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Abstract
Wepropose a systematic procedure for the approximation of density functionals in density functional
theory that consists of two parts. First, for the efficient approximation of a general density functional,
we introduce an efficient ansatz whose non-locality can be increased systematically. Second, we
present a fitting strategy that is based on systematically increasing a reasonably chosen set of training
densities.We investigate our procedure in the context of strongly correlated fermions on a one-
dimensional lattice inwhichwe compute accurate training densities with the help ofmatrix product
states. Focusing on the exchange-correlation energy, we demonstrate how an efficient approximation
can be found that includes and systematically improves beyond the local density approximation.
Importantly, this systematic improvement is shown for target densities that are quite different from
the training densities.

1. Introduction

The formulation of quantummechanics in terms of density functionals instead of wave functions, following the
ground-breakingworks ofHohenberg, Kohn, and Sham [1, 2], made numerical simulations of quantum
mechanical systems ranging from themicroscopic to themacroscopic world feasible [3–5]. The usefulness of
density functional theory (DFT) is certified by the number of works based on the original publications [1, 2] and
on later improvements of the exchange-correlation (xc) energy density functional Exc [6–12].

DFT in itsmost widely used form, namely Kohn–Sham (KS)DFT [2], requires the xc density functional in
order to be able to compute ground state energies and densities. By virtue of theHohenberg–Kohn theorem [1],
all ground state observables are functionals of the ground state density n, and so = [ ]E E nxc xc . The ground state
energy = [ ]E E n of a system can be decomposed into a kinetic, an interaction and a potential part. Bymeans of a
fictitious non-interacting system, namely theKS system, the non-interacting part of the kinetic energy,

= [ ]T T ns s , can be obtained efficiently, which represents a large contribution to the full interacting kinetic
energyT. Further, part of the interaction energy is accounted for by theHartree energy [ ]E nH . The potential part

[ ]E nV can be exactly computed efficiently for any ground state density n. Finally, the remaining part of the total
ground state energy defines the xc density functional, - - -[ ] ≔ [ ] [ ] [ ] [ ]E n E n T n E n E nxc

s
H V . DFT is in

principle exact, but in practice determining the precise formof the xc density functional isQMA-hard [13].
Therefore, KSDFT can onlymake use of approximations of Exc. The enormous success ofDFT is thus deeply
connected to the successful construction of good approximations for the xc energy density functional.

In the history ofDFT and quest for a universally applicable approximate Exc [14], mainly two different paths
have been followed: one is the non-empirical approach pioneered by Perdew [15] and the other is the semi-
empirical approach initiated by Becke [8]. The non-empirical approachmakes use of exact conditions, that a
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physical systemmust fulfill, tofind approximations for the xc density functional.Within this approach a ‘Jacob’s
ladder’ of functionals was built where each functional on a higher rung of the ladder is supposed to improve
upon the ones on the lower rungs [16, 17]. On the lowest rung of the ‘Jacob’s ladder’ resides the local density
approximation (LDA), whichwas already introduced byKohn and Sham in [2]. The higher rungs are supposed
to systematically improve upon the LDA,which, in practice, does not always happen [17]. Additionally, at the
moment, themore precise functionals on the higher rungs are somuchmore difficult to compute that further
improvements ofDFT following this non-empirical approach seem very hard to achieve. In the semi-empirical
approach, an ansatz for the functional formof Exc isfitted using experimental data, accurate theoretical
reference data, or other constraints. However, often relatively small training sets are used in thesefits and then
the resulting functionals can be biased towards their training [14].

Alternatively, wemight obtain further improvements of Exc away frombut using concepts of both the semi-
empirical and the non-empirical approach, e.g. by using a large set of accurate training densities and
corresponding values of Exc, and byfitting an efficient ansatz to these data that includes some exact conditions.
Obviously, a difficulty of this alternative scheme is that it requires a possibly large number of accurate solutions
for the quantummany-body problem.However, nowadays, tensor network states provide precise results for
quantummany-body systems, e.g. [18, 19], in particular with respect to ground state properties.We remark that
tensor networkmethods are currently limited to low-dimensional, i.e. one- and some two-dimensional,
quantum lattice problemswhileDFTusually handles three-dimensional continuous quantum systems. Since
DFT can be applied to awide range of realistic quantum systems, it is a useful algorithm for a large community
and thusworth improving.

In this article, wewant to analyze the feasibility of constructing an approximate xc density functional of a
specific form,when large training sets of ground state densities and corresponding values of Exc are available.
The specific form for the ansatz of our approximation is inspired by the non-empirical approach [17]: it includes
the LDA [2, 20] and allows a systematic improvement beyond it. For this feasibility study, we focus on discrete
lattice problems and the one-dimensional case, andwe usematrix product states (MPS) for the computation of
accurate ground state energies and densities [21, 22]. The specific discrete lattice problem considered here can be
derived fromdiscretization of continuous space, i.e. the usual scenario ofDFT. Then our ansatz can be seen as
the discretized version of a continuous function. Althoughwe could approach the continuum solution by
successively decreasing the discretization, taking the continuum limit is beyond the scope of this work.

The structure of this article is as follows. In section 2we introduce the consideredHamiltonian and
observables. The corresponding exact LDA is presented in section 3.We then propose, fit, and assess our ansatz
in section 4. Finally, in section 5we conclude this work and give an outlook.

2.Model

In the following, we consider two species of fermionswith long-ranged soft-Coulomb interaction on afinite
one-dimensional lattice of length Lwith hard-wall boundary conditions, as represented by theHamiltonian:

+ +ˆ ≔ ˆ ˆ ˆ ( )H T W V 1

with
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s s s s
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Here, s
†cl, creates and scl, annihilates a fermion of species s =  , on lattice site l, s s sˆ ≔ †n c cl l l, , , is the

corresponding occupation number operator and + ˆ ≔ ˆ ˆn n nl l l, , . The total particle number is denoted by
áå ñ=≔ ˆN nl

L
l1 .We obtain ground states with different total particle number by choosing different values for the

chemical potentialμ, which plays the role of a LagrangemultiplierfixingN. Such aHamiltonian can also
describe the discretized continuous problemwith lattice spacingΔwhen in(2a) t is replaced by D( )1 2 2 and
in(2b) the denominator - +( )m l 12 is replaced by - D +( )m l 12 2 . The solution for different
discretizations can be very precisely computedwithMPS [23, 24] and so our approach should yield highly
accurate training densities. If wewould like to obtain the solution for continuous space, wewould have to run
our computations repeatedlywith decreasing lattice spacingΔ and extrapolate our results toD = 0. Herewe
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see(1) as theHamiltonian of the problem, and not a discrete version of amore fundamental one, thus we set
=t 1 2 andU=1 andfix the number of lattice sites to L=21 fromnowon.
On afinite lattice, densities á ñ = á + ñ ≔ ˆ ˆ ˆn n n nl l l l, , can bewritten into a vector ¼≔ ( )n n n n, , , L1 2

T—

where T denotes the transpose—such that every density functional F can bewritten as a function of such density
vectors = ( )nF F . In the following, wewill consider the universal Hohenberg-Kohn functional ( )nFHK , the
Hartree–energy ( )nEH , and the non-interacting kinetic energy ( )nT s , e.g. [20]. For the aboveHamiltonian(1)
these functionals read:

å m- -
=

( ) ≔ ( ) ( ) ( )n nF E v n a, 3
l

L

l lHK
1

ext
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- += = +
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s s

where ( )nE denotes the ground state energy of an interacting density n, i.e. corresponding to(1)with Ŵ , and
( )nEs denotes the ground state energy of a non-interacting density n, i.e. corresponding to(1)without Ŵ .

Knowing the values of these functionals(3a), (3b), and (3c) for a particular density n allows to calculate the xc
energy Exc for that density:

- -( ) ≔ ( ) ( ) ( ) ( )n n n nE F E T . 4xc HK H
s

However, given an arbitrary density vector n, only ( )nEH is trivial to compute: ( )nFHK requires the
knowledge of the external potential as a function of the density, = ( )nv vl l

ext ext , and ( )nT s requires the
knowledge of the effective non-interacting KS potential = ( )nv vl l

s s . This process of calculating the external
potential ( )nvl , inwhich the ground state has the given density n, is called inversion and can be performed
efficiently only in the non-interacting case or for two fermions [25]. In general, there exists no efficient inversion
procedure for the interacting case andwe use a slightmodification of the iteration proposed in [26, 27]: aiming at
the target density ntar, we iterate g+ = + -( ) ( ) ( )( ( ) )v i v i i n i n1l l l l

tar until -∣∣ ( ) ∣∣n ni tar —where ¼∣∣ ∣∣
denotes Euclidean norm—is below a desired precision threshold. Here, ( )n i is the ground state density in the
external potential ( )v i at the iteration step i, and g >( )i 0 is adjusted during the iterations to speed up the
convergence. Since interacting inversion necessitates several ground state computations to attain an
approximate solution, it is not efficient. Evenmore sophisticated iteration schemes cannot circumvent that
some densities require incrediblymany iterations, i.e. ground state computations, until convergence [28].
Therefore, in general, interacting inversion represents a computationally demanding task.

3. Exact LDA

As the exact formof Exc from(4) is not known, in practice, approximations are used.One of the simplest and
most successful approximations is the LDA [2, 20].

The exact LDA exc
LDA is defined via the homogeneous electron gas, i.e. via exactly homogeneous densities

= ¼ = ¼( ) ( )n n n n n n n, , , , , ,L1 2
T T in the thermodynamic limit  ¥L [2, 20]:

¼
¥

( ) ≔ ( ) ( )e n E n n n Llim , , , . 5
L

xc
LDA

xc

This quantity is then used to approximate the xc energy of afinite systemby

å»
=

( ) ( ) ≔ ( ) ( )n nE E e n . 6
l

L

lxc xc
LDA

1
xc
LDA

Because ( )nExc
LDA is the exact xc energy for exactly homogeneous densities in the thermodynamic limit, it

represents a good approximation for relatively homogeneous densities on large lattices L 1 .
Our feasibility study here assumes a relatively small lattice of size L=21with hard-wall boundary

conditions, such thatfinite size and boundary effects play a role.We therefore derive our ownLDA for this
system and do notmake use of the existing results in [29]. Figure 1shows our ( )e nxc obtained fromnumerically
exactly homogeneous densities computed bymeans of non-interacting (for ( )T ns ) and interacting (for ( )F nHK )
inversions on L=21 lattice sites for all possible total particle numbers = ¼N 0, 1, , 42. To allow for an efficient
evaluation of Exc

LDA, we parametrize the function ( )e nxc using afinite number of parameters. A simple way to
achieve this is to assume a polynomial form pd(n) of certain degree d and tofit our results using different values of
d. In thefit of each polynomial pd(n), we impose the physically reasonable constraint = =( ) ( )p p0 0 2d d , which
trivially holds for the exact Exc, as can be seen in(4): Obviously = ¼ =( ) ( )e E L0 0, 0, , 0 0xc xc because
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every term in(4) vanishes independently for zero total particle number, and = ¼ =( ) ( )e E L2 2, 2, , 2 0xc xc

because ¼ = ¼( ) ( )F E2, 2, , 2 2, 2, , 2HK H and ¼ =( )T 2, 2, , 2 0s due to impossible tunneling. Apparently, our
exact LDA exc is well approximated by polynomials of low degree d since, on the scale offigure 1, the d=8 fit
seems indistinguishable from the d=4fit.

The LDA resides on the lowest rung of ‘Jacob’s ladder’ [17] and themost successful approximations of Exc

beyond the LDAwere built on top of it [6–12]. Analogously, wewill use the LDA computed above as our
reference, andwewill try to improve upon it with amore general ansatz for the functional.

4.Our ansatz

Our approach for the construction of an improved xc energy approximation consists of two parts. Firstly, it
requires an efficient variational density functional ansatz, denoted byG, to approximate Exc. Secondly, a set ofM
external potentials has to be specified, whichwill be called training scenario, such that the correspondingM exact
ground state densities nt , called training densities, and exact values ( )nE t

xc are used to determineG by
minimizing a cost function

å -
=

( ) ≔ ∣ ( ) ( )∣ ( )n nG E Gd 7
t

M
t t

1
xc

2

over the variational parameters ofG.
We are interested in an ansatz that, firstly, includes the LDA and, secondly, allows for a systematic

improvement over it by including non-local terms. In this spirit, we propose a two-site ansatz of the following
form:

å
=

( ) ≔ ( ) ( )n nG G 8X

k

X
k

0

with

å=

=

( ) ≔ ( ) ( )nG g n a, 9k

l

L

l
0

1

0

å>

=

-

+( ) ≔ ( ) ( )nG g n n b, . 9k

l

L k
k

l l k
0

1

ForX=0, we have = == =( ) ( ) ( )n n nG G GX k0 0 , which is completely analogous to the LDA(6). And for
>X 0, the >k 0 terms allow for amore general dependence on the density with two-site functions over a range

limited byX. In this way, increasingX allows us to systematically includemore non-local information and to go
beyond the local LDA.

In order to have a practical functional, wewant towrite it in terms of a discrete set of variational parameters.
Thuswe need to restrict the formof the functions g k. For simplicity we choose here a polynomial form for each
term, aswe did in the previous section 3 for the reference LDA.Additionally, in all following numerical
experiments, we simply fix the degree of the polynomial to d=4.

Figure 1.Our exact LDA ( )e nxc (crosses) and polynomial interpolations pd(n) of degree d=2 (dotted), 4 (dashed), and 8 (solid).
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When ( )nG is assumed to be a polynomial of the nl, the variational parameters ofG are the polynomial
coefficients. Then the desired ( )Gargmin dG , i.e. the argument of d thatminimizes the cost function, results
from the solution of linear equations =c EA xc where the polynomial coefficients ofG are vectorized in c, the
exact values are vectorized in Exc, and the elements in thematrixA establish the correct connection to the cost
function(7): = å - = å -= =( ) ∣ ( ) ( )∣ ∣( ) ( ) ∣n n E cG E G Ad t

M t t
t
M

t t1 xc
2

1 xc
2.

Wewant to emphasize that this approach does not need any computationally demanding interacting
inversion. Because the training densities nt follow from the training potentials, i.e. fromM different choices of
vext in(3a), we know ( )nF t

HK .While the calculation of ( )nE t
H is trivial, ( )nT ts is computed via efficient non-

interacting inversion. Thus, all further ingredients for ( )nE t
xc of(4) are then efficiently computable.

Thefirst step in our approach is to consider the ansatz =G G0, with å =( ) ≔g n c nl s
d

s l
s0

0
0 a polynomial in nl

of degree dwith coefficients cs
0 (and d= 4 in the following). The simplest possible, ‘homogeneous’, training

scenario amounts to setting =v 0l
ext , inwhich case we have one training density for each possible total particle

number = ¼N L1, 2, , 2 , i.e. atmostM=42 for L=21. Figure 2 demonstrates how training our local term g0

with such ground states reproduces the exact LDA. Remarkably, a very goodmatch between our g0 and the exact
LDA is achieved alreadywithM=30 ground state computations. This has to be compared to the several
thousands of ground state computations thatwere required forfigure 1 due to the interacting inversion
iteration.

We can understand that the ‘homogeneous’ training scenario leads to the exact LDAbecause this scenario
contains relatively homogeneous training densities and because the exact LDA is constructed from exactly
homogeneous densities. Nowwewant to considermore inhomogeneous densities. For that purpose we propose
the simplest possible extension of the ‘homogeneous’ training scenario: the ‘step’ training scenario shown in
figure 3(a). This scenario contains the simplest external potentials that give rise to inhomogeneous ground state
densities, see figure 3(b) for some example densities. The ‘step’ training scenario allows us to generatemuch
larger training sets sincewe define it by free choice of: (a) the step position (from = ¼l 2, 3, 4, , 21), (b) the step
height (from = ¼h 0, 0.1, 0.2, , 2.0), (c) the step orientation (left or right), and (d) the total particle number
(from = ¼N 1, 2, 3, , 30).We do not include total particle numbersN larger than 30 in this training set because
wewant it to contain sufficiently inhomogeneous densities that becomemore inhomogeneous when the step
height increases; clearly, for large total particle numbers such asmore than 30 fermions on 21 lattice sites, an
increasing step height quickly creates large homogeneous regions ofmaximumfilling in the density, i.e. having
two fermions per lattice site.

We have investigated twodifferent ways of convergingGwith this ‘step’ training scenario. In the first way, we
pickM ground states randomly and study the convergence ofG as a function ofM. In the secondway, we fix the
total particle numbers considered to = ¼N 1, 2, , 12, take all possible step positions and orientations, and
increaseM systematically together with the step height. In both schemes, convergence is quantified by
comparison of the solution forMwith the solution for the largest considered Mmax , whichwe fixed to 12 800 for
the randomand to 9612 for the systematic densities.We can then look at the quantity

á - ñ( ) ≔ ∣ ( ) ( )∣ ∣ ( )∣ ( ) M C M C M C M , 10i i imax max

whereCi(M) denotes the ith parameter ofG after trainingwithM densities and á¼ñ å ¼=≔ P1 i
P

1 denotes
taking themean value over allP possible values of i.

Figure 2. Local terms ( )g n0 from the ‘homogeneous’ training scenariowith = =M N 6 (dotted), 12 (dashed), and 30 (solid),
compared to the exact LDA (crosses). Here, g0 is a polynomial of degree d=4.
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Figure 4 shows our results for randomdensities. Interestingly, this training scenario gives rise to local terms
g0 that are very similar to the exact LDA, althoughmany training densities of this scenario are very
inhomogeneous. Furthermore, we can read off from the inset offigure 4 that convergence occurs rapidly.

To go beyond the LDA,we now include the longer-range two-site termswith >k 0 in(8) using a general
polynomial ansatz:

å+
=

+( ) ≔ ( )g n n c n n, , 11k
l l k

s s

d

s s
k

l
s

l k
s

, 0
,

k

k
k

0

0
0

i.e. these terms are general degree d polynomials of the density values on two lattice sites separated by distance k
(and, again, we simply fix d= 4 in the following).While, as discussed above, forX=0, our ansatz

= å =( ) ( )nG g nl
L

l
0

1
0 is completely analogous to the LDAof(6), for >X 0, it contains additional non-local

terms, such that, by systematically increasingX in our ansatz ( )nGX , we can systematically increase its non-
locality beyond the local LDA-like term.

Figure 3. (a) ‘Step’ training scenario: external potentials vl
ext are characterized by a step of certain height at a certain position. (b)

Ground state density nl forN=12 (main) and 6 (inset), for a step at position l=10 of height h=0 (dotted), 0.3 (dash-double
dotted), 0.5 (dashed–dotted), 1.0 (dashed), and 2.0 (solid).

Figure 4. Local terms ( )g n0 from the ‘step’ training scenariowithM=100 (dotted), 400 (dashed–dotted), 1600 (dashed), 6400
(solid), and 12800 (crosses). Inset:mean relative difference ( ) M between the coefficients of g0 after trainingwithM densities and the
coefficients of g0 after trainingwith =M 12800max densities. Here, g0 is a polynomial of degree d=4.
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Weenforce in our desired solutionGX that the terms g k for increasing k are obtained one after another such
that each additional non-local term (i.e. corresponding to the next larger value of k ) is a correction to the
previous solution. Thismeans that, for givenX, we firstminimize(7) only via the parameters c0 which givesG0.
Thenweminimize(7) for the remainder -( ) ≔ ( ) ( )n n nE E Gt t t

xc
1

xc
0 only via the parameters c1 which together

with the previous solution c0 givesG1. Thenweminimize(7) for the remainder -( ) ≔ ( ) ( )n n nE E Gt t t
xc
2

xc
1

only via the parameters c2 which togetherwith the previous solutions c0 and c1 givesG2.We continue the scheme
until we have reached c X and thusGX. This procedure ensures that each longer-range term is built on top of all
previous shorter-ranged ones, in the sameway as the functionals on higher rungs of ‘Jacob’s ladder’ aremore
non-local and are built on top of themore local functionals on the lower rungs [17].

In order to analyze the performance of the ansatz, we adopt now a different strategy.Wewill now alwaysfit
our ansatzGXwith the ‘step’ training scenario of figure 3 and thenwewill apply it to completely different target
densities. For the latter, we choose ground states of theH2 dissociation problem, i.e. Hamiltonian(1)with total
particle numberN=2 and external potential

å +
+=

ˆ ( ) ≔ ( ) ˆ ( )V R v R n
R

a
1

1
, 12

l

L

l l
1

ext

2

-
- - +
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- + +
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( ( )) ( ( ))

( )v R
l l R l l R

b
1

2 1

1

2 1
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whereR denotes the separation between the twoH atoms placed in themiddle of the lattice such that we set
=l 110 for L=21. Because this problem represents a realistic physical application that is significantly different

fromour training scenario, we consider it to be a very good benchmark for our approach.
Fromnowon, the local terms ( )g n0 in our two-site polynomial ansatz(8) arefixed to be the exact LDA from

figure 1. And the non-local terms > ( )g n n,k 0
1 2 are enforced to fulfill = => >( ) ( )g g0, 0 0 2, 2k k0 0 aswell as

=> >( ) ( )g n n g n n, ,k k0
1 2

0
2 1 . These properties are physically reasonable and they reduce the number of

variational parameters, which turned out to be beneficial for the convergence of our fit. In particular, this helped
us to avoid the effect known as overfitting.We distinguish two different versions of our ansatz, namely
constrained and unconstrained. In our constrained two-site polynomial ansatz we determine > ( )g n n,k 0

1 2 under
the constraint => ( )g n n, 0k 0 : then ( )nGX is exact for exactly homogeneous densities = ¼( )n n n n, , , T. In our
unconstrained two-site polynomial ansatz we do not impose this constraint on the polynomial coefficients: the
unconstrained ansatz has thusmore variational parameters than the constrained ansatz.

Figure 5 shows our results after convergence withM systematic densities. Aswe can see in (a), the
constrained ansatz leads to a visible improvement over LDA close toR=0, but not for largerR. A convergence
of the non-local terms can be concluded from the inset. In (b), the unconstrained ansatz leads to an
improvement over LDA for almost all values ofR, but it produces too low energy values close toR=0. The inset
of (b) demonstrates that convergence of the non-local terms occurs, however, for >k 1 this convergence is
slower than in (a).With increasingX, our ansatz systematically improves the LDA result at specific values ofR:
aroundR=0when the constrained version is used, and at largerRwhen the unconstrained version is used.
Both versions of our ansatz show a systematic improvement over LDAwith increasingXwhen themean energy
for all values ofR is considered. In fact, such amean value is the correct figure ofmerit because the cost
function(7), minimized for ‘step’ training densities by our ansatz, is also amean value ofmany xc energies.

Clearly, wewould like to use ( )nGX to compute densities self-consistently via theKS cycle. Afirst step in this
direction is the calculation of the xc potential -¶ ¶( ) ≔ ∣nv E n nl l

xc
xc for the exact ground state density n. In the

H2 dissociation problem, the xc potential for larger values ofR is particularly interesting, since its exact form
exhibits a characteristic peak that cannot be reproduced by LDA alone [30]. Figure 6 shows our results forR=5.
While our constrained ansatz leads to a potential that basically coincides with the one fromLDA, our
unconstrained ansatz leads to a small systematic improvement with increasingX.

5. Conclusions

Wehave analyzed the feasibility of constructing semi-empirical approximations for the xc density functional in
the context of a long-range interactingmany-electron systemon a one-dimensional lattice. Using numerically
exact ground states fromMPS simulations, we proposed tofit an ansatz that includes an LDA-like part plus
additional terms of increasing non-locality, bymeans of reasonably chosen training densities.We observed that
our ansatz converges systematically within the training scenario. Additionally, when applied to completely
different target densities, namely of theH2 dissociation problem, ourfitted ansatz improved upon the LDA
systematically. This systematic improvement was demonstrated for the ground state energies of theH2 problem
and for a xc potential corresponding to a stretchedH2molecule.
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In this work, we have tested the effect of a systematic inclusion of non-local ingredients in the functional
using very simple ansaetze for the non-local terms, namely only two-site dependences, and for the functional
form, namely only polynomials, andwe considered only one training scenario. Our results show that by
systematically including non-local terms, the approximation canwithout doubt be improved beyond LDA.Our
quantitative results are nevertheless limited to the specific formof the ansatz and training set used. For instance,
the fact that the dissociation curve does not significantly improve by including terms of longer range after some
point seems to indicate that other non-local contributionsmay bemore relevant. Likewise, considering
functional forms for each term that go beyond a polynomialmay improve the power of the ansatz.We have
already run initial tests to study the effect of terms that depend on three variable densities, but we observe no
clear convergence with asmany as≈20000 densities from the ‘step’ training scenario. This clearly indicates the
necessity for a different training scenario and possibly additional physical constraints that effectively reduce the
number of variational parameters. The question itself of how to choose the training densities optimally is, in
general, a very important one that should be further explored, as a better training scenario would always further
improve our results. All in all, although such improved ansaetze and training scenariosmust definitely achieve
better results than the ones reported here, a careful analysis is beyond the scope of this proof-of-principle work.

It would be very interesting to combine our procedure with concepts from recent works onmachine
learning of density functionals [31–36]. On the one hand, theseworks typically required less training densities
than our approach.On the other hand, our work constructs systematic corrections to a standard approximation,
namely the LDA, that can be applied in general, i.e. to other types of systems beyond those that were originally
used for thefit. Thus, a combination of the good aspects of our procedure with the good aspects of the previous
machine learning concepts could be the ultimate solution to some of the problems that both approaches
currently have independently from each other.

Figure 5.H2 dissociation energy E(R) as a function of the separationR: from exact LDA (dotted) and fromour constrained (a) and
unconstrained (b) ansatz withX=1 (dash-double dotted), 2 (dashed–dotted), 5 (dashed), compared to the exact solution (solid).
Insets:mean relative difference ( ) M between the coefficients of >g k 0 for k=1 (dash-double dotted), 2 (dashed–dotted), and 5
(dashed) after trainingwithM systematic densities and the corresponding coefficients of >g k 0 after trainingwith =M 9612max

systematic densities—the insets showour results forM=1212, 2412, and 4812.Here, our ansaetze forG are polynomials of degree
d=4.
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In this article, we focused exclusively on approximations of the density functional for the xc energy.
However, in principle, any ground state observable can bewritten as a functional of the ground state density [1].
Our proposed scheme allows in principle to also construct systematically density functionals for observables
other than the ground state energy. This factmight nowbe useful for ultracold atoms in optical lattices since the
densities of these systems have become experimentally accessible with remarkable resolution [37–44].
Measurements of a certain observable which are difficult to performwith the current techniquesmight be easier
to carry out nowwhen a density functional would be provided for that observable. Particularly interesting
measurements regard two-dimensional systemswith special observables, such as e.g. special order parameters.
The corresponding density functionals could be constructedwith the help of projected entangled pair states
(PEPS) [45]. Because experiments are restricted tofinite system sizes, PEPS algorithms are perfectly suited for
the ground state simulation of suchfinite two-dimensional systems, for which they can produce accurate
numerical results [46–51].
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