terms of longer range after some
point seems to indicate that other non-local contributions may be more relevant. Likewise, considering
functional forms for each term that go beyond a polynomial may improve the power of the ansatz. We have
already run initial tests to study the effect of terms that depend on three variable densities, but we observe no
clear convergence with as many as 2220000 densities from the ‘step’ training scenario. This clearly indicates the
necessity for a different training scenario and possibly additional physical constraints that effectively reduce the
number of variational parameters. The question itself of how to choose the training densities optimally is, in
general, a very important one that should be further explored, as a better training scenario would always further
improve our results. All in all, although such improved ansaetze and training scenarios must definitely achieve
better results than the ones reported here, a careful analysis is beyond the scope of this proof-of-principle work.

It would be very interesting to combine our procedure with concepts from recent works on machine
learning of density functionals [31-36]. On the one hand, these works typically required less training densities
than our approach. On the other hand, our work constructs systematic corrections to a standard approximation,
namely the LDA, that can be applied in general, i.e. to other types of systems beyond those that were originally
used for the fit. Thus, a combination of the good aspects of our procedure with the good aspects of the previous
machine learning concepts could be the ultimate solution to some of the problems that both approaches
currently have independently from each other.
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Figure 6. Exchange-correlation potential v/

(dotted) and from our constrained (a) and unconstrained (b) ansatz with X = 1 (dash-double dotted), 2 (dashed—dotted), 5 (dashed),
compared to the exact solution (solid). Our ansaetze for G here are the same as the ones in figure 5.

for the exact ground state density of the H, dissociation curve at R = 5: from exact LDA

In this article, we focused exclusively on approximations of the density functional for the xc energy.
However, in principle, any ground state observable can be written as a functional of the ground state density [1].
Our proposed scheme allows in principle to also construct systematically density functionals for observables
other than the ground state energy. This fact might now be useful for ultracold atoms in optical lattices since the
densities of these systems have become experimentally accessible with remarkable resolution [37-44].
Measurements of a certain observable which are difficult to perform with the current techniques might be easier
to carry out now when a density functional would be provided for that observable. Particularly interesting
measurements regard two-dimensional systems with special observables, such as e.g. special order parameters.
The corresponding density functionals could be constructed with the help of projected entangled pair states
(PEPS) [45]. Because experiments are restricted to finite system sizes, PEPS algorithms are perfectly suited for
the ground state simulation of such finite two-dimensional systems, for which they can produce accurate
numerical results [46—51].
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