www.sciencemag.org/cgi/content/full/science.aag1906/DC1

Supplementary Material for

Molecular architecture of the *Saccharomyces cerevisiae* activated spliceosome

Reinhard Rauhut, Patrizia Fabrizio, Olexandr Dybkov, Klaus Hartmuth, Vladimir Pena, Ashwin Chari, Vinay Kumar, Chung-Tien Lee, Henning Urlaub, Berthold Kastner,* Holger Stark,* Reinhard Lührmann*

*Corresponding author. Email: b.kastner@mpi-bpc.mpg.de (B.K.); hstark1@gwdg.de (H.S.); reinhard.luehrmann@mpi-bpc.mpg.de (R.L.)

Published 25 August 2016 as *Science* First Release DOI: 10.1126/science.aag1906

This PDF file includes:

Materials and Methods Figs. S1 to S19 Tables S1 to S3 Full Reference List

Other Supplementary Material for this manuscript includes the following: (available at www.sciencemag.org/content/science.aag1906/DC1)

Movies S1 and S2

Materials and Methods

Yeast growth

The *Saccharomyces cerevisiae* 3.2.AID/CRL2101 strain (*MAT*alpha, *prp2-1, ade2, his3, lys2-801, ura3*) carrying the G360D substitution in the helicase domain of Prp2 (*53*) was kindly provided by Ren-Jang Lin. This mutation renders Prp2 temperature-sensitive at 35 °C. Yeast spliceosomes assembled in the presence of this temperature-sensitive Prp2 mutant stop at the stage of the B^{act} complex. Yeast was grown in yeast extract/peptone medium (FormediumTM) in a 100 L fermenter to a density of OD₆₀₀ 4. Biomass was collected by centrifugation. Cell pellets were washed with cold water and resuspended in a volume of 1 ml per g cells in AGK buffer (20 mM HEPES-KOH pH 7.5 4°C, 200 mM KCl, 1.5 mM MgCl₂, 10% v/v glycerol, 0.5 mM DTT, 0.5 mM PMSF) containing protease inhibitors (Roche). Drops of this slurry were frozen in liquid nitrogen.

Whole-cell extract preparation

Frozen beads were ground at 18,000 rpm in a Retsch ZM200 nitrogen mill. The yeast powder was thawed at room temperature and then centrifuged at 4 °C for 30 min in an A27-8x50 rotor (Thermo-Scientific). The supernatant was then centrifuged for 1 hour at 4 °C in a T647.5 rotor (Thermo Scientific) at 42,000 rpm. The clear middle phase in each tube was collected (ca. 60–70% of total volume) and dialyzed three times for 2 hours against 5 L each of buffer D (20 mM HEPES-KOH pH 7.5 4°C, 50 mM KCl, 0.2 mM EDTA, 20% (v/v) glycerol, 0.5 mM DTT, 0.5 mM PMSF), using SnakeSkin[™] dialysis tubing (7000 MW cut-off, Thermo Scientific). After a final centrifugation in an F14-14x50cy rotor (Thermo-Scientific) (10 min at 9500 rpm) aliquots were frozen in liquid

nitrogen and stored at -80 °C.

Aptamer-tagged pre-mRNA substrate

For affinity purification of B^{act} complexes, cap-free wild-type actin pre-mRNA tagged with three MS2 RNA aptamers (M3-actin) was prepared by T7 runoff transcription in the presence or absence of α -[³²P]-labeled UTP (2). Actin pre-mRNA substrate comprises the end of exon 1, the intron and the 5' end of exon 2 of the yeast actin gene. B^{act} complexes assembled on actin pre-mRNA in the presence of MS2-MBP fusion protein were then purified on amylose affinity columns.

Splicing reaction and affinity purification of Bact complexes

Splicing reactions were performed in a volume of 36 ml or multiples thereof. Dialyzed prp2-1 extract was thawed in cold water and then incubated at 35 °C for 30 min to heatinactivate the Prp2 protein. For a standard 36 ml reaction a mixture of 0.85 pmol [³²P]labeled pre-mRNA and 65 pmol unlabeled actin pre-mRNA (the total pre-mRNA concentration in the reaction was ~1.8 nM, with a specific activity of ~160 cpm/fmol) was pre-incubated with a 15-fold molar excess of MS2-MBP protein in 1.5 ml HEPES-KOH buffer (pH 7.3 4[•]C) on ice for 30 min. The splicing reaction mixture contained 60 mM K-phosphate buffer, pH 7.25 _{20°C}, 0.3% (w/v) PEG8000, 2.5 mM MgCl₂, 2 mM spermidine, 1.8 nM pre-mRNA, 27 nM MS2-MBP, 2 mM ATP and 14.4 ml dialyzed prp2-1 extract. The reaction was allowed to proceed for 1 hour at 23 °C. Thereafter the reaction mixture was centrifuged for 10 min at 9000 rpm in a F14-14x50cy rotor (Thermo Scientific) and the supernatant was applied directly to a 0.6 ml column of Amylose ResinTM affinity matrix (NEB), equilibrated with G75 buffer (20 mM HEPES-KOH pH 7.3 $_{4^{\circ}C}$, 1.5 mM MgCl₂, 75 mM KCl, 0.01% NP-40 (v/v), 5% glycerol (v/v), 0.5 mM DTT and 0.5 mM PMSF). After loading under hydrostatic pressure, the matrix was washed with 10 volumes of G75 buffer. B^{act} was eluted from the column with G75 buffer containing 100 mM maltose. HEPES-KOH buffer at pH 7.3 $_{4^{\circ}C}$ had been identified as an optimum buffer for B^{act} complex stability in a thermofluor experiment performed according to Chari *et al.* (*54*).

Binding of the dominant negative Prp2 G551N protein to the B^{act APrp2} complex

Unlike the prp2-1 ts-mutant protein, which does not remain in the B^{act $\Delta Prp2$} complex, the G551N Prp2 mutant protein, although it does not support splicing, nevertheless binds tightly to the B^{act $\Delta Prp2$} complex (55). For locating Prp2 within the B^{act $\Delta Prp2$} complex, recombinant dominant-negative G551N Prp2 protein (kindly provided by Jana Schmitzovà) was added to the sample after elution from the amylose column. Purified B^{act $\Delta Prp2$} complexes were incubated with 2-fold molar excess of the G551N Prp2 mutant protein. The same molar amount of recombinant wild-type Spp2 was added. After incubation the B^{act+Prp2} complex was loaded directly onto a glycerol gradient.

Glycerol-gradient sedimentation of the B^{act} complex

The B^{act} peak from the amylose column was loaded onto a glycerol gradient [10–30% glycerol (v/v) in G75 buffer containing 0.5 mM each of DTT and PMSF]. Native gradients were run using 4.4 ml polyallomer tubes in a TH660 rotor at 4° C for 17 hours at 21,000 rpm. When particles were centrifuged under cross-linking conditions, DTT and PMSF were omitted from the gradient, the 30% solution was supplemented with 0.1% EM-grade glutaraldehyde (EMS) and the 10% solution was supplemented with 1 mM

PMPI (Thermo Scientific). After centrifugation, gradients were harvested from bottom to top in 24 fractions of about 180 μ l. Crosslinked fractions were immediately quenched with 50 mM each of aspartate and cysteine, pH 7. Before electron cryomicroscopy samples were subjected to a buffer exchange against G75 buffer containing 2 mM IPTG and 0.5 mM DTT, but without glycerol and NP-40.

Crosslinking of B^{act} complexes and crosslink identification by mass spectrometry

Approximately 10–20 pmol of purified B^{act} complexes were cross-linked with 150 μ M BS3 for 30 min at 25 °C, pelleted by ultracentrifugation and analyzed essentially as described before (56), with the following modifications: precipitated material was dissolved in 4 M urea / 50 mM ammonium bicarbonate, reduced with DTT, alkylated with iodoacetamide, diluted to 1 M urea and digested with trypsin (1:20 w/w). Peptides were reverse-phase extracted and fractionated by gel filtration on a Superdex Peptide PC3.2/30 column (GE HealthCare). 50 µl fractions corresponding to an elution volume of 1.2–1.8 ml were analyzed on a Thermo Scientific Orbitrap Fusion Tribrid and on Sciex TripleTOF 5600+ (dataset 1), Thermo Scientific Q Exactive (dataset 2) or Q Exactive HF (dataset 3) mass spectrometers. Protein-protein crosslinks were identified by pLink1.22 or 1.23 search engine and filtered at FDR 1% (pfind.ict.ac.cn/software/pLink) according to the recommendations of the developers (57). For simplicity, the crosslink score is represented as a negative value of the common logarithm of the original pLink score, that is Score = $-\log_{10}(\text{``pLink Score''})$. The crosslinks observed with at least 2 spectral counts are listed in Table S2. For model building, a maximum distance of 3 nm between the C α atoms of the crosslinked lysines was allowed. The actual distribution of $C\alpha$ -C α distances between crosslinked residues that can be mapped in the model of the B^{act} complex is shown in Fig. S19.

EM and image processing

Purified spliceosomes were allowed to adsorb on a thin carbon film prior to rapid plunge freezing into liquid ethane at 100% humidity and 4 °C. Images were recorded at -193 °C in a Titan Krios electron microscope (FEI Company, The Netherlands) on a Falcon II direct electron detector at 74.000x magnification resulting in a pixel size of 2 Å on the specimen level. We extracted ~1 million particle images from the micrographs and applied several sorting steps at the 2D and 3D level. The first sorting was based on CTF parameters by applying multivariate statistical analysis and classification to power spectra as implemented in Imagic-5 (58). Only particles in classes revealing isotropic Thon rings were used for the subsequent rounds of sorting. 2D multivariate statistics and classification was then applied to the non-aligned particle images and subsequently to the aligned particles. In each round, particles contributing to bad classes were excluded from further processing. The remaining ~650.000 particles were then CTF corrected by CTFFIND (59) and applied to 3D classification in RELION (60). For the high-resolution structure determination, the ~ 122.000 particles contributing to the best 3D class were used for refinement revealing an 8Å resolution structure. Roughly 30% of the spliceosome density were not clearly defined at this level of resolution. As these densities largely disappear during the higher-resolution structure calculations, we excluded them with a mask in the final rounds of the refinement. A soft mask with a cut-off of 6 voxel was used for the refinement and for the determination of resolution. We obtained 5.8 Å resolution for the final map by using the Fourier-shell-correlation function calculated from two independent data sets and a threshold of 0.143. The molecular components which were masked away are indicated in Figures S12, S13 and S17. A local resolution plot revealed that there are indeed areas of high resolution in the catalytic RNP core of the B^{act} complex that approach the maximum achievable resolution limit corresponding to the Nyquist frequency (4 Å). Some peripheral regions have somewhat lower resolution.

Model fitting and building

Available X-ray or homology models of proteins were initially fit into the EM density by CHIMERA (61). Individual models of substructures (e.g. domains or structural motifs) were further fitted as rigid bodies by COOT (62). After visual inspection, the models were adjusted manually in the density, the disordered regions were removed and regions that were reorganized or were not present in the initial models (e.g. loops and various elements of secondary structure) were built in COOT. The detailed processing of protein models incorporated into the Bact structure is described in Table S1. Initially, the U5 snRNA model of the S. cerevisiae tri-snRNP (13), the U2/U6 snRNA catalytic core and the branch-point helix of the S. pombe ILS spliceosome (10), as well as a 5' group II intron fragment (5'-GUUAU/gu-3')(23) were fitted into the 10 Å cryo-EM density by visual inspection in CHIMERA. All further adjustments were done manually by using the COOT program with the 5.8 Å cryo-EM map. The 5' stem-loop of U6 and the U2/U6 helix II were generated by rigid-body fitting of idealized double-stranded RNA helices. Sections of the RNA models that could not be placed unambiguously into a density, or that did not have an associated density because of their high flexibility, are shown in grey in Fig S1 (RNA-RNA interactions). The atomic model was refined by the real space refinement routines as implemented in PHENIX, using base pairing restraints (*63*). The RNA model was then validated by the MolProbity server (*64*). A summary of the Molprobity scores is shown in Table S3. The Molprobity scores for all individual RNA nucleotides from the final model are provided in a separate HTML file. Final visualization was carried out with CHIMERA and PyMOL (http://www.pymol.org).

Purification and characterization of B^{act} **spliceosomes from the yeast** *Saccharomyces cerevisiae*. (A) Assembly and remodeling steps of the spliceosome during activation and catalysis of splicing. (B) RNA–RNA rearrangements occurring during spliceosome

activation and the catalysis of splicing. (C) Proteins and RNA isolated from purified B^{act} complexes were visualized on an SDS-polyacrylamide gel by Coomassie blue staining (left) or by silver staining (right). (D) Proteins present in yeast B^{act} complexes and their molecular masses. Proteins were identified by mass spectrometry (*17*). Standard names for human proteins are shown in blue. (E) Schematic representation of the secondary structure of RNA in the B^{act} spliceosome. The complete secondary structure of the U5 snRNA is shown on the right. Only selected regions of the pre-mRNA and U2 snRNA are shown. Regions of the RNA that could not be placed unambiguously into the EM density or that did not have an associated density owing to their high flexibility are shown in grey. Tertiary interactions are indicated by stippled lines.

Cryo-EM and image-processing of the yeast B^{act} **complex.** (A) Typical cryo-EM raw image of S. cerevisiae B^{act} spliceosomes recorded with a Titan Krios (FEI Company) electron microscope at a nominal magnification of 74,000x with a Falcon II direct electron detector resulting in a pixel size of 2 Å/pixel. (B) Fourier-shell correlation function of two independently refined half data sets indicates a global resolution of 5.8Å for the masked B^{act} spliceosome comprising ca. 70% of the density of the whole spliceosome. (C) Euler angle distribution of all particle images that contributed to the final 3D map. The coordinates describe the beta and gamma angles. Size and color of the plotted dots indicate the number of particles at any given Euler angle. Although one angular orientation of B^{act} dominated, an almost complete angular coverage was obtained. (**D**) Computational sorting scheme. Roughly 1 million particle images were selected from the micrographs. In a first sorting step $\sim 10\%$ of particle images were discarded based on the quality of Thon rings in local power spectra. Another 15% particles were excluded according to multiple rounds of 2D classifications. The remaining 657,922 particles were separated into 5 classes by 3D classification in RELION (60). Images contributing to the best defined spliceosome structure (~18.5%) were then refined to a structure at 8 Å resolution without masking. The final structure at 5.8 Å resolution was obtained by applying a soft mask during the final steps of the refinement process. (E) Local resolution plot reveals a resolution distribution from about 4-10 Å with some less well defined parts at the periphery of the complex. Higher resolution regions (in blue, close to 4 Å resolution) were obtained for the centrally-located catalytic core of the spliceosome.

Structural organization of Prp8, Brr2 and Snu114. (A) Organization of Prp8, Brr2 and Snu114 domains. Prp8, NTD1 and NTD2, N-terminal domains 1 and 2; RT, reverse-transcriptase-like; thumb/X, linker; En, endonuclease-like; RH, RNase H-like; Jab1, Jab1/MPN-like. Brr2, NHD, N-terminal helical domain; PWI, N-terminal, non-canonical PWI domain; NC/CC N-terminal/C-terminal helicase cassette. Snu114, D1–D5 homologous to EF-G/EF-2. (B) Three-dimensional organization of the Prp8 RT, thumb/X, linker and En domains in the *S. cerevisiae* tri-snRNP, according to (*11*). The location of the switch loop is also indicated.

Fig. S4 Structure and location of Snu114 and Prp8 in the yeast B^{act} complex. (A) Density fit of Snu114 domains D1–D5. (B) Density fit of Prp8: RT, reverse-transcriptase-like; En, endonuclease-like; RH, RNase H-like domains; (C) Variation in the position of Prp8's RH domain (magenta ribbon model) relative to the Prp8 En domain in human (h) and yeast (y) tri-snRNPs, and in the *S. cerevisiae* B^{act} complex and *S. pombe* intron-lariat spliceosome (ILS). The structure of the Prp8 (from *S. cerevisiae* B^{act}) RT, thumb/X linker and En domains are shown as a space filling model in grey. In B^{act} the RH domain is closely associated with the "back side" of the En domain, whereby the RH RNA-binding β sheet faces the En domain. The palm edge of the RH domain interacts with the En domain of Prp8 in a region where in the ILS (and tri-snRNPs) the tip of a major β hairpin-loop (switch loop) is instead located (see also Fig. 2 and text). The density for the

 β -hairpin-loop of the RH domain is not well defined in the B^{act} structure, consistent with the possibility that it adopts a more open conformation.

A close-up view of the central RNA network in the B^{act} spliceosome. Shown is a slice through the spliceosome showing only the high density elements of the cryo-EM map, comprising U5 RNA, U2/U6 catalytic RNA network, the BS/U2 RNA helix, the U6 ACAGA box helix, the U2 RNA helix IIa and corresponding linker regions.

Putative location of the two catalytic metal ions in the B^{act} **complex.** (**A**) Constellation of the catalytic metals for step one of pre-mRNA splicing. The diagram is adapted from (*24*). The scissile phosphate of the pre-mRNA is shown as a pentacovalent transition state and the blue dashed lines depict the coordinations of oxygens directly involved in the reaction (red). M2 is further coordinated by A59 and G60. (**B**) Model of the catalytic RNA-RNA network in the experimental EM map, where U2 snRNA is shown in green, U6 snRNA in yellow, and the pre-mRNA in red. The putative position of the catalytic metal ions are shown as stippled blue circles (see also text).

Differential organization of the N-terminal region of Cef1 (Cdc5) in B^{act} and ILS complexes. Slices through the *S. pombe* ILS structure showing density elements of the Cryo-EM map (10), comprising the N-terminal region of the *S. pombe* Cdc5 protein (*S. cerevisiae* Cef1) including its Myb domains and the more C-terminally located α -helices H1 and H2 (A) and H3 (B). (C, D) Slices through the *S. cervisiae* B^{act} structure showing density elements of the Cryo-EM map comprising the Cef1 Myb domains and the potentially rearranged α -helical elements corresponding to the Cdc5 helices H1 and H2, respectively, and, (D), the Cef1 α -helix H3 (corresponding to the *S. pombe* H3 α -helix). For better orientation, the positions of certain U2 and U6 RNA elements in the ILS and B^{act} structures are also indicated in panels A to D. In the *S. cerevisiae* B^{act} complex, the Cef1 Myb domains and α -helix H3 have nearly the same structure and position as in the ILS (see corresponding densities with orange helices shown in panels A, B and C, D,

respectively), consistent with protein crosslinks (Table S1). Densities for the S. pombe H1 and H2 α -helices are clearly missing at corresponding positions in B^{act} (compare blue densities in panels A and C, respectively). One possibility is that both Cdc5 α -helices H1 and H2 are restructured in B^{act} such that H1 is rotated by 110° and H2 corresponds to the kinked α -helical element in B^{act}, with its C-terminal part being situated in the density element close to the 5'ss, while the N-terminal part of the kinked helix remains close to the U6 snRNA turn. As an alternative explanation, the regions of Cef1 corresponding to the Cdc5 α -helices H1 and H2 are flexible in the B^{act} structure (and therefore not visible in our EM map) and the density elements close to the 5'ss and the U6 turn, as well as the density element associated with the Myb domains in the Bact structure may therefore comprise parts of one or more other proteins. Even if this were true, it does not, however, invalidate our major conclusion that the 5'ss is shielded via its close interaction with a protein element that hinders access of the BS adenosine to the 5'ss. Moreover, our data indicate that the N-terminal region of Cef1(Cdc5) restructures from the B^{act} to ILS transition.

Crosslinking of Cwc24 to Prp8 domains close to the 5' exon binding channel. (A) Path of the 5' exon binding channel in B^{act} (as in Fig. 4A). (B) Electrostatic surface potential of the 5' exon binding channel. The RNA follows the basic patches (blue), whereas acidic patches (red) are avoided. (C) Domain structure of Cwc22 and Cwc24. (D) Crosslinks of Cwc24 to Prp8's NTD1, RH and Jab1 domains. The crosslinks indicate that the N-terminal region of Cwc24 is located centrally in the cleft between Prp8's RH and NTD1 domains, close to the 5' exon binding channel. Numbers indicate the positions of crosslinked lysine residues (connected by stippled lines) in each protein. Numbers in ovals without borders are residues in the modeled part of the protein, whereas those in ovals with stippled borders are residues within non modeled regions. The latter are arbitrarily placed close (less than 30 Å) to their crosslinking partners observed in our model.

Position of the Cwc22-MIF4G domain and possible location of the exon junction complex in subsequently formed spliceosomes. (A) Back view of the low resolution B^{act} model with the placement of U5 proteins and Cwc22's MA3 and MIF4G domains. (B) Crosslinks between the Cwc22's MIF4G domain and Snu114. Lysine residues 362 and 369 are located in the region of Snu114's D1 domain, which is encircled by the lasso-like protrusion of Prp8's NTD1 domain (*10*). (C) Close-up view of the fit of Cwc22's MIF4G domain into the density element close to Snu114's D1 domain, as observed in the low resolution B^{act} model. (D) Putative location of the EJC in the spliceosome. The crystal structure used to place Cwc22 contains an EIF4G molecule with its two RecA domains (PDB 4c9b; see Table S2). To determine the putative location of an EJC in the spliceosome, the RecA2 domain of EIF4G from that structure was

superimposed with the RecA2 domain of the EIF4G contained in the EJC structure (PDB codes 2joq and 2jos). The small piece of RNA contained in the EJC structure (red arrow) would be close to the exon channel and has the correct polarity. We note that this is a model for the location of the EJC in spliceosomes from those organisms having an EJC, and that yeast *S. cerevisiae* does not belong to this group. In addition, the EJC is stably recruited to the spliceosme after the first step of splicing as shown for the human spliceosome (*65*).

Structure and location of the 5'- and 3'-terminal parts of U6 snRNA and the proteins with which they interact. (A) Fit of Cwc2, Ecm2 and Bud31 in the EM density map. All three proteins are in close contact with the 5'-terminal stem-loop (SL) of U6 snRNA. (B) The N-terminal TPR repeats of Clf1 and the WD40 domain of Prp46 fit into a pocket formed by the ISL loop of U6 snRNA and stem I of the U5 snRNA in B^{act} as also found in the *S. pombe* ILS. (C) Cef1 (Cdc5) α -helix 3 (H3) is located next to the N-terminal TPRs of Clf1 in an almost identical position as in the *S. pombe* ILS, consistent protein crosslinking (Table S2 and Fig. S12B).

Location and crosslinks of Prp17-WD40 domain, NTC proteins and U2 components in the B^{act} complex. (A) Front view of the low resolution B^{act} model and location of the Prp17-WD40 domain above Ecm2. In the 3D reconstruction of the Bact complex generated without masking, the course of the N-terminal TPR repeats of Syf1, connected with structural elements of Cwc2 and Prp17-WD40, can be identified clearly. Right: intermolecular crosslinks between the Prp17-WD40 domain and Ecm2 and Cwc2. The numbers indicate the positions of crosslinked lysine residues in the three proteins. (B) Top view of the low resolution B^{act} model and location of the Clf1 TPR repeats and Cef1 (Cdc5) helix3 (H3) (see Table S1). A density element lying perpendicular to the central part of the main body in the front view is sized suitably to accommodate the helicalbundle domain with the Prp19 core (Prp19-Cef1-Snt309 bar). Right: intermolecular crosslinks between the Clf1 TPRs and Cef1 H3. (C) Front view of the B^{act} complex showing the long, curved TPR repeats of Syf1 and Clf1, which cross one another and together form a basket-like structural element as shown in the upper part of the S. pombe ILS (10). Much of the mass of the S. pombe proteins can be fit as rigid bodies into the corresponding density regions in the Bact spliceosome. Some local adaptations were necessary, but the curvature of the repeats and also the cross-over points are organised in a similar way in the B^{act} complex and the S. pombe ILS. As the density of the TPR repeats of Clf1 and Syf1 in the 5.8 Å B^{act} structure breaks off abruptly, this only becomes clear when one also takes into account the non-masked spliceosome model and intermolecular crosslinks that are found between Clf1 and the Syf1 TPRs, as shown on the right. (D) Top view of the low resolution B^{act} model and density elements in B^{act} attributed to the U2 Sm core RNP and part of the SF3a protein complex. Within the density region that was identified at high resolution by masking, the last reliably fit element is stem-loop IIa of the U2 snRNA. In B^{act}, this element is connected to a very large density region that is structurally less stable and was masked out to obtain the high resolution structure. The non-masked 3D reconstruction shows that this region has a very large globular structure, bridged to the U2-SF3b complex and the NTC region containing Syf1 and Clf1. Its position with respect to the U2 stem-loop IIa and the SF3b proteins – and also its very large size – indicate that it contains the large 3'-terminal components of U2 snRNP: the U2 Sm ring with the proteins Lea1 und Msl1 associated with stem-loop IV (SLIV). A main connection is likely provided between the 3' terminal U2 snRNP domain and the top domain of B^{act} through the SF3a protein complex. The low resolution in this region prevents exact localization, despite the availability of the crystal structure of the SF3a core complex (*66*).

Prp19's helical bundle is differentially orientated in B^{act} versus the ILS. EM density maps of the *S. pombe* ILS (EMD 6421) and *S. cerevisiae* B^{act} complexes (front view of the low resolution B^{act} model) with the U5 snRNP proteins Prp8 (purple), Snu114 (orange) and Sm core (grey) indicated. The positions of the U5 snRNP proteins and their structural organisation share many similarities in both spliceosomal complexes. In the *S. pombe* spliceosome the coiled-coil elements of the four copies of Prp19 (red), together with Snt309 (dark purple) and the C-terminal region of Cef1 (Cdc5; dark orange), form a helical bundle that runs, as a self-contained arm II domain, parallel to the main body of the *S. pombe* spliceosome and is only bound to it by thin structural elements (*10*). There is no density at this corresponding position in the B^{act} complex that would correspond to that in the *S. pombe* spliceosome – either in the 5.8 Å model or in the non-masked low resolution B^{act} model shown here. Rather, in the latter model there is a density element that lies orthogonal to the central part of the main body in the front view (called front bar

in Fig. 1A) and is suitably sized to accommodate the helical-bundle domain with the Prp19 core. The non-masked model of B^{act} was aligned by using the U5 proteins with the structure of the *S. pombe* ILS, and the position of the Prp19 helical bundle was deduced.

Structure of the yeast SF3b core complex in the B^{act} **spliceosome and in the crystal structure of a protease-resistant human SF3b core complex.** Ribbon representation of SF3b proteins in (**A**) the crystal structure of the human SF3b core complex comprised of SF3B155's entire C-terminal HEAT repeat domain, SF3b130 (yeast Rse1) and the small proteins SF3b14 (yeast Rds3) and SF3b10 (yeast Ysf3) (37) and (**B**) in the B^{act} complex. Left: side views, right: bottom views. SF3b14 (yeast Rds3) is shown in blue in a space filling model in the middle of the structure. Superposition of the HEAT domains from the two orthologs shows that the N-terminal H1–H5 and C-terminal H16–H20 regions are restructured versus the central H6–H15 region. In this way, HEAT repeats H1 and H19 come to lie almost on top of each other and with the distance between them shortened from 24 Å (in the crystal structure) to 18 Å (in B^{act}). Given that the isolated yeast SF3b complex has a similar structure, this suggests that the Hsh155 HEAT repeats are restructured after incorporation of SF3b into the spliceosome. SF3b130's (yeast Rse1) three β propeller (WD40) clusters (BPA+ BPB +BPC) are also indicated. An RNA density element consisting of the U2/BS RNA helix is located in the opening between the terminal HEAT repeats of Hsh155 in the B^{act} structure (see below).

Location of the U2/BS RNA helix, Hsh155 and the 5' splice site. The U2/BS RNA helix is located between the terminal HEAT repeats of Hsh155 and the BS adenosine is spatially separated from the scissile bond of the 5'ss by 50 Å. The 5' terminal nucleotides of U2 of the U2/BS helix (U2-C29) is spatially separated from the 3' terminal U2 nucleotides of U2/U6 helix Ia (U2-G34) by 27Å.

Location of the Prp2 RNA helicase and the RES proteins. (A) Close-up view of the fit of the Prp2 RecA domains, into the Prp2 density associated with Hsh155's HEAT domain (see also Fig. 6A) in the B^{act} model. The asterisk indicates unassigned density likely to be occupied by parts of Spp2. (B) Close-up view of the fit of Prp2's C-terminal domain, including its OB-fold domain, into the corresponding Prp2 density of the B^{act} model. (C) Expanded view of the B^{act} steep slope (see Fig. 1A), showing the fit of Hsh155's HEAT repeats, Snu17's RRM and the C-terminal region of Bud13 into the corresponding densities. The Bud13 C-terminal helix occupies a density tube that continues further down to Prp8-RT/En. Two crosslinks of Snu17 to HEAT repeats 7 and 8 of Hsh155 support its location and the orientation of this central part of the RES

complex (Table S1). (**D**) Pml1's N-terminal FHA (forkhead-associated) domain forms a bridge between Snu17 and the C terminus of the Prp8-RT-associated Prp45 helix.

Intermolecular crosslinks support the juxtaposition of Spp2 with Prp2 and the RES complex, and suggest the position of the C-terminal parts of Cwc22 and Prp45. (A) Schematic diagram of the back of the front view of the B^{act} complex (see Figure 1A). Intermolecular crosslinks between the protein domains are shown. Numbers indicate the positions of crosslinked lysine residues (connected by stippled lines) in each protein. Numbers in ovals with black borders indicate the residues in the modeled parts of the proteins, whereas those in ovals without borders are residues within non-modeled

regions. The latter are arbitrarily placed close (less than 30 Å) to their crosslinking partners observed in our model. Numbers without ovals represent the terminal residues of protein regions modeled in the high resolution B^{act} structure. Red ovals represent Prp2 residues, white – Spp2, green – Rse1, turquoise – Hsh155, brown – Brr2, violet – Prp8, purple – Cwc22, yellow – Prp45, blue – Pm11, light blue – Bud13 and grey – Snu17. Tentative localization of the non-modeled regions of a given protein is indicated by semi-transparent coloring. Although projected onto the plane of the paper, the positions in space of the crosslinked lysines correspond to their positions in the 3D structures of their respective protein domains. The maximum observed length for any crosslink was less than 30 Å. (**B**) Top view shows unassigned regions of the unmasked EM density likely to be occupied by flexible parts of RES, Spp2, Prp2, Hsh155, Cwc22 and Prp45 proteins not resolved in 5.8 Å EM map. Prp45 appears to play a role in stabilizing the various protein-protein interactions.

Fig. S18

Path of the intron's 3' end across the Hsh155 HEAT domain in the yeast B^{act} **complex. (A)** Path of the intron across the Hsh155 HEAT repeat spiral. Clear densities are present for the intron just after the branch site and Hsh155 HEAT repeat H6 on the opposite site. The density for the central nucleotides of the BS-3'SS region of actin pre-mRNA (UCCGAUU) is not well resolved and thus the placement is ambiguous. (B) The electrostatic surface potential of the Hsh155 HEAT domain with the path of the intron's 3' end (red). The RNA lies in a basic channel (blue), well-separated from the red acidic patches. Upon exiting the ring, the RNA passes through a clamp-like structure (bottom left).

Fig. S19 Distribution of the Cα-Cα distances between BS3-crosslinked residues. The Euclidian distances were measured in the 5.8 Å model of the yeast B^{act} complex using PyMOL (http://www.pymol.org). More than 95% of all crosslink-assigned spectra correspond to crosslink distances of 30 Å or less.

Movie S1 Hsh155 – SF3b HEAT domain transformation

Movie S2

yB^{act} rotation

Table S1.

Protein and model building information for all modeled yeast B^{act} **proteins**. Protein names, their molecular weight and detailed information about the model building process are provided.

Table S2.

BS3-crosslinks of proteins in the yeast B^{act} **complex**. Statistics (Spectral Counts and Score_{max}) of the CX-MS data for the proteins of the purified yeast B^{act}. "Inter" and "Intra" indicate inter-protein and intra-protein crosslinks, respectively. Numbers in the Residue 1 and 2 columns indicate the position of the crosslinked lysine or N-terminal methionine residue. Euclidian C α -C α distances between crosslinked residues are given in Ångström (column "Å"). The Table includes crosslinks of all proteins of the B^{act} complex, even if they were not observed/modeled into the EM density.

Table S3.

MolProbity validation of the final RNA model of the yeast B^{act} **complex.** For the clash score, a percentile is given with the 100^{th} percentile being the best structure among structures of comparable resolution (N=1784, all resolutions).

Protein	Domain	Positioning
Prp8 279.5 kDa 2413 aa	NTD1 131-737	The <i>S. cerevisiae</i> NTD1 structure (PDB 5GAN), determined as part of the cryo-EM investigation of the <i>S. cerevisiae</i> (S.c.) tri-snRNP (<i>13</i>) was used for rigid-body fitting followed by refinement with the COOT program (<i>62</i>). The position and structure of NTD1 in B ^{act} are similar to those observed in the human (<i>16</i>) and S.c. tri-snRNP (<i>13-15</i>) and the ILS (<i>10</i>).
	NTD2 738-872	The model of the orthologous <i>S. pombe</i> (S.p.) structure (PDB 3JB9) determined by cryo-EM of the S.p. ILS complex (<i>10</i>) was used for rigid-body fitting followed by refinement with COOT. The linker between NTD1 and NTD2 was reconstructed with COOT. The position and structure of NTD2 in B ^{act} are equivalent to those in the ILS (<i>10</i>).
	RT/En 873-1838	The RT/En structure (PDB 5GAN) determined by cryo-EM of the S.c. tri- snRNP (<i>13</i>) was used for rigid-body fitting followed by refinement with COOT. Several loops (1039–1043, 1201–1213, 1375–1385, 1402– 1427,1614–1623) were manually adjusted or rebuilt. RT/En position and structure in B ^{act} are similar, but not identical, to those in the ILS (<i>10</i>).
	RH 1839- 2078	The RH structure (PDB 5GAN) determined by cryo-EM of the S.c. tri- snRNP (13) was used for rigid-body fitting followed by refinement with COOT. The loops $1831-1839$ and $1858-1874$ were adjusted or rebuilt manually. The position of RH in B ^{act} is different from those observed in the human (16) and S.c. tri-snRNP (13, 15) and the ILS (10).
	Jab1 2148- 2398	The Jab1-Brr2 complex of the S.c. structure (PDB 5DCA) determined by X-ray analysis of the co-crystal with Brr2 (<i>19</i>)was used for rigid-body fitting followed by refinement with COOT.
Snu114 114.0 kDa 1008 aa	D1 111-460 D2 461-598 D3 599-676 D4 677-852 D5 853-941 C-term 942-998	The Snull4 structure (PDB 5GAN) determined by cryo-EM of the S.c. tri- snRNP (13) was used for rigid-body fitting followed by refinement with COOT. The Snull4 position and structure in B ^{act} are equivalent to those of the human (16) and S.c. tri-snRNP (13, 15) and the ILS (10).
Brr2 246.1 kDa 2163 aa	NC-CC 453-2163	For rigid-body fitting of the two helicase cassettes, the structure of the Jabl- Brr2 complex of S.c. (PDB 5DCA) was used (19) followed by refinement with COOT. The position of Brr2 in B ^{act} is very different from the corresponding position in the human tri-snRNP (16), and Brr2 is differently bound and oriented compared with the S.c. tri-snRNP (13, 15).
	PWI 284-294	For rigid-body fitting of the PWI domain, the Jab1-Brr2 co-crystal (67) (PDB 5DCA) was used. The domain was fitted into a density on top of the NC cassette close to the Prp8-Jab1 domain, and this was followed by refinement with COOT. The position of PWI in the B ^{act} complex is different from, but close to, the position found in the Brr2-Jab1 crystal structure and in the human tri-snRNP (<i>16</i>).
	NHD 115-191	To identify the position of the small NHD domain, its position in the human tri-snRNP (PDB 3JCR) relative to the easily locatable Brr2 NC-CC cassettes was used. The density for the NHD domain is well-defined and fits well with the protein's 3D structure; it places the NHD in B ^{act} in a location and orientation relative to NC-CC that are similar to the corresponding location and orientation found in the human tri-snRNP. The S.c. structure of NHD

 Table S1: Positioning of proteins in the cryo-EM structure model of S. cerevisiae Bact

		(PDB 5DCA) determined by X-ray analysis of a co-crystal with Brr2 (19)
		and modified according the conformation in the human tri-shking was used
U5-Sm	Sm	For rigid-body fitting of the U5-Sm its structure determined by cryo-EM of
ce shi	domains	the S.c. tri-snRNP (PDB 5GAN) (13) was used. The U5-Sm position in B^{act}
	of	is equivalent to that of the human (16) and S.c. tri-snRNP (13, 15) and the
	SmB,	ILS (10).
	SmD1,	
	SmD2,	
	SmD3,	
	SmE,	
	SmF,	
Cwo2	SmG	For rigid body fitting the orthologous S n structure (PDP 21P0) determined
38.4 kDa		by cryo-FM of the II S complex (10) was used followed by refinement with
339 aa		COOT. The Cwc2 position is equivalent to the one in the ILS (10).
Ecm2		For rigid-body fitting the orthologous model of the S.p. structure (PDB
40.9 kDa	8–284	3JB9) as determined by cryo-EM of the ILS complex (10) was used; this was
364 aa		followed by refinement with COOT. The position of Ecm2 is equivalent to
		its position in the ILS (10). For refinement COOT was used.
Bud31	17 154	For rigid-body fitting of Bud31, the S.c. structure (2MY1) determined by
18.4 kDa	1/-154	crystallography (68) was used; this was followed by refinement with COOT.
15/aa	WD40	A structural model of the WD40 domain was produced by using the Babette
52 kDa	WD40 150 455	A structural model of the wD40 domain was produced by using the Robella server. It was placed in such a way into a poorly resolved density of the non
455 aa	150-455	masked low-resolution structure just above Cwc2 und Ecm2 so that the
100 uu		observed crosslinks with Cwc2 and Ecm2 would be possible. Although exact
		positioning was not possible, the principal orientation is determined by the
		crosslinks (see Fig. S12). In the S.p. ILS structure (10) the only part of Prp17
		identified was a helical N-terminal region not conserved in the S.c. sequence.
Prp45(69)	31-235	An orthologous model of the S.p. structure (PDB 3JB9) as determined by
42.5 kDa		cryo-EM of the ILS complex (10) was used for rigid-body fitting followed
379 aa		by refinement with COOT. Well-fitting densities for the nefical and p-sheet
		in the IIS. The fitted structure ends C-terminally with a helix tightly
		attached to the RT end of the Prp8-RT/En domain. The remaining
		C terminus, which is not present in the ILS model (10) , on the basis of
		evidence from crosslinks (see Fig. S17), runs around the back side of the Bact
		complex, passing the RES-complex proteins, and reaches the vicinity of the
		RH and Jab1 domains of Prp8. A short stretch (229–236) was modeled into a
D		thin thread of density running along the Pml1-FHA domain.
Prp46(69)	WD40	For rigid-body fitting, an orthologous model of the S.p. structure (PDB 21D0) as determined by any EM of the H.S. sample (10)
30.7 кDa 451 ээ	107-446	5JD9) as determined by cryo-EWI of the ILS complex (10) was used, followed by refinement with COOT. The position of Prp46 WD40 is
451 da	107 110	equivalent to its position in the ILS
Cef1	tandem	For rigid-body fitting an orthologous model of the S.p. structure (PDB 3JB9)
67.7 kDa	Myb	as determined by cryo-EM of the ILS complex (10) was used; this was
590 aa	12-110	followed by refinement with COOT. The position of Cefl-Myb is equivalent
		to its position in the ILS.

	H1 143–160 H2 164–185	Densities as observed for the <i>S. pombe</i> H1 and H2 α -helices are clearly missing in B ^{act} and may be restructured instead into a H1 helix rotated by 110 ° and a kinked α -helix (Fig. S8). The C-terminal part of the latter would be situated in a density close to the 5'ss, the N-terminal part instead would remain close to the U6 snRNA turn. However, it cannot be excluded that the parts of Cef1 corresponding to the S. pombe H1 and H2 helices are not visible in the EM map due to high flexibility. Although the conclusion that the 5'ss is clearly shielded by protein elements can be drawn, an unambiguous assignment to a specific protein is not possible.
	H3 230–259	In the ILS upstream of H2 a straight, 34-aa-long helix of unknown sequence is positioned on the loop side of the N-terminal Clf1/Syf3 TPRs. In the B ^{act} complex a density rod at a similar position, but of shorter length, is also present above the Clf1/Syf3 N-terminal TPRs. Modeling by the Robetta server revealed a long helix downstream of H2. The Clf1/Syf3 internal crosslinks support the presence of a helix between amino acids 230 and 259 (Fig. S12) and the helix model of this stretch fits perfectly into the density rod. Crosslinks to the Clf1 TPR support not only the helix placement but also its orientation with the N terminus to the outside and its C terminus pointing to the catalytic center, as observed in the ILS model. Refinement was performed with COOT.
	C-helix 500–590	An orthologous model of the S.p. structure (PDB 3JB9) as determined by cryo-EM of the ILS complex (10) was used to model the helical bundle that the C-terminal helix of Cef1/Cdc5 forms with helices of Prp19 and Snt309. The helical bundle fits into the elongated density bar of the front view. This density is present only in the non-masked lower-resolution structure, and an exact placement is not possible.
Prp19 56.5 kDa 503 aa	HD 76–140	An orthologous model of the S.p. structure (PDB 3JB9) as determined by cryo-EM of the ILS complex (10) was used to model the helical bundle that four copies of the Prp19 helical domain (HD) form with helices of Cef1/Cdc5 and Snt309. The helical bundle was placed as described above (Cef1/Cdc5, C helix).
Snt309 20.7 kDa 175 aa	1–175	An orthologous model of the S.p. structure (PDB 3JB9) as determined by cryo-EM of the ILS complex (10) was used to model the helical bundle that Snt309 forms with helices of Cef1/Cdc5 and Prp19. The helical bundle was placed as described above (Cef1/Cdc5, C helix).
Syf1 100.2 kDa 859 aa	TPR 393–654	For modeling the TPR domain of S.c. protein Syf1, the sequence of the human orthologue Xab2 was used to produce a first model with the Robetta server. Xab2 was used because in the S.c. sequence an S.cspecific insert (170–216) prevents TPR continuity. The Xab2 model was then bent to fit into the non-masked B ^{act} density that resembles the Cwcf3/Syf1 density of the S.p. ILS. From the Xab2 structure the S.c. orthologue model was then built. The ILS model of the Cwf3/Syf1 protein covers only a short stretch of sequence (homologous to the S.c. Syf1 sequence position 498–734). From this stretch an orthologous model was created and used to replace the corresponding stretch in the model built with Xab2. A short region (393–654) of Syf1 passes through a density of the masked high-resolution B ^{act} structure. Here, the TPRs show excellent fit with TPR-typical densities. Refinement was performed with COOT.
Clf1/Syf3 82.4 kDa 687 aa	TPR 39–272	In the S.p. ILS model (10) only for the N-terminal Cwf4/Clf1 TPRs was the sequence (homologous to the S.c. Clf1 sequence 36–291) provided. An orthologous S.c. model was generated and could be fitted with only slight adjustments into TPR-typical densities of the high-resolution B ^{act} structure. In the B ^{act} , the positioning of the N-terminal TPR close to the catalytic center corresponds to the position in the ILS model. For the remaining C-terminal TPRs no high-resolution density is present in the masked structure: density is

		only found in the lower-resolution structure obtained without application of a mask. For these C-terminal Clf1 TPRs, a model produced by the Robetta server was used; the model was fitted by bending it into the density corresponding to a similar density region in the ILS structure. Crosslinks between Syf1 and Clf1 TPRs (Fig. S12) verify this ILS-based arrangement of the Syf1 and Clf1 TPRs. COOT refinement was applied in areas with sufficient resolution.
Cwc22 67.3 kDa 577 aa	MIF4G 11–263	Using the structure of this domain in the human Cwc22 orthologue (PDB 4C9B), determined by X-ray analysis of the co-crystal with eIF4AIII (<i>33</i>), an orthologous model was produced and fitted into a prominent density of the non-masked, low-resolution B ^{act} structure. This density protrudes obliquely out of the central main body and has exactly the shape of the MIF4G domain. One strong crosslink (K369 to K176 of Snu144) and a minor one (K362 to K176 of Snu114) verify the position and orientation of the MIF4G domain. The MIF4G is bound to the D1 domain of Snu114, where a lasso-like loop of the Prp8-NTD1 domain encircles a little protrusion of the D1 domain. The sequence region 425–430 of the NTD1 lasso seems to contribute to the Cwc22-MIF4G binding site. Refinement was performed with COOT.
	MA3 280–533	A model of the region containing the MA3 domain was produced by the Robetta server and fitted with slight adjustments perfectly into a well-resolved density above the MIF4G domain. It is attached to the linker domain of Prp8-RT/En, with its N-terminal helix in contact with Prp8-RH and its C terminus close to the RES complex region. The extreme C-terminal region of Cwc22 could not be placed into a B ^{act} density, but a network of crosslinks places it in the RES complex region (see Fig. S17).
Cwc24 29.7 kDa 259 aa	63–123	Submission of the Cwc24 sequence to the Robetta server resulted in the separation of the small Cwc24 protein into several domains. N-terminal amino acids 93, 89 and 123 of Cwc24 form a network of crosslinks to the NTD1 and RH domains of Prp8 (see Fig. S9). Amino acid 63 crosslinks to the Jab1 domain of Prp8. In the high-resolution structure of B ^{act} we cannot discern a clear density, which could accommodate this region of the Cwc24 protein.
Hsh155 110.0 kDa 971 aa Rse1 153.8 kDa 1361 aa Rds3 12.3 kDa 107 aa Ysf3 10.0 kDa 85 aa	HEAT repeats 126–960 3x WD40 56–1331 6–95 5–73	The structures of the four S.c. SF3b proteins were modeled according to the crystal structure of the human protease-treated SF3b complex consisting of SF3b155/Hsh155, SF3b130/Rse1, SF3b14b/Rds3 and SF3b10/Ysf3. In the S.c. B ^{act} structure well-resolved and well-defined densities are immediately visible for the Hsh155 HEAT repeats forming a spiral of parallel density rods and the Rse1 WD40 domains visible as three similar, protruding ring densities. The entire homology modeled S.c. SF3b complex docks easily into the B ^{act} density, but some significant adaptations are necessary. While the central (8–15) HEAT repeats can be docked as a rigid body, the N- and C-terminal repeats have to be moved upward and downward, respectively, and both need to be tilted inwards, thus narrowing the diameter of the spiral. As Rse1 is mainly connected to the C-terminal HEAT repeats it is positioned more sideward compared to the crystal structure. The small Ysf3 protein is part of the Hsh155-Rse1 binding region and its density is well recognizable in the B ^{act} structure. In the crystal structure the Rds3 protein has a central position within the Hsh155 spiral. In the equivalent position a well-defined density in the B ^{act} structure perfectly fits Rds3. All four protein structures were refined by using COOT.
U2-Sm	Sm domains of SmB, SmD1,	In the high-resolution structure of B ^{act} no other density element apart from the one at the bottom housing U5-Sm has the shape typical of the heptameric Sm ring. In the non-masked lower-resolution B ^{act} structure, however, such a density can be observed in the upper right corner of the front view; this density contributes to a large extent to the steep slope. In this density the U2-

	SmD2, SmD3,	Sm ring with the two bound U2-specific proteins Lea1 and Msl1 and the SLIV of U2RNA can be placed as the complex structure determined within
	SmE,	the S.p. ILS (PDB 3JB9) by cryo-EM (10).
	SmF,	
	SmG	
Leal	1–185	
27.2 kDa		
238 aa		
Msl1	24–111	
12.8 kDa		
111 aa		
Prp9	1–378	The structure of a large part of the S.c. SF3a complex was solved by
63.0 kDa		crystallography (66). For this large, roughly Y-shaped structure (PDB
530 aa	101.050	4DGW), no matching density is present in the high-resolution structure of
Prp11	101–253	the Bac complex. In the non-masked lower-resolution Bac structure a suitably
29.9 kDa		sized forked density is present that connects the branch-point helix and the
266 aa		region containing U2-SLII of the high-resolution part with the density of the
Prp21	89–228	less well-resolved structure into which the U2-Sm complex lits. Since the
33.0 KDa		the arms, the positioning of SE2a is at present arbitrary.
280 aa	DDM	Sec. 17 is the control DEC complex component and hinds to the other two
$\frac{5\pi}{17}$	KKM 26, 125	Shull is the central RES complex component and binds to the other two DES complex protoing Dml1 and Dud12 (70). The structure of the DDM
17.1 KDa	20-133	domain of Snu17 in complex with a short N terminal sequence of Pml1 (20
140 aa		(20) and a C terminal sequence (213, 246) of Bud13 (PDB 2MKC) has been
		solved by NMR (71) Additionally the Snu17 structure was also determined
		within a complex with a longer piece of the Bud13 C terminus (PDB 4110T)
		(10) that also includes a short helix (240–256) at the C terminus (105 100 f)
		two structures fit well into a density on the back of B^{act} This density is
		connected to the lower loops of Hsh155 HEAT repeats 7–9 and is framed by
		Prp8-RT/En. Prp8-RH and Cwc22-MA3. The Bud 13 C-terminal helix
		occupies a density tube that continues further down to Prp8-RT/En. Two
		crosslinks of Snu17 to HEAT repeats 7 and 8 (K103 to Hsh155 K410 and
		K455) support this location and orientation of this central part of the RES
		complex.
Pml1	FHA	The structure of a large part (51–204) of the S.c. protein Pml1 (PDB 2JKD,
23.6 kDa	28-42	PDB 3ELV) containing the FHA domain was determined by crystallography
204 aa	51-204	(72, 73). A well-fitting density is located close to the side of Snu17 where
		the bound Pml1 N terminus exits. In its position within the B ^{act} complex,
		Pml1 forms a bridge between Snu17 and the C terminus of the Prp8-RT-
		associated Prp45 helix. Refinement was performed with COOT.
Bud13/Cwc26	235–266	For Bud13 only the structure of a short piece of the C terminus (222–256) is
30.5 kDa		known from the Snu17-Bud13 complex NMR structure (see above,
266 aa		Snu17/Ist3). A network of crosslinks indicates that the large N-terminal part
		extents from Snu17 up to the Brr2-Jab1 region of the B ^{act} complex. The
		C-terminal helix was further modeled into the density extension (see above,
		Snu17/Ist3).
Prp2	RecAl	The Prp2 RecA domains and the C-terminal domain were modeled with
99.8 kDa	186–397	Prp43 as a template (PDB $2XAU$) (74). The modeled C-terminal domain fits
876 aa	D 12	perfectly into a density region connecting the OB-told of that domain to
	RecA2	HSn155 HEAT repeats / and 8. The RecA domains fit into two densities that
	401-575	are allached on the outside of the U-terminal domain which establishes
	0	contact with the main body of B . Both KecA domains have no contact to any other high resolution \mathbf{D}^{act} density. The DecA domain densities are in
	U-	any outer high-resolution b density. The Keck domain densities are in
	term/OB-	close proximity to the mask applied for producing the high-resolution B
	IOID	surveure and are ress went defined than the C-terminal domain is.

	587-864	Refinement was performed with COOT.
Spp2		The structure of Spp2 has not yet been determined. Not surprisingly,
20.6 kDa		evidence from a network of crosslinks places Spp2 in the B ^{act} complex close
185 aa		to Prp2 (see Fig. S17). The N-terminal Spp2 region resides in the vicinity of
		Brr2, while the C-terminal region is located closer to the RES complex. The
		central domain seems to be the main Prp2-binding region. The known Prp2-
		binding sequence, the G-patch domain, links the central domain to the
		C-terminal domain. No crosslinks are at present available to allow
		positioning of the G-patch sequence region.

Table S2: BS3-crosslinks of proteins in the yeast B^{act} complex

						S	pectral cour	nt		Score _{max}		Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
Inter	Brr2	Bud13/Cwc26	71	115				3			3,40	3	3,40
			74	115				2			7,06	2	7,06
			91	53				1			3.42	1	3.42
			304	2		5		4	14.17		11.82	9	14.17
				15		-		2	,=.		5.65	2	5.65
				35				1			3 46	1	3 46
			111	64				1			2 20	1	2 20
			414	E2				1			7 12	1	7 1 2
			417	55				1			1 01	1	1 91
			1700	61				1		2.20	1,01	1	1,01
		0	1/55	41		1	4	1	0.20	5,20	2,62	5	5,20
		CWC24	748	256		1	2		0,20	7.46	7.05	1	0,20
		c	2109	29			2	2	0.04	7,16	7,35	4	7,35
		CWc27	1504	213		1		1	0,94		2,00	2	2,00
			1529	225		1	3	1	0,47	5,11	7,64	5	7,64
		Ecm2	82	356				1			2,03	1	2,03
		Hsh155	82	35				1			1,49	1	1,49
		Prp17	1414	153		1			0,97			1	0,97
		Prp2	2	211				1			6,22	1	6,22
			28	211				2			7,29	2	7,29
			1437	45				1			5,60	1	5,60
			1623	2				1			2,31	1	2,31
			2070	2				3			8,79	3	8,79
			2109	2				10			10,91	10	10,91
			2116	2				1			7,51	1	7,51
			2121	2				35			16.89	35	16.89
		Prp8	2	1903				2			9.54	2	9.54
			25	1903		1		_	1 15		-,	1	1 15
			31	1903		1			0.32			1	0.32
			50	2016		-		1	0,52		7 68	1	7.68
			74	2010				2			9 50	2	9 50
			01	2010				1			0,55	1	8,55
			91	2154				1			0,47	1	0,47
			204	2264				1			1,15	1	1,15
			304	2167				1			6,73	1	6,73
				2187				1			6,89	1	6,89
				2213				2			5,60	2	5,60
			1055	2108				2			5,65	2	5,65
				2149	17,5			1			5,78	1	5,78
				2154	16,4		3	6		5,43	5,02	9	5,43
		Prp9	152	519			1			0,14		1	0,14
		Rse1	304	556				2			6,29	2	6,29
			414	556				7			8,66	7	8,66
			417	556				1			3,42	1	3,42
			758	1269				1			1,69	1	1,69
			795	1269				1			4,89	1	4,89
			967	556	83,3			1			6,22	1	6,22
		SmD2	1904	59			1			2,76		1	2,76
		Snt309	748	94			1			0.55		1	0.55
		Snu114	2	955				1		-,	5.16	1	5.16
			7	955				1			4.08	1	4.08
		Snn2	74	133				1			6 69	1	6.69
		opp-	85	133				1			3 56	1	3 56
			91	58				3			15 52	3	15 52
			51	122		1		5	0.62		16 02	6	16.02
			169	133		1 ¹		1	0,02		10,55	1	10,93
			100	20				1			5 07	1	+,12 5.07
			445	50		1		_ <u> </u>	2.02		3,37	1	2,57
			151	20				5	3,03		3 16	5	3,03
			434	20		2		1	1.65		3,40	5	3,40 1 6E
			760	00		_			1,05		10.24	5	10.24
			709	38				4			10,34	4	10,34
		Cuf1	250	46		1		1	0.50		4,44		4,44
	Du-112/0 - 22	SALT	259	362					0,58		11.00		0,58
	BUG13/CWC26	BLLZ	2	304		5		4	14,17		11,82	9	14,1/
			15	304				2			5,65	2	5,65
			35	304				1			3,46	1	3,46
			41	1733			4	1		3,26	2,82	5	3,26
			53	91				1			3,42	1	3,42
				417				1			7,12	1	7,12
			61	417				1			1,81	1	1,81
			64	414				1			2,20	1	2,20
			115	71				3			3,40	3	3,40
				74				2			7,06	2	7,06
		Clf1	115	458				1			4,06	1	4,06
		Cus1	255	40		1			0,79			1	0,79
		Cwc22	201	520				1			3,45	1	3,45
			213	520				2			6.91	2	6.91
			-	530		2		1	3.05		1.61	3	3.05
			217	520		-	1		2,00	1.88	_,01	1	1.88
		Cwc24	115	4		1			3.73	1,00		1	3.23
		CHILT	212	100		1			1 02			1	1 02
1			213	100	I	I +	I	I	1,05	I	I	I +	1,05

						S	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Scoremax
		Hsh155	120	473			3	1		2.42	2.23	. 4	2.42
				511			2	-		4 13		2	<u>4</u> 13
			120	472			2	4		4,15	0.26	2	4,15
			130	473				4			9,36	4	9,36
				511				1			13,86	1	13,86
			136	473				1			2,03	1	2,03
			255	612	20,0	1	4	15	4,45	7,00	8,53	20	8,53
			256	612	16.7		2	5		0.53	5.10	7	5.10
		Drn2	115	567			_	1		-,	0.00	1	0.00
		FIPZ	115	507				1			0,05	1	0,05
			181	2				1			6,85	1	6,85
		Prp45	136	367				1			5,55	1	5,55
			146	352		1		1	2,53		2,42	2	2,53
		Prp8	2	2217		1			0,63			1	0,63
				2219		1		1	5.15		1.47	2	5.15
			15	2187				2	-, -		11 00	2	11 00
			17	2107				-	2.60		11,00	2	2.69
			17	2167		2			5,00			2	5,00
			35	1903		3			1,92			3	1,92
			41	1903		2			2,22			2	2,22
			53	2016				1			8,14	1	8,14
			61	2016				1			2,19	1	2,19
			68	2187				2			4.23	2	4.23
			120	2016			1			0.68	, -	1	0.68
			120	1026			-	2		0,00	4.40	2	0,00
			101	1920	22.4			2			4,40	2	4,40
			255	1589	33,4			2			7,71	2	7,71
		Rse1	115	1269				1			5,69	1	5,69
		Snu17/Ist3	169	133			2	1		4,84	2,06	3	4,84
				138		4	7	4	3,39	6,93	8,23	15	8,23
			179	138			4	6		4.88	14.63	10	14.63
				143		1	2	Δ	2 73	1 41	9.46	7	9.46
			190	120		-	2	2	2,75	1,41	6,40	2	5,40
			190	138				2		a	0,88	2	0,88
			181	133			1	3		3,77	5,55	4	5,55
				138		12	17	48	10,00	6,95	7,94	77	10,00
				143			2	2		0,52	1,85	4	1,85
			201	138		1	4	16	4,09	3,27	9,39	21	9,39
				143				6			5.09	6	5.09
			206	138		3		4	11 35		7 72	7	11 35
			200	142		1		-	0.07		,,,2	1	0.07
			24.2	145			-	_	0,97	6.66	6.20	1	0,97
			213	133		3	5	3	6,15	6,66	6,20	11	6,66
				138		5	6	5	8,35	7,00	9,39	16	9,39
				143		1			0,90			1	0,90
			244	10			2			4,43		2	4,43
		Spp2	115	151				8			10.72	8	10.72
		oppe	120	151		13		17	12.61		9.30	30	12.61
			120	151		2		1,	1.07		5,50	2	107
			120	154		5		_	1,97		42.47	5	1,97
			136	151		3		/	7,57		13,17	10	13,17
				154				1			5,35	1	5,35
				182				2			4,89	2	4,89
			146	151		2		1	0,69		2,77	3	2,77
				154		1		2	1.81		9.42	3	9.42
			151	181		-		1	1,01		2 50	1	2 50
	Pud21	Cmc22	10	101				1			1 52	1	1 5 2
	BUUSI	CWC22	10	495							1,55		1,55
		CWC27	35	/8				2			4,58	2	4,58
		Ecm2	40	230	39,1			1			9,34	1	9,34
	Cef1	Clf1	240	113	11,1	6	9	4	6,06	8,32	11,14	19	11,14
			247	111	14,5	2	1	3	7,51	2,12	8,45	6	8,45
				113	11,5	2	1		2,42	0,29		3	2,42
			251	111	14.5		1			1.16		1	1.16
			-	113	13.6	2	2		10.44	4.75		4	10.44
			318	507		_	_	1		.,	2 5 2	1	2 5 2
		lsv1	204	10				1			1 /0	1	1 40
		ISYI	294	42				1			1,49	1	1,49
		reat	359	205		1		_	0,18				0,18
		Ntc20	305	94				2			3,90	2	3,90
		Prp11	22	36			1			1,92		1	1,92
		Prp19	444	108		5		13	4,63		6,83	18	6,83
			454	130		2	2	2	3,58	9,32	5,03	6	9,32
				135			1			2.63	,	1	2 63
			106	107		2	2	16	8 E 2	2,00	8 AC	22	2,05 Q E 2
			430	100		2		14	1.07	2,42	0,40 E 74	22	0,33
			500	108		3	5	14	1,8/	7,01	5,/1	22	7,01
			500	108		21	23	220	14,32	14,03	16,95	264	16,95
			558	108			1			7,46		1	7,46
		Prp2	263	732			1			5,68		1	5,68
		Prp8	166	98		1			0,62			1	0,62
			294	1910		3		1	2.80		1.46	4	2.80
			496	2192		1		-	0.46		_,	1	0.46
		SmB	107	76		1			0.05			1	0.05
		SHID	187	70					0,95				0,95
		SMD3	321	85		1			0,46			1	0,46
		Snt309	187	26				1			1,36	1	1,36
		Syf1	293	770		3	4	2	3,68	4,58	3,13	9	4,58
			294	770			1			1,22		1	1,22
			296	770			1			0,78		1	0,78
			312	770		1			2.91	., -		1	2,91
		Svf2	220	172		2	1		4 95	0.55		1	/ 05
		Jyiz	239	1/3		3	- ⁻	1	4,35	0,35	2 72	4	4,30
			240	159		_	-				3,/3		3,/3
				173	I	5	6	10	/,61	11,75	9,07	21	11,75

						S	pectral cour	nt		Score _{max}		Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
			247	159			1			1,07		1	1,07
				173			4	6		3.71	6.44	10	6.44
			251	173		2	1	2	4.91	1.42	8.77	5	8.77
			259	173		1	_	_	0.55	_,	-,	1	0.55
	Clf1	Bud13/Cwc26	458	115		_		1	-,		4.06	1	4.06
	0.11	Cef1	111	247	14.5	2	1	3	7 51	2 12	8 45	6	8 45
		CCII		251	14,5	-	1	5	7,51	1 16	0,45	1	1 16
			113	240	11 1	6	0	4	6.06	8 3 2	11 14	10	11 14
			115	240	11,1	2	1	4	2 4 2	0,52	11,14	2	2 4 2
				247	12.6	2	2		10.44	4.75		3	10.44
			507	231	13,0	<u> </u>	2	1	10,44	4,75	2 5 2	4	10,44
		Curt	307	310		1		1	4.26		2,52	1	2,32
		Cusi	24	202					4,50				4,50
		0.002	24	205		1			2,29			2	2,29
		CWC2	24	250		1		1	4,19	0.20	0.01	1	4,19
		CWC21	25	62			4	1		0,30	0,91	5	0,91
		ECITIZ	24	164			1	2		0.50	4,54	2	4,54
			59	116			1	2		0,50	2,98	3	2,98
			668	230				1	2.22		2,55	1	2,55
		ISY1	529	104		1			3,23			1	3,23
		Ntc20	451	121			2	2		3,86	6,69	4	6,69
		Prp2	425	10				1			2,46	1	2,46
		Prp46	273	67			1	3		4,33	12,55	4	12,55
				87				3			9,49	3	9,49
				88		1		1	5,98		10,44	2	10,44
		Rds3	640	42		1	1	3	3,50	0,50	5,76	5	5,76
		SmG	668	1		1			0,08			1	0,08
		Snt309	670	94				1			4,05	1	4,05
		Snu114	670	627				1			0,28	1	0,28
		Spp2	458	151				1			2,99	1	2,99
		Syf1	180	524		3	5	3	5,16	2,04	5,79	11	5,79
				531		2		1	2,81		2,27	3	2,81
			289	653				1			8,83	1	8,83
			304	650		8	3	5	16,67	5,17	6,87	16	16,67
				653		12	10	54	17,65	11,96	13,33	76	17,65
		Syf2	25	173			4	6		2,24	4,57	10	4,57
			113	159		7	7	5	4,73	2,95	7,19	19	7,19
				173		4		2	10,42		7,42	6	10,42
			180	121				8			9,41	8	9,41
	Cus1	Bud13/Cwc26	40	255		1			0,79			1	0,79
		Clf1	202	24		1			4.36			1	4.36
			289	24		2			2.29			2	2.29
		Cwc2	436	10				1	, -		5.61	1	5.61
		Ecm2	429	203				1			6.37	1	6.37
		Hsh155	102	237		1	1	1	3.85	0.69	2.42	3	3.85
				325		_	4	1	-,	2 40	3 50	5	3 50
			223	722				4		_,	2 31	4	2 31
			226	722				5			5 11	5	5 11
			236	722			13	42		8 32	7 90	55	8 32
		Hsh49	102	204				1		-,	2.65	1	2.65
		lsv1	41	59		1		_	0.03		_,	1	0.03
			48	59		-		1	-,		3.17	1	3.17
			317	157				1			1 98	1	1 98
		MsI1	102	2				2			6 19	2	6 19
			128	2		1		1	8.56		5.86	2	8.56
		Pro11	223	28		-		4	-,		5.60	4	5.60
				48				2			0.99	2	0.99
				60				2			3.26	2	3.26
				192				1			2,44	1	2,44
			226	11				3			4.34	3	4.34
				28				2			5.53	2	5.53
				36			4	-		2.17	.,	4	2.17
				48				4		,	5.15	4	5.15
				60			1	2		3,83	3,98	3	3,98
				192				1		-,	5.00	1	5.00
		Prp19	357	272			2			1.11	.,,,	2	1.11
		Prp2	102	2/2				1		-,	6.10	1	6.10
		Prp21	101	-			1			0.13		1	0.13
		Prp9	128	466		1	2	2	3.23	1.24	2.61	5	3.23
		P		468		-	1	1		0.38	5.52	2	5.52
				492				1		2,30	3.31	1	3,31
		Rse1	245	1342		2	11	19	1.01	7.20	11.47	32	11.47
			246	1342		5	19	8	6.41	12.16	11.56	32	12.16
			347	1149		1	2		4.32	4.68	,	3	4.68
		SmB	79	186		-		1	.,	.,50	3.62	1	3.62
			83	138				2			4.68	2	4.68
				145				1			2.97	1	2.97
				186				1			4.86	1	4.86
			86	138				1			1 97	1	1 97
			95	138			1	2		0 44	8 99	3	8 99
			102	138				4		3,74	8 02	4	8 02
			175	186				1			7.29	1	7,29
			128	117		1		1	1.46		4.59	2	4.59
		SmD1	83	178		1		1			4 47	1	4,55
		5	05	120	I	I	I	· -	I	1	1 2777	I -	-,-,

						5	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
71.5			102	128				3			8.62	3	8.62
		CD2	70	120				17			0,02	17	0,02
		SmD3	79	2				1/			9,62	1/	9,62
			83	2				4			9,14	4	9,14
				86				2			6,19	2	6,19
			86	2				2			4,62	2	4,62
				85				1			1,90	1	1,90
			102	2				1			3,26	1	3,26
		SmE	39	6		4	2	10	2.02	2.30	4.35	16	4.35
			48	6		1	1	16	0.86	0.64	5.50	18	5.50
			53	6		-	-	1	-,	-,	1.87	1	1 87
			E9	6				1			2,07	1	2,07
			70	6				1	2.26		2,80	2	2,00
		6 F	79	0					5,50	2.00		2	3,30
		SITIF	58	20			2			2,80		2	2,80
		SmG	2	8		2			1,18			2	1,18
			16	24			2	3		2,89	8,83	5	8,83
			79	2			2	13		3,68	9,91	15	9,91
				8		1			3,97			1	3,97
			83	2				1			3,09	1	3,09
				8			1	1		1,39	2,50	2	2,50
		Svf1	317	146		4	5	3	15.41	11.09	10.86	12	15.41
		- 1	329	146				1	- /	,	1 31	1	1 31
		Vcf3	102	17				1			2 21	1	3 3 1
		1313	102	15		1		1	0.22		1 15	2	1 1 5
	Cure1E	0.0024	44	220				T	0,22		1,10	4	1,15
	CWC15	CWC24	41	228					0,36			1	0,36
		ECM2	16	27					1,20			1	1,20
		Prp45	41	71		1		1	4,39		6,62	2	6,62
			43	71			1			1,32		1	1,32
		Prp8	151	1242				1			5,95	1	5,95
			172	1205			1			0,70		1	0,70
				1310		3			3,49			3	3,49
		Rse1	43	557				2			3,38	2	3,38
		Snu114	140	60		1			5.78			1	5.78
			145	59		1			3.47			1	3.47
				60		1	2	1	0.63	4 30	5 72	4	5 72
			150	50		-	-	2	0,00	.,50	3.96	2	3.96
			150	60		1	1	-	1 1 2	0.67	3,50	5	4 1 2
				72		1	1		3 10	0,07		1	7,12
				72 01		-		1	2,10		1 70	1	1 70
			151	51				1			1,75	1	1,75
			151	59				1	0.75	7.00	2,62	1	2,82
				50		2	4	3	9,75	7,80	8,57	9	9,75
				72				4			13,68	4	13,68
				81				14			12,86	14	12,86
		Syf2	102	9		1			0,13			1	0,13
	Cwc2	Clf1	236	24		1			4,19			1	4,19
		Cus1	10	436				1			5,61	1	5,61
		Cwc24	152	93				1			6,93	1	6,93
		Ecm2	2	230		1	2	11	1,27	4,41	6,91	14	6,91
				233		1	6		4,08	2,53		7	4,08
			152	188			2	4		5,56	11,32	6	11,32
				189		29	26	132	14.18	8.62	14.79	187	14.79
			236	116				2		,	5.12	2	5.12
				119	26.3			6			6 76	6	6.76
				157	20,5	3	3	4	136	1 44	6 79	10	6 79
				164		2	2	-	4,50	2,07	10.53	10	10.53
				104		2	2	12	0,20	3,07	10,52	9	10,52
				167		1	1	12	15,55	3,07	12,74	14	15,55
				1/3	30,7	4	2	1	2,40	2,32	5,14	/	5,14
				247	18,7	2		2	2,21		6,84	4	6,84
		ISY1	152	7					3,83			1	3,83
				27				1			2,53	1	2,53
				40		1			3,32			1	3,32
				42			1	1		1,48	2,56	2	2,56
		Prp17	152	207		4	2	1	9,51	5,81	1,66	7	9,51
		Prp19	286	107				2			3,09	2	3,09
				108		3	3	31	4,55	1,57	11,28	37	11,28
			320	108		4	4	7	7.67	6.27	8.30	15	8.30
		Prp46	286	56		1			0.65	-,	-,	1	0.65
		SmG	310	8		-	2			1 04		2	1 04
		Svf1	310	524				2		_,	4 43	2	4 43
		0,11	510	531				1			1,15	1	1 35
			320	474		Δ	1	2	5 27	5.02	3 68	\$	5 27
	0	CIF1	520	424		-	1	1	5,57	5,05	5,00	5	5,57
	CWCZI	CII 1	02	25			4	T		0,30	0,91	5	0,91
		CWLZ/	98	234			5	4		0,90	3.20	3	0,96
		61b18	98	404				1			2,36	1	2,36
		Prp2	48	756				1			10,75	1	10,75
		Prp8	12	351				1			9,11	1	9,11
				1205		3		2	3,97		4,62	5	4,62
		Snu114	12	955		6	2	6	9,33	5,91	12,44	14	12,44
	Cwc22	Bud13/Cwc26	520	201				1			3,45	1	3,45
				213				2			6,91	2	6,91
				217			1			1,88		1	1,88
			530	213		2		1	3,05		1,61	3	3,05
		Bud31	495	10				1			1,53	1	1,53
		Cwc24	294	123				1			4,16	1	4,16
					-								

						9	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
.,		Cure 27	176	205					1 5 6				1 56
		CWC27	176	295		5			1,56			5	1,50
		Ntc20	203	1				1			0,36	1	0,36
		Prp11	548	28				1			1.68	1	1.68
		Drn2	520	137				1			2 20	1	2 20
		Date 45	520	120		1		-	2.00		2,20	1	2,20
		Prp45	505	130		1			2,06			1	2,06
				274		5	1	1	6,23	3,75	4,11	7	6,23
			520	265		1	1	7	5,13	4,37	11,97	9	11,97
				274		18	11	17	11 78	946	14 67	46	14 67
				207		10	1	7	2 14	0.74	2 00	12	2 00
				207		4	1	,	2,44	0,74	3,50	12	3,90
			530	265		4	4	3	6,04	6,92	7,54	11	7,54
				274		16	7	14	8,37	3,25	7,13	37	8,37
				287		4	8	14	5,49	4,49	7,60	26	7,60
		Prn8	294	1435	10.3			2			13 19	2	13 19
			505	121		4		_	2 02			4	2 9 2
			303	121		4			2,82			4	2,02
		Snu114	1/6	369	13,8	5			4,02			5	4,02
		Snu17/Ist3	520	138				1			4,91	1	4,91
			530	143		1			2,93			1	2,93
		Svf1	548	311			1			26.34		1	26.34
		Vcf3	203	15	147.7	1	-		0.49			1	0.49
	C	1313	205	15	147,7	1	_		0,45	7.4.6	7.05	1	0,45
	CWC24	Brr2	29	2109			2	2		7,16	7,35	4	7,35
			256	748		1			0,20			1	0,20
		Bud13/Cwc26	4	115		1			3,23			1	3,23
			100	213		1			1.03			1	1.03
		Cwc15	220	/1		1			0.36			1	0.36
		Cwc13	220	41		¹			0,50		C 02	4	0,30
		CWC2	93	152				1			6,93		6,93
		Cwc22	123	294				1			4,16	1	4,16
		Cwc27	63	171				2			6,12	2	6,12
		Prp2	232	870				1			1.61	1	1.61
		· r =	202	40				2			1 70	2	1 70
			250	40				2 ×			1,78	2	1,70
		Prp8	63	2284		3			2,13			3	2,13
			93	235		2	2	3	3,33	0,89	10,67	7	10,67
				517		1			1,40			1	1,40
				684		4	8	6	10.33	7.89	8.80	18	10.33
				697		3	1	-	3 70	1 77	-,	4	3 70
				1020			1		5,75	1,77	6.65	4	5,75
				1926				ð			6,65	ð	0,05
				1931				1			5,32	1	5,32
			98	235	13,5	1			0,69			1	0,69
				1926	28.4			5			5.07	5	5.07
				1931	28 7		1	2		0.39	4.69	3	4.69
			122	225	20,7	2	2	-	1.02	0,35	4,05	5	4,03
			123	235		3	- 3		1,02	0,42		D D	1,02
				517		2	3		3,45	3,27		5	3,45
				681		1			0,84			1	0,84
				684		2	1	1	1.46	5.97	6.15	4	6.15
				697		5	2	2	1/ 16	8.26	6.08	٩	14.16
				1425			2	2	14,10	0,20	10.51	2	14,10
				1435				3			10,51	3	10,51
				1926		3	1	8	5,55	3,54	7,20	12	7,20
				1931		2		4	3,57		10,66	6	10,66
		Rse1	182	1342				3			3,96	3	3,96
		Snn2	4	151		1			0.05			1	0.05
	Curc 27	Drr7	212	1504		1		1	0.04		2.00	2	2,00
	CWC27	DITZ	215	1304				1	0,94		2,00	2	2,00
			225	1529		1	3	1	0,47	5,11	7,64	5	7,64
		Bud31	78	35				2			4,58	2	4,58
		Cwc21	234	98			3			0,96		3	0,96
		Cwc22	295	176		5			1.56			5	1.56
		Cwc24	171	63				2			6.12	2	6 12
		Drn9	172	1712				6			11.24	6	11.24
			123	1/13				0			11,54	0	11,54
		SITU1	216	140		1			2,//				2,//
	Ecm2	Brr2	356	82				1			2,03	1	2,03
		Bud31	230	40	39,1			1			9,34	1	9,34
		Clf1	116	59			1	2		0,56	2,98	3	2,98
			164	24				2			4.54	2	4.54
			220	668				1			2 55	1	255
		Curc1	200	420				1			6 27	1	2,55
		Cusi	203	429				1 I			0,37		0,37
		CWC15	27	16		1			1,20			1	1,20
		Cwc2	116	236				2			5,12	2	5,12
			119	236	26,3			6			6,76	6	6,76
			157	236		3	3	4	4.36	1.44	6.79	10	6.79
			164	200		2	2	5	2.20	2,07	10 57	0	10 52
			104	250				12	0,20	3,07	10,52	3	10,52
			16/	236		1	1	12	15,55	3,07	12,/4	14	15,55
			173	236	30,7	4	2	1	2,40	2,32	5,14	7	5,14
			188	152			2	4		5,56	11,32	6	11,32
			189	152		29	26	132	14,18	8,62	14,79	187	14,79
			230			1	2	11	1 27	4 41	6.91	14	6.91
			200	2		1	<u> </u>	^{**}	4.00	7,71	0,51		3,51
			233	2			Ö	_	4,08	2,53			4,08
			247	236	18,7	2		2	2,21		6,84	4	6,84
		Prp17	188	207		4	2	1	3,14	2,72	4,89	7	4,89
				271		1			4,58			1	4,58
			189	207		1	2	2	0,21	1,97	7,29	5	7,29
				271		9	4	2	14.24	9.54	6.86	15	14,74
			203	207				2	,	3,34	3 11	20	2 11
			205	207					3.45		3,11	2 A	3,11
			2/4	207		2		2	2,15		9,05	4	9,05
				210		1			0,00			1	0,00
				271			4			1,03		4	1,03

						9	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
				315		1		1	2.93		1 87	. 2	2.93
			277	207		1		-	0.15		1,07	1	2,55
			2//	207		1			0,15			1	0,15
		Snu114	188	111			1			0,82		1	0,82
			353	746		1			0,46			1	0,46
		Snu17/Ist3	188	123		1			0,08			1	0,08
		Syf2	138	148		1			0,08			1	0,08
	Hsh155	Brr2	35	82				1			1.49	1	1.49
	11011200	Bud12/Curc26	472	120			2	1		2 4 2	2,13	-	2,13
		Buu15/CWC20	475	120			5	1		2,42	2,23	4	2,42
				130				4			9,36	4	9,36
				136				1			2,03	1	2,03
			511	120			2			4,13		2	4,13
				130				1			13,86	1	13,86
			612	255	20.0	1	4	15	4.45	7.00	8.53	20	8.53
				256	16.7		2	5	, -	0.53	5 10	7	5 10
		C	227	102	10,7	1	-	1	2.05	0,55	3,10	,	3,10
		CUSI	237	102		1	1	1	3,85	0,69	2,42	3	3,85
			325	102			4	1		2,40	3,50	5	3,50
			722	223				4			2,31	4	2,31
				226				5			5,11	5	5,11
				236			13	42		8,32	7,90	55	8,32
		Prn11	722	11				1		,	2 24	1	2 24
		Drn2	227					1			E 70	1	5 70
		Fip2	237	2		_	6	1	2.05		5,75	1	5,75
		Prp8	35	906		/	6	27	2,85	4,13	5,79	40	5,79
				1007			1	5		1,53	5,55	6	5,55
			51	920				2			8,77	2	8,77
			104	1007				1			12,88	1	12,88
			137	956	15,3	12	5	10	9,03	2,25	12,45	27	12,45
			147	956	21.0	1	4	7	6 97	7 13	7 47	12	7 47
			151	056	21,0	-		2	0,57	.,15	2 97	2	,,-,, 2 0 7
			151	900	20.5			2 A			0,07	4	0,07
			612	1588	30,5			1			6,21	1	6,21
				1589	31,6		6			6,78		6	6,78
			696	1588	9,7		2	1		3,56	6,15	3	6,15
		Rds3	276	29	43,7			3			5,61	3	5,61
			455	53	20.3	3			10.29			3	10.29
			500	53	13.5	4			8 27			4	8 27
			500 E11	53	10.2	2		2	0.77		9 47	5	9 47
			511	55	19,2	2		5	0,77		0,47	5	0,47
				56	19,3			- 3			9,22	3	9,22
		Rse1	511	221	22,6		2	1		0,52	2,40	3	2,40
				1269				4			6,95	4	6,95
			595	1269				5			15,04	5	15,04
			632	1269				2			4.56	2	4.56
			713	1269				_			7 /9	-	7 / 9
			/15	1205				1			7,4J		F 21
				1342				1			5,21	1	5,21
		SmB	223	76		1			0,73			1	0,73
			325	186			2			3,04		2	3,04
		SmD1	158	128				2			6,46	2	6,46
				129				1			3.09	1	3.09
			736	128		1			3.09		-,	1	3.09
		Spu17/lct2	66	120		- -	2	E .	2 20	1 0 2	2 16	12	2,05
		311017/1513	00	90		5	2	5	3,20	1,92	3,40	12	3,40
			104	96				2			4,99	2	4,99
			410	103		14			15,45			14	15,45
			455	103	17,8	6			12,69			6	12,69
			500	10		2			14,08			2	14,08
		Ysf3	932	4			2			0.68		2	0.68
				12	12 7		3			3.56		3	3.56
	Hsh49	Cus1	204	102	1,			1		3,30	2 65	1	2,50
	(13)140	lov1	204	102							1.10	1	2,05
		ISYI	82	8/							1,10	1	1,16
		MSI1	130	2			1			2,16	2,53	2	2,53
		Prp11	42	48		1		4	0,96		2,59	5	2,59
			101	103				2			2,47	2	2,47
		Prp21					2			1,53		2	1,53
		Prp9	39	462		1		1	1.39		1.59	2	1.59
		P -	101	429		-		1	,		2 02	1	2 02
			1/7	7423				1			2,02	1	2,02
			14/	3/1		-	.		40.00		2,10	1	2,10
			204	468		2	4	6	12,40	3,63	4,81	12	12,40
				475			1	1		0,18	2,54	2	2,54
			208	468		2	5	6	3,70	4,70	5,83	13	5,83
				475			3	5		0,70	3,61	8	3,61
				492		1		13	0.15	, -	7.01	14	7.01
		Rse1	20	1176		4	2	8	5 21	0.44	2 10	14	5 21
	lov1	Cof1	55	204		- 1		1	3,41	0,44	1 40	1	1 40
	1591	Celt	42	294				[⊥]			1,49	1	1,49
		CITI	104	529		1			3,23			1	3,23
		Cus1	59	41		1			0,03			1	0,03
				48				1			3,17	1	3,17
			157	317				1			1.98	1	1.98
		Cwc?		157		1		1	2 8 2		_,50	1	2,00
		CHICL	, 77	152		⁺		1	3,03		2 5 2	1	3,05
			21	104		1		- ⁻	2.22		2,35	1	2,35
			40	152		1			3,32			1	3,32
			42	152			1	1		1,48	2,56	2	2,56
		Hsh49	87	82				1			1,16	1	1,16
		Prp11	27	103				1			4,44	1	4,44
				126				2			5,64	2	5,64
				192				1			2 82	1	2,81
			56	102				1			1 5 2	1	2,02
I			00	192	I	I	I I	1 1	I		1,55	1 I	1,55

					5	pectral cour	nt		Score _{max}		Total	Best
Type Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
	Prn21				1			4 84			1	4 84
	ripzi Cup	100	400		1			4,04			1	4,04
	SILIB	106	100		1			1,19			1	1,19
	SmG	104	8				1			2,89	1	2,89
	Syf1	7	259				2			5,83	2	5,83
			328		1	3	6	10,49	5,14	9,35	10	10,49
			424		1	2	5	1,18	5,11	7,02	8	7,02
		27	328		1			2,03			1	2,03
		40	328		2	3	7	2.37	2.44	4.75	12	4.75
		139	146		2	_		5.57	ŕ	, -	2	5.57
		1/3	146		2	1	1	5.24	1 15	4.06	- 7	5,37
		143	220		2	1	1	5,24	4,45	4,00	,	0,24
		157	220			1	4		0,70	3,02	1	3,02
			249			_	1			3,79	1	3,79
		161	220		3	/	9	2,63	2,37	4,94	19	4,94
		171	220		9	6	1	4,61	5,04	2,46	16	5,04
	Syf2	7	26		1	4	3	1,75	2,47	4,26	8	4,26
		27	26			1	4		1,36	4,12	5	4,12
		42	173		1	2		5,98	1,83		3	5,98
	Yju2/Cwc16	103	63			1			0,27		1	0,27
Lea1	Cef1	205	359		1			0,18			1	0,18
	Msl1	215	2				1			3.65	1	3.65
	Prn21					1	_		0.27	2,22	1	0.27
	DrpQ	2	140			1	1		0,27	7.02	1	7.02
	Pipa	104	140				1			7,02	1	7,02
		194	115							1,75	1	1,75
		215	107			_	1			1,72	1	1,72
			115		3	5	8	3,15	2,06	11,71	16	11,71
			121		1		2	3,07		3,26	3	3,26
		216	115				1			1,38	1	1,38
		232	121				1			1,81	1	1,81
	SmB	125	76			3	11		1,57	8,77	14	8,77
	Svf1	232	32			1	1		2.40	1.79	2	2.40
Msl1	Cus1	2	102				2		, -	6.19	2	6.19
		-	128		1		1	8 56		5,86	2	8 56
	Hch40	2	120		-	1	1	0,50	2 16	3,00	2	2,50
	1151149	2	130			1			2,10	2,33	2	2,33
	Ledi	2	215					12.01		3,05	1 7	5,05
	Pipa	2	115		1		0	12,01		10,88	,	12,01
			121				4			4,11	4	4,11
	D 4	2	124				8	1.62		5,13	8	5,13
	RSEI	2	1001					1,63			1	1,63
	SILIB	2	105		2			1,64			2	1,64
			114				1			1,59	1	1,59
			124				1			1,92	1	1,92
			138				2			4,30	2	4,30
			186			1			0,03		1	0,03
	SmD3	2	85				1			4,79	1	4,79
Ntc20	Cef1	94	305				2			3,90	2	3,90
	Clf1	121	451			2	2		3,86	6,69	4	6,69
	Cwc22	1	203				1			0,36	1	0,36
	Syf1	27	498		6		2	4,07		8,58	8	8,58
			558		2	2	2	1,41	1,40	5,11	6	5,11
Pml1	Prp2	6	820		1			0,39			1	0,39
	Prp45	88	242		1		1	0,50		5,76	2	5,76
		90	242		2	8	1	2,44	5,39	2,84	11	5,39
	Svf1	153	372				1			1,13	1	1,13
Prp11	Cef1	36	22			1			1,92		1	1,92
	Cus1	11	226				3		,	4.34	3	4.34
		28	223				4			5.60	4	5.60
		20	226				2			5,50	2	5,00
		36	220			4			2 1 7	3,35	4	2 17
		10	220				2		2,11	0.00		0.00
		-+0	223				<u>,</u>			5,35	2	0,55 E 1E
		60	220				2			3,13	2	3,13
		60	225			1	2		2.02	3,20	2	3,20
		100	220			¹	1		3,63	5,98 7 / /	5	5,98 2 4 4
		192	225				1			2,44	1	2,44
	6		226							5,00		5,00
	CWC22	28	548				1			1,68	1	1,68
	Hsh155	11	722				1			2,24	1	2,24
	Hsh49	48	42		1		4	0,96		2,59	5	2,59
		103	101				2			2,47	2	2,47
	lsy1	103	27				1			4,44	1	4,44
		126	27				2			5,64	2	5,64
		192	27				1			2,82	1	2,82
			56				1			1,53	1	1,53
	Prp2	121	43				1			8,50	1	8,50
	Prp21				11	26	47	4,49	8,14	11,80	84	11,80
	Prp8	11	956				1			7,10	1	7,10
	Prp9	11	58				3			6,61	3	6,61
			371				1			12,95	1	12,95
		173	58				9			11,12	9	11,12
			61				1			2,35	1	2,35
		175	61			3			1,26		3	1,26
	SmB	103	138				1		, .	2,54	1	2,54
			145				1			1,21	1	1,21
		126	186				1			2.38	1	2.38
1		120	100	1	1	1	ı *	1		_,		_,

					5	pectral cour	nt		Score _{max}		Total	Best
Type Protein	n 1 Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
	Syf1	192	424		1		4	2,48		7,93	5	7,93
	Svf2	192	26		2	3	5	3.34	5.17	6.42	10	6.42
Prp17	Brr2	153	1414		1			0.97	- /	-,	1	0.97
	Cwc2	207	152		4	2	1	9.51	5 81	1 66	7	9 51
	Ecm2	207	188		4	2	1	3 14	2 72	4 89	7	4 89
	20002	207	189		1	2	2	0.21	1 97	7 29	5	7 29
			203		-	-	2	0,21	1,57	3 11	2	3 11
			205		2		2	2.15		0.05	4	0.05
			274		1		2	0.15		5,05	1	0.15
		210	277		1			0,13			1	0,13
		210	100		1			0,00			1	0,00
		2/1	100			4	2	4,38	0.54	6.96	15	4,38
			109		9	4	2	14,24	9,54	0,80	15	14,24
		215	274			4	4	2.02	1,05	1.07	4	1,05
		315	274		1		1	2,93		1,87	2	2,93
	Prp19	27	170				1			2,99	1	2,99
	Prp8	404	670		1			0,48			1	0,48
Prp19	Cef1	107	496		3	3	16	8,53	2,42	8,46	22	8,53
		108	444		5	_	13	4,63		6,83	18	6,83
			496		3	5	14	1,87	7,01	5,71	22	7,01
			500		21	23	220	14,32	14,03	16,95	264	16,95
			558			1			7,46		1	7,46
		130	454		2	2	2	3,58	9,32	5,03	6	9,32
		135	454			1			2,63		1	2,63
	Cus1	272	357			2			1,11		2	1,11
	Cwc2	107	286				2			3,09	2	3,09
		108	286		3	3	31	4,55	1,57	11,28	37	11,28
			320		4	4	7	7,67	6,27	8,30	15	8,30
	Cwc21	404	98				1			2,36	1	2,36
	Prp17	170	27				1			2,99	1	2,99
	Prp21				1			0,08			1	0,08
	Prp8	107	1372		2			1.22			2	1.22
			1378		1			1.38			1	1.38
		108	1209				1	,		0.41	1	0.41
	SmB	378	55		1		-	3.42		•, · =	1	3.42
	51115	5/0	60		2	3	1	1.83	2 16	0.94	6	1 83
	SmG	130	24		1	5	-	0.98	2,10	0,54	1	0.98
	Snt200	107	24		12	2	0	10.91	867	12 / 0	12	12.49
	511305	107	23		2	5	12	10,81	0,02	12,40	23	13,40
			32		1	4	12	4,30	10.90	13,91	14	10,91
			40			4	11	1,70	10,80	0.02	5	10,80
			48		5	3	11	6,46	1,19	8,82	20	8,82
			67		/	4	10	14,65	3,43	9,05	21	14,65
			/2			1			0,21		1	0,21
		108	25		15	9	9	14,90	10,62	17,25	33	17,25
			46		9	6	9	9,75	5,41	5,51	24	9,75
			48				1			12,06	1	12,06
		120	25		4	2	4	5,76	4,11	7,08	10	7,08
		130	26		1	1	1	0,24	2,43	6,54	3	6,54
		135	11		1			1,31			1	1,31
		139	26		2	2		4,21	3,59		4	4,21
Prp2	Brr2	2	1623				1			2,31	1	2,31
			2070				3			8,79	3	8,79
			2109				10			10,91	10	10,91
			2116				1			7,51	1	7,51
			2121				35			16,89	35	16,89
		45	1437				1			5,60	1	5,60
		211	2				1			6,22	1	6,22
			28				2			7,29	2	7,29
	Bud13/Cwc26	2	181				1			6,85	1	6,85
		567	115				1			0,09	1	0,09
	Cef1	732	263			1			5,68		1	5,68
	Clf1	10	425				1			2,46	1	2,46
	Cus1	2	102				1			6,10	1	6,10
	Cwc21	756	48				1			10,75	1	10,75
	Cwc22	137	520				1			2,20	1	2,20
	Cwc24	40	256				2			1,78	2	1,78
		870	232				1			1.61	1	1.61
	Hsh155	2	237				1			5,79	1	5,79
	Pml1	820	6		1			0.39		-, -	1	0.39
	Prp11	43	121				1	.,=		8.50	1	8.50
	Prp45	2	274				1			5.90	1	5.90
		60	274				1			6 27	1	6 27
		101	274		1		2	1 35		9.86	3	9.86
		107	2/4		1		1	1,35		10 22	1	10 22
		102	205		2		2	3 05		11 17	1	11 17
		112	2/4		1		1	5,55		2 12	1	2 1 2
		112	202				2			5,15	1 2	5,15
		120	274		2		2	0.05		7 50	<u>∠</u> л	7 50
		120	274		1		-	0,55		1,35	1	0 00
		120	2/4		1 ¹		1	0,80		2 15	1	0,80
		130	274				-			2,15	1	2,15
	Drog	133	2/4				3			1.20	5	0,22
	мира	40	1002	010			1			1,58	1	1,58
		40/	1003	84,b			2			3,45	2	3,45
l		002	1903	82,5	I	1	2	I	I	3,48	2	3,48

					5	pectral cour	nt		Score _{max}		Total	Best
Type Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Scoremax
		756	519	155.0			1			5.49	1	5.49
		820	017	100,0	1		-	2.05		5,15	-	2.05
	D O	820	017		1			2,95			1	2,95
	Prp9	83	235			1			0,94		1	0,94
	Rds3	10	42				3			3,45	3	3,45
	SmD1	756	128				1			2,24	1	2,24
	SmE	14	1		1			0,82			1	0,82
	Snu114	40	115				1			2 34	1	2 34
		622	055	140.9			2			7.04	2	7.04
		032	333	149,0			2			7,04	2	7,04
		/50	749	208,0			1			1,75	1	1,75
			955	160,1			5			5,61	5	5,61
		763	955	147,7			1			5,73	1	5,73
		851	955	135,7			3			6,41	3	6,41
	Spp2	336	82		2		5	1,67		7,16	7	7,16
			83		1		4	2 28		2 76	5	2 76
		461	169		-			2,20		E 94	10	E,7 0
		401	100		4		0	5,54		5,64	10	5,64
			181				1			2,80	1	2,80
		632	82				1			3,53	1	3,53
			83		2		2	7,68		7,77	4	7,77
		640	83		1			4,92			1	4,92
		750	82		1		1	1.21		3.93	2	3.93
		756	82		1			1 91		,	1	1 91
		750	02		1		2	2,40		2.00	2	2,40
			05		1		2	3,40		2,90	5	5,40
			95				1			5,34	1	5,34
		840	154		1			2,83			1	2,83
	Yju2/Cwc16	732	29		2			0,44			2	0,44
Prp21	Cus1	261	53			1			0,13		1	0,13
	Hsh49	175	147			2			1.53		2	1.53
	lsv1	189	7		1			4 84	_,		1	4 84
	log1	105	104		1	1		4,04	0.27		1	4,04
	Ledi	1/5	194			1			0,27	2.00	1	0,27
	Prp11	68	1/5				1			2,66	1	2,66
		177	175			4			3,18		4	3,18
		183	121			7	1		5,85	6,15	8	6,15
		199	126			1	4		1,72	3,13	5	3,13
		205	192				1		,	5 64	1	5 64
		200	120		2	6	-	1 71	9.14	11 74	12	11 74
		234	135		5	0	4	1,/1	0,14	11,74	15	11,74
		240	11				3			8,58	3	8,58
			130				1			2,15	1	2,15
			139		4	4	12	4,49	5,55	11,80	20	11,80
		247	11				1			5,42	1	5,42
			192				1			2.90	1	2.90
		254	11				3			2 84	3	2 84
		234	20				1			2,04	1	2,04
			20				1	0.70		2,59	1	2,59
			126		1			0,70			1	0,70
			192		2	2	7	1,31	1,07	6,91	11	6,91
			194				1			2,16	1	2,16
		256	28				1			2,85	1	2,85
			36				1			2.56	1	2.56
			192		1	1	2	0.02	2 23	4 18	4	4 18
		261	20		1	-	1	0,02	2,25	7,10	1	7,10
		201	20				1		1.00	2,59	1	2,59
			192			1	1		1,00	2,27	2	2,27
	Prp19	177	18		1			0,08			1	0,08
	Prp45	175	237		1			0,00			1	0,00
	Prp8	247	777				1			2,63	1	2,63
	Prp9	20	47			3			1,48		3	1,48
	•		58			5	2		4 61	5 46	7	5 46
		20	58			5	1		.,01	3 99	1	3 99
		2.5	50				1			5,55 E 67	1	5,55
		41	58			10	12		244	5,03	1	5,03
		68	4/			19	13		2,14	2,37	32	2,37
			58		5	12	81	4,47	2,84	10,51	98	10,51
			61			3	2		2,58	5,34	5	5,34
		105	107		7	2	7	2,65	1,77	6,82	16	6,82
			115		6	13	14	10,69	3,91	4,70	33	10,69
		116	107				1		,	7.28	1	7.28
		110	121		1	1	-	0.69	1 22	7,20	2	1 2 2
		140	107				10	10.44	12.05	C 24	22	1,52
		143	10/		3		13	18,44	12,85	6,21	23	18,44
		175	371		1	7	4	0,98	7,82	10,71	12	10,71
	SmB	68	194				1			1,62	1	1,62
		175	124			1			1,50		1	1,50
	Syf1	240	424				2			4,63	2	4,63
		247	424				1			4.45	1	4.45
		2.7	124		2		Ē	3 40		6.01		6.01
		204	424		3		3	3,40		0,01	°	0,01
	a (a	256	424		1		4	1,06		4,15	5	4,15
	Syf2	247	26				1			4,02	1	4,02
		254	26			1			3,40		1	3,40
Prp45	Bud13/Cwc26	352	146		1		1	2,53		2,42	2	2,53
		367	136				1			5,55	1	5,55
	Cwc15	71	41		1		1	4.39		6.62	2	6.62
		· -	10		-	1		.,	1 27	2,02	1	1 22
	0	420	43			1 ¹		2.00	1,52			1,32
	CWC22	130	505		1		_	2,06			1	2,06
		265	520		1	1	7	5,13	4,37	11,97	9	11,97
			530		4	4	3	6,04	6,92	7,54	11	7,54
		274	505		5	1	1	6,23	3,75	4,11	7	6,23
			520		18	11	17	11.78	9.46	14.67	46	14.67
						!		,. 0	-,	.,		= .,

						S	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
				530		16	7	14	8.37	3.25	7.13	. 37	8.37
			282	520		4	1	7	2 44	0.74	3 90	12	3 90
			207	520		4	0	1/	5.40	4.40	7.60	26	7,50
		D-sel1	242	550		4	°	14	5,49	4,49	7,60	20	7,60
		Pmil	242	88				1	0,50	5 20	5,76	2	5,76
				90		2	8	1	2,44	5,39	2,84	11	5,39
		Prp2	265	102				1			10,38	1	10,38
				113				1			3,13	1	3,13
			274	2				1			5,90	1	5,90
				60				1			6,27	1	6,27
				101		1		2	1,35		9,86	3	9,86
				102		2		2	3,95		11,12	4	11,12
				113				2			6,24	2	6,24
				120		2		2	0,95		7,59	4	7,59
				128		1			0.80		,	1	0.80
				130		-		1	-,		2 15	1	2 15
				122							6 22	5	6 22
		Dro 21		155		1		5	0.00		0,22	1	0,22
		Prp21	60	210	15.4	1	1	-	12.00	4.05	10.01	1	12,00
		Prp46	60	319	15,4		1	5	12,63	4,95	10,91	8	12,63
			81	249	15,0	1		1	1,05		3,50	2	3,50
		Prp8	129	159	9,6	1			0,83			1	0,83
			242	858		1			2,89			1	2,89
			274	810		1			1,69			1	1,69
			352	2097				1			2,91	1	2,91
			367	1910				3			6,52	3	6,52
				2016		2		9	5,39		10,16	11	10,16
				2122				6			11,41	6	11,41
			373	2016				4			6,17	4	6,17
		SmB	60	138				4			5.94	4	5.94
				186				2			5.37	2	5.37
			71	131			2	_		1 55	-,	2	1 55
			71	132		1	-		1.09	1,00		1	1.09
				132		2	4	5	7 4 4	5.86	9.06	11	9.06
				130		2	4	1	7,44	3,80	3,00	1	3,00
		6. 47/002	207	145				1			7,70	1	7,70
		Shu1//ist3	287	143				1			2,17	1	2,17
		Syf2	36	142				1			1,02	1	1,02
				145		15	10	27	13,10	3,00	5,38	52	13,10
				151		4	5	10	12,24	4,37	18,80	19	18,80
			71	1				2			0,22	2	0,22
		Yju2/Cwc16	129	1		1			0,59			1	0,59
	Prp46	Clf1	67	273			1	3		4,33	12,55	4	12,55
			87	273				3			9,49	3	9,49
			88	273		1		1	5,98		10,44	2	10,44
		Cwc2	56	286		1			0.65		-,	1	0.65
		Prn45	249	81	15.0	1		1	1.05		3 50	2	3 50
		11045	245	60	15.0	2	1	5	12.63	1 95	10.01	8	12.63
		C m D	210	120	13,4	2	1	1	12,05	4,55	2 70	1	2,05
		SILIB	319	138				1			3,70	1	3,70
				186				1			4,93	1	4,93
		Shu114	1/3	81				2			1,64	2	1,64
		Syf2	56	145				1			2,52	1	2,52
			67	145				1			3,17	1	3,17
			87	145		1		3	7,44		6,64	4	7,44
			88	145		2			3,30			2	3,30
	Prp8	Brr2	1903	2				2			9,54	2	9,54
				25		1			1,15			1	1,15
				31		1			0,32			1	0,32
			2016	50				1			7,68	1	7,68
				74				3			8,59	3	8,59
			2108	1055				2			5,65	2	5,65
			2149	1055	17,5			1			5,78	1	5,78
			2154	91				1			8,47	1	8,47
				1055	16.4		3	6		5,43	5,02	9	5,43
			2167	304			-	1		-,	6 73	1	6 73
			2187	304				1			6.89	1	6.89
			2107	304				2			5 60	2	5,60
			2215	01				1			1 1 5	1	1.15
		Dud12/Cur2C	2264	91	22.4			2			1,15	1	1,15
		BUU13/CWC26	1589	255	33,4	_		2	1.00		/,/1	2	/,/1
			1903	35		3			1,92			3	1,92
				41		2		_	2,22			2	2,22
			1926	181				2			4,40	2	4,40
			2016	53				1			8,14	1	8,14
				61				1			2,19	1	2,19
				120			1			0,68		1	0,68
			2187	15				2			11,00	2	11,00
				17		2			3,68			2	3,68
				68				2			4,23	2	4,23
			2217	2		1			0.63		, -	1	0.63
			2219	2		1		1	5.15		1.47	2	5,15
		Cef1	98	166		1		-	0.62		_,	1	0.62
			1010	200		2		1	2 20		1.46	1	2 80
			2102	406		1		- ⁻	0.46		1,40	1	0.46
		Cwc15	1205	490		1 ¹	1		0,40	0.70		1	0,40
		CWC15	1205	1/2			1	4		0,70	F 05	1	0,70
			1242	151		-		1	_		5,95	1	5,95
			1310	172		3			3,49			3	3,49

						S	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
Type	Trotein 1	11000112	Residue 1	Itesidde 2	~	5001	3012	3013	3001	3012	5005	spectral count	Scoremax
		CWC21	351	12				1			9,11	1	9,11
			1205	12		3		2	3,97		4,62	5	4,62
		Cwc22	121	505		4			2,82			4	2,82
		CWCZZ	121	303	40.0	4		2	2,02		12.10	4	2,02
			1435	294	10,3			2			13,19	2	13,19
		Cwc24	235	93		2	2	3	3,33	0,89	10,67	7	10,67
				98	13 5	1			0.69			1	0.69
				50	15,5	1			0,05			1	0,05
				123		3	3		1,02	0,42		6	1,02
			517	93		1			1,40			1	1,40
				123		2	2		3/15	3 27		5	3 15
				125		2			3,43	5,27			3,43
			681	123		1			0,84			1	0,84
			684	93		4	8	6	10,33	7,89	8,80	18	10,33
				123		2	1	1	1/16	5 07	615	1	6 15
			co7	125		2		-	2,70	3,57	0,15	-	0,15
			697	93		3	1		3,79	1,//		4	3,79
				123		5	2	2	14,16	8,26	6,08	9	14,16
			1425	122				2			10 51	2	10 51
			1433	125				5			10,51	5	10,51
			1926	93				8			6,65	8	6,65
				98	28,4			5			5,07	5	5,07
				123		3	1	Q	5 5 5	3 54	7 20	12	7 20
				125		5	I	0	5,55	5,54	7,20	12	7,20
			1931	93				1			5,32	1	5,32
				98	28,7		1	2		0,39	4,69	3	4,69
				123		2		4	3 5 7		10.66	6	10.66
				125		2		4	5,57		10,00	0	10,00
			2284	63		3			2,13			3	2,13
		Cwc27	1713	123				6			11,34	6	11,34
		Hsh155	906	35		7	6	27	2.85	4 13	5 79	40	5 79
		11511155	000	55		· ·	U U	27	2,05	4,15	0,77	+0	0,77
			920	51				2			8,77	2	8,77
			956	137	15,3	12	5	10	9,03	2,25	12,45	27	12,45
				142	21 0	1		7	6.07	7 1 2	7 17	12	7 47
				142	21,0	*	"	,	0,97	1,13	7,47	14	1,41
				151				2			8,87	2	8,87
			1007	35			1	5		1,53	5,55	6	5,55
				104				1			12,88	1	12,88
				104				1			12,00	1	12,00
			1588	612	30,5			1			6,21	1	6,21
				696	9,7		2	1		3,56	6,15	3	6,15
			1580	612	31 6		6			6.78		6	6 78
			1505	012	51,0					0,70		0	0,70
		Prp11	956	11				1			7,10	1	7,10
		Prp17	670	404		1			0.48			1	0.48
		Drn10	1200	108				1			0.41	1	0,41
		FIDTA	1209	108		-		1			0,41	1	0,41
			1372	107		2			1,22			2	1,22
			1378	107		1			1.38			1	1.38
		Drn2	E10	756	155.0			1	,		E 40	1	E 40
		FIPZ	515	/30	155,0			1			3,49	1	3,49
			672	40				1			1,38	1	1,38
			817	820		1			2.95			1	2.95
			1002	467	946	-		2	_,		2 45	-	2,00
			1905	407	64,0			2			5,45	2	5,45
				560	82,5			2			3,48	2	3,48
		Prp21						1			2.63	1	2.63
		Drn 4E	150	120	0.6	1			0.02		_,	1	0,00
		FIP45	155	125	9,0	-			0,85			1	0,85
			810	274		1			1,69			1	1,69
			858	242		1			2.89			1	2.89
			1010	267				2	,		6 5 2	2	6 5 2
			1910	307		-		5			0,32	3	0,52
			2016	367		2		9	5,39		10,16	11	10,16
				373				4			6.17	4	6.17
			2007	252				1			2 01	1	2 01
			2097	332				1			2,91	1	2,91
			2122	367				6			11,41	6	11,41
		Rse1	2080	1269				1			8.87	1	8.87
			2007	1260				1			7.64	1	7.64
			2097	1209				1			7,64	1	7,04
		SmB	90	138				1			3,21	1	3,21
				186				1			10.12	1	10.12
			00	120			I I	1			Q / E	1	Q / E
			50	130				1			0,45	1	0,45
				186			2	1		4,22	3,66	3	4,22
			103	138			I I	1			6,58	1 1	6,58
			150	186			I I	1			9.02	1	9.02
			133	100			I I	-			5,02	-	5,02
			166	186				3			6,94	3	6,94
			586	186				2			6,62	2	6,62
			7/3	145				1			2,20	1	2,20
			743	145				1			2,20	1	2,20
			810	186			1	3		2,09	5,94	4	5,94
				194			I I	1			3,15	1 1	3,15
		SmD1	00	1/0			I I	1			2 10	1	2 10
		511101	50	140				1			3,10		3,10
		SmG	846	13		1			0,11			1	0,11
		Snt309	490	72				1			0,43	1	0,43
		Snu114	325	173	12 1	8	22	13	822	8 1 3	7 04	44	8.22
		5110114	323	1/3	1.0,1				3 2 2	0,13	7,04	44	0,22
			333	1/3	18,4	4	9	4	/,21	8,32	5,39	1/	8,32
			334	173	17,8		1	3		6,62	8,38	4	8,38
			010	E0	,-			1		1 40	3 17	,	2 17
			010	55				1		1,47	3,17	<u> </u>	3,17
				60			4	1		6,13	4,46	5	6,13
			1209	669	19,6		I I	1			0,95	1 1	0,95
			1200	055	2/ 0		1			0.97	.,	1	0.97
		62	2235		24,0		*		0.00	0,07			0,07
		Spp2	835	14		1			0,32			1	0,32
		Syf1	300	2			1			0,08		1	0,08
	PrnQ	Brr2	510	152			1			0.14		1	0.14
	riha	0112	213	152						0,14		1	0,14
		Cusi	466	128			2	2	3,23	1,24	2,61	5	3,23
			468	128			1	1		0,38	5,52	2	5,52
			402	179				1		,	2 21	1	2 21
		11.1.40	474	120				1			3,31		3,31
		Hsh49	371	147				1			2,10	1	2,10
			429	101				1			2,02	1	2,02

						9	pectral cour	nt		Score _{max}		Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
		•	462	39		1		1	1,39		1,59	2	1,59
			468	204		2	4	6	12.40	3.63	4.81	12	12.40
				208		2	5	6	3 70	4 70	5.83	13	5.83
			475	200		-	1	1	5,70	0.18	2 54	20	2 54
			475	204			3	5		0,10	3 61	8	3 61
			402	208		1	5	12	0.15	0,70	7.01	14	7.01
		1001	492	208		1		15	0,15		1,01	14	1,01
		Leal	107	215				1			1,72	1	1,72
			115	194			-	1	2.45	2.05	1,75	1	1,75
				215		3	5	8	3,15	2,06	11,/1	16	11,/1
				216				1			1,38	1	1,38
			121	215		1		2	3,07		3,26	3	3,26
				232				1			1,81	1	1,81
			140	2				1			7,02	1	7,02
		Msl1	115	2		1		6	12,81		10,88	7	12,81
			121	2				4			4,11	4	4,11
			124	2				8			5,13	8	5,13
		Prp11	58	11				3			6,61	3	6,61
				173				9			11,12	9	11,12
			61	173				1			2,35	1	2,35
				175			3			1,26		3	1,26
			371	11				1			12,95	1	12,95
		Prp2	235	83			1			0.94	,	1	0.94
		Prp21				23	72	139	18.44	12.85	10.71	234	18.44
		Rse1	462	1176		1	5	3	0.71	6.80	8.97	9	8.97
			492	1001		-	-	3		.,	6.37	3	6.37
				1184				4			5 39	4	5 39
		SmB	225	2107		1		2	1.00		2,55	3	2,55
		5110	233	62		1		1	1,05		2,35	1	2,55
			220	60				1			7,34 2 ⊑0	1	4,54 2 E 0
			238	69				2			2,38	2	2,30
			271	120				2			5,17	2	5,17
			371	138				3			12.02	3	7,73
			100	180				4			12,93	4	12,93
			466	117				1			2,87	1	2,87
			468	11/			2			1,78		2	1,78
		SmD1	360	128				1			2,35	1	2,35
			371	128			1	5		0,66	4,46	6	4,46
				129				1			2,25	1	2,25
				140				4			4,98	4	4,98
		Yju2/Cwc16	371	68				1			2,32	1	2,32
	Rds3	Clf1	42	640		1	1	3	3,50	0,50	5,76	5	5,76
		Hsh155	29	276	43,7			3			5,61	3	5,61
			53	455	20,3	3			10,29			3	10,29
				500	13,5	4			8,27			4	8,27
				511	19,2	2		3	0,77		8,47	5	8,47
			56	511	19,3			3			9,22	3	9,22
		Prp2	42	10				3			3,45	3	3,45
		Ysf3	13	9	16.6		1			0.14	,	1	0.14
	Rse1	Brr2	556	304				2		,	6,29	2	6,29
				414				7			8.66	7	8.66
				417				1			3.42	1	3.42
				967	83.3			1			6.22	1	6.22
			1269	758				1			1 69	1	1 69
			1205	795				1			4 89	1	4 89
		Bud13/Cwc26	1269	115				1			5 69	1	5.69
		Cus1	1149	347		1	2	-	4 32	4 68	3,05	3	4 68
		CUJI	1342	245		2	11	10	1.01	7 20	11 47	37	11 47
			1342	245		5	19	Ŕ	6.41	12 16	11 56	32	17 16
		Cwc15	557	12				2	0,41	12,10	2 22	2	2 20
		Cwc24	12/17	107				2			3,50	5	2,50
		UWU24 Hch155	1042	10Z	22.6		2	1		0.52	3,90	3	3,90
		11311133	1260	511	22,0		2	1		0,52	2,40	3	2,40
			1209	505				4 E			15.04	4	15.04
				595				2			15,04	5	15,04
				712				2			4,50	2	4,50
			42.42	713				4			7,49	4	7,49
			1342	/13				1			5,21	1	5,21
		Hsh49	1176	39		4	2	8	5,21	0,44	3,10	14	5,21
		MsI1	1001	2		1			1,63			1	1,63
		Prp8	1269	2080				1			8,87	1	8,87
				2097				1			7,64	1	7,64
		Prp9	1001	492				3			6,37	3	6,37
			1176	462		1	5	3	0,71	6,80	8,97	9	8,97
			1184	492				4			5,39	4	5,39
		Snt309	1057	48		1			1,68			1	1,68
		Spp2	374	38				6			12,26	6	12,26
				83				1			4,28	1	4,28
	SmB	Cef1	76	187		1			0,95			1	0,95
		Cus1	117	128		1		1	1,46		4,59	2	4,59
			138	83				2			4,68	2	4,68
				86				1			1,97	1	1,97
				95			1	2		0,44	8,99	3	8,99
				102				4			8,02	4	8,02
			145	83				1			2,97	1	2,97
			186	79				1			3,62	1	3,62
					•	•			•				

					S	pectral cour	nt		Score _{max}		Total	Best
Type Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Scoremax
			83				1			4.86	1	4.86
			102				1			7 29	1	7 29
	Hch155	76	102		1		-	0.72		1,25	1	0.72
	121122	76	225		1			0,75	2.04		1	0,75
		186	325			2			3,04		2	3,04
	lsy1	100	106		1			1,19			1	1,19
	Lea1	76	125			3	11		1,57	8,77	14	8,77
	Msl1	105	2		2			1,64			2	1,64
		114	2				1			1,59	1	1,59
		124	2				1			1,92	1	1,92
		138	2				2			4.30	2	4.30
		186	2			1	_		0.03	.,	1	0.03
	Drn11	138	103			-	1		0,00	2.54	1	2 5 4
	TIPII	145	103				1			1 21	1	2,54
		145	105				1			1,21	1	1,21
		180	126				1			2,38	1	2,38
	Prp19	55	378		1			3,42			1	3,42
		60	378		2	3	1	4,83	2,16	0,94	6	4,83
	Prp21					1	1		1,50	1,62	2	1,62
	Prp45	131	71			2			1,55		2	1,55
		132	71		1			1,09			1	1,09
		138	60				4			5,94	4	5,94
			71		2	4	5	7.44	5.86	9.06	11	9.06
		145	71		_		1	.,	-,	7 76	1	7 76
		196	60				2			5.27	2	5,70
	Drn 46	120	210				1			3,37	1	3,37
	FIP40	130	210				1			3,70	1	3,70
	Dane	190	319							4,93	1	4,93
	ыря	138	90				1			3,21	1	3,21
			98				1			8,45	1	8,45
			103				1			6,58	1	6,58
		145	743				1			2,20	1	2,20
		186	90				1			10,12	1	10,12
			98			2	1		4,22	3,66	3	4,22
			159				1			9,02	1	9,02
			166				3			6.94	3	6.94
			586				2			6.62	2	6.62
			810			1	3		2.09	5.94	4	5 94
		194	810			_	1		_,	3 15	1	3 15
	Prn9	65	235		1		2	1.09		2 35	3	2 35
	1105	05	200		-		1	1,05		2,55	1	2,55
		60	230				1			2,30	1	2,38
		00	255				1			4,54	1	4,54
			238				2			5,17	2	5,17
		117	466				1			2,87	1	2,87
			468			2			1,78		2	1,78
		138	371				3			7,73	3	7,73
		186	371				4			12,93	4	12,93
	SmD1	138	128				2			3,71	2	3,71
		186	129				1			2,24	1	2,24
	SmD2	65	82				10			3,89	10	3,89
	SmD3	19	79	15,3			1			2,33	1	2,33
		39	2				1			4,88	1	4,88
		105	2				2			6.85	2	6.85
			79			1	1		0.30	1 36	2	1 36
			85		2	5	3	236	7 5 8	7.24	10	7.58
			86		-	5		2,50	2 20	1,24	12	1,50
	Cou114	76	60			1	8		1.96	4,40	15	1.96
	5110114	105	00			1	2		1,80	7.20	1	1,80
		105	99				2			7,28	2	7,28
			159			4	5		4,15	3,67	9	4,15
		186	617				1			4,88	1	4,88
	Syf2	117	14				1			2,79	1	2,79
	Yju2/Cwc16	105	2				1			1,39	1	1,39
SmD1	Cus1	128	83				1			4,47	1	4,47
			102				3			8,62	3	8,62
	Cwc27	140	216		1			2,77			1	2,77
	Hsh155	128	158				2			6,46	2	6,46
			736		1			3,09			1	3,09
		129	158				1			3,09	1	3,09
	Prp2	128	756				1			2.24	1	2.24
	Prp8	140	98				1			3.18	1	3.18
	Prp9	128	360				1			2.35	1	2.35
	10 °	0	371			1	5		0.66	4 46	6	4 46
		170	271				1		0,00	2 25	1	2,50
		140	371				1			1 00	1	4.00
	SmP	120	120							4,30	4	4,50
	SIIID	128	138							3,/1	2	3,/1
	6	129	186						0.00	2,24	1	2,24
	SmD2	54	82			1	9		0,29	4,32	10	4,32
		111	59				3			5,09	3	5,09
		128	27				4			4,84	4	4,84
	SmD3	128	2				1			2,95	1	2,95
	Snu114	128	356		1	1	1	3,03	0,60	1,77	3	3,03
			397		1	3	3	6,12	5,66	9,82	7	9,82
		129	397				1			4,30	1	4,30
		140	356		2			1,44			2	1,44
			397			4	3		3,66	5,35	7	5,35
	Yju2/Cwc16	128	74				1			2,94	1	2,94
1		-										

						5	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
турс	110tem 1	110tem 2	Incolute 1	11031000 2	~	5001	3012	5005	3001	3012	5005	spectrareoune	JCOICmax
			140	74				1			1,97	1	1,97
	SmD2	Brr2	59	1904			1			2,76		1	2,76
		SmB	82	65				10			3 89	10	3 89
		Sind Cu D4	02	120				10			3,05	10	5,05
		SmD1	27	128				4			4,84	4	4,84
			59	111				3			5,09	3	5,09
			82	54			1	9		0.29	4.32	10	4.32
		(nn)	80	2			1	-		0,21	.,==	1	0.21
		shhz	80	э			1			0,21		1	0,21
	SmD3	Cef1	85	321		1			0,46			1	0,46
		Cus1	2	79				17			9.62	17	9.62
			-	00				4			0.14	-	0.14
				65				4			9,14	4	9,14
				86				2			4,62	2	4,62
				102				1			3.26	1	3.26
			05	00				1			1.00	1	1.00
			85	80				1			1,90	1	1,90
			86	83				2			6,19	2	6,19
		Msl1	85	2				1			4 79	1	4 79
		CD	25	20				-			4.00	-	1,75
		SILIB	2	39				1			4,88	1	4,88
				105				2			6,85	2	6,85
			79	19	15.3			1			2.33	1	2.33
				105	,-		1	1		0.20	1.26	-	1.26
				105			1	1		0,50	1,50	2	1,50
			85	105		2	5	3	2,36	7,58	7,24	10	7,58
			86	105			5	8		3.30	4.46	13	4.46
		CmD1	20	120			-	1		-,	2.05	1	2.05
		SHIDT	2	120				1			2,95	1	2,95
		SmG	32	9	16,5		8			4,92		8	4,92
		Snu114	32	558	16.1			2			5.84	2	5.84
			00	150	12.6	10	15	06	16.46	6 72	0.00	121	16.46
			65	108	^{13,0}	10	1.2	90	10,40	0,72	9,09	121	10,40
			86	159		1	4	11	4,04	4,51	6,97	16	6,97
	SmF	Cus1	6	39		4	2	10	2.02	2.30	4.35	16	4.35
			0	40				16	0.96	0.64	5.50	10	- ,55 - E E O
				40		1	1	10	0,80	0,64	5,50	10	5,50
				53				1			1,87	1	1,87
				58				1			2.86	1	2.86
				79		2			3 36		,	2	3 36
				75		2			5,50			2	3,30
		Prp2	1	14		1			0,82			1	0,82
		SmG	6	8		2	7	30	15,35	6,68	11,58	39	15,35
				13				2			2.85	2	2.85
				15				-	0.04	0.01	2,00	2	2,00
				14		1	1	1	0,94	0,01	1,72	3	1,72
	SmF	Cus1	20	58			2			2,80		2	2,80
	SmG	Clf1	1	668		1			0.08			1	0.08
	51110	Circ1	-	70		-	2	12	0,00	2.00	0.01	15	0,00
		Cusi	2	79			2	13		3,68	9,91	15	9,91
				83				1			3,09	1	3,09
			8	2		2			1.18			2	1.18
			-	70		1			2,07			1	2,07
				79		1			5,97			1	5,97
				83			1	1		1,39	2,50	2	2,50
			24	16			2	3		2.89	8.83	5	8.83
		Cwc2	Q	310			2			1 04		2	1 04
		CWCZ	0	510			2			1,04		2	1,04
		lsy1	8	104				1			2,89	1	2,89
		Prp19	24	130		1			0.98			1	0.98
		Drng	12	946		1			0.11			1	0.11
		FIPO	13	840		1	-		0,11			1	0,11
		SmD3	9	32	16,5		8			4,92		8	4,92
		SmE	8	6		2	7	30	15,35	6,68	11,58	39	15,35
			13	6				2	,	· ·	2.85	2	2,85
			15	0				2			2,05	2	2,05
			14	6		1	1	1	0,94	0,01	1,72	3	1,72
	Snt309	Brr2	94	748			1			0,55		1	0,55
		Cof1	26	187				1		· ·	1 36	1	1 36
		CELL	20	107				1			1,50	-	1,50
		Clf1	94	670				1			4,05	1	4,05
		Prp19	11	135		1			1,31			1	1,31
			25	107		12	3	8	10.81	8.62	13.48	23	13 48
			25	107		12	5		10,01	0,02	13,40	25	13,40
				108		12	9	9	14,90	10,62	17,25	55	17,25
				120		4	2	4	5,76	4,11	7,08	10	7,08
			26	130		1	1	1	0.24	2.43	6.54	3	6.54
			20	100		2	-	-	4.21	2,10	0,51	4	4,21
			=	139		-	∠		4,21	5,59		4	4,21
			32	107		2		12	4,50		13,91	14	13,91
			46	107		1	4		1,70	10,80		5	10,80
			-	102		۵	6	٥	9.75	5 /1	5 5 1	24	0 75
				108		9	0		5,75	5,41	5,51	24	9,73
			48	107		6	3	11	6,46	1,19	8,82	20	8,82
				108				1			12.06	1	12.06
			67	107		7	1	10	14.65	212	0 OF	21	1/65
			07	107		,	4	10	14,05	5,45	9,03	21	14,05
			72	107			1			0,21		1	0,21
		Prp8	72	490				1			0,43	1	0,43
		Rse1	10	1057		1			1 6 9		.,	1	1 60
	Ca111	Dard Dard	40	1037		1			1,00				1,00
	SNU114	BLLT	955	2							5,16	1	5,16
				7				1			4,08	1	4,08
		Clf1	627	670				1			0.28	1	0.28
		Cure1 F	527	4.45		4		¹	2.47		0,20	4	0,20
		CWC15	59	145		1			3,47			1	3,47
				150				2			3,96	2	3,96
				151				1			2.82	1	2.82
			60	140		1		1	E 70		2,02	4	E 70
			60	140		1			5,/8		L _	1 ¹	5,/8
				145		1	2	1	0,63	4,30	5,72	4	5,72
				150		4	1		4.12	0.67		5	4.12
				151		2		2	0.75	7 00	8 57	0	0.75
				101		4	4	3	9,75	7,60	0,57	9	9,75
			72	150		1			2,10			1	2,10
				151				4			13,68	4	13,68
			81	150				1			1 79	1	1 79
			01	150							1,75	1 4.4	1,/5
l				151	I	l	I	14	I		12,86	14	12,86

						9	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Scoreman
		Cwc21	955	12		6	2	6	933	5 91	12 44	. 14	12 44
		0.0022	260	176	12.0	Ē	-	U U	4.02	5,51		-	4.02
		CWCZZ	509	170	15,0	5			4,02			5	4,02
		Ecm2	111	188			1			0,82		1	0,82
			746	353		1			0,46			1	0,46
		Prp2	115	40				1			2,34	1	2,34
			749	756	208,0			1			1,75	1	1,75
			955	632	149.8			2			7.04	2	7.04
				756	160.1			5			5.61	5	5 61
				750	147.7			1			5,01	1	5,01
				705	147,7			1			5,75	1	5,75
				851	135,7			3			6,41	3	6,41
		Prp46	81	173				2			1,64	2	1,64
		Prp8	59	810			1	1		1,49	3,17	2	3,17
			60	810			4	1		6,13	4,46	5	6,13
			173	325	13,1	8	23	13	8,22	8,13	7,04	44	8,22
				333	18.4	4	9	4	7.21	8.32	5.39	17	8.32
				334	17.8		1	3	, í	6.62	8 38	4	8 38
			669	1209	19.6		-	1		0,02	0.95	1	0.95
			005	1205	24.0		1	-		0.97	0,55	1	0,55
		6 P	955	1299	24,0		1			0,87		1	0,87
		SWB	60	76			1			1,86		1	1,86
			99	105				2			7,28	2	7,28
			159	105			4	5		4,15	3,67	9	4,15
			617	186				1			4,88	1	4,88
		SmD1	356	128		1	1	1	3,03	0,60	1,77	3	3,03
				140		2			1.44	,		2	1.44
			397	128		1	3	3	6.12	5.66	9 82	7	9.82
				120		-		1	,	3,30	4 20		4 30
				140						2.00	-4,50	-	4,50
		6		140			4	3	40.00	3,66	5,35	/	5,35
		SmD3	159	85	13,6	10	15	96	16,46	6,72	9,09	121	16,46
				86		1	4	11	4,04	4,51	6,97	16	6,97
			558	32	16,1			2			5,84	2	5,84
	Snu17/Ist3	Bud13/Cwc26	10	244			2			4,43		2	4,43
			133	169			2	1		4,84	2,06	3	4,84
				181			1	3		3.77	5.55	4	5.55
				212		2		2	6.15	6,66	6.20	11	6,66
			120	213		5	5	3	0,15	0,00	0,20	11	0,00
			138	169		4		4	3,39	6,93	8,23	15	8,23
				179			4	6		4,88	14,63	10	14,63
				180				2			6,88	2	6,88
				181		12	17	48	10,00	6,95	7,94	77	10,00
				201		1	4	16	4,09	3,27	9,39	21	9,39
				206		3		4	11,35		7,72	7	11,35
				213		5	6	5	8.35	7.00	9.39	16	9.39
			143	179		1	2	4	2 73	1 41	9.46	7	9.46
			145	101		1	2	2	2,75	0.52	1.95	,	1.95
				101			2	2		0,52	1,65	4	1,85
				201				6			5,09	6	5,09
				206		1			0,97			1	0,97
				213		1			0,90			1	0,90
		Cwc22	138	520				1			4,91	1	4,91
			143	530		1			2,93			1	2,93
		Ecm2	123	188		1			0,08			1	0,08
		Hsh155	10	500		2			14.08			2	14.08
			96	66		5	2	5	3 20	1 92	3 46	12	3 46
				104		-	-	2		_,	1 99	2	1 99
			102	104		14		2	15.45		4,55	14	15.45
			105	410	47.0	14			15,45			14	15,45
				455	17,8	в			12,69			0	12,69
		Prp45	143	287				1			2,17	1	2,17
	Spp2	Brr2	38	168				1			4,12	1	4,12
				445				1			5,97	1	5,97
				454				5			3,46	5	3,46
				769				4			10,34	4	10,34
			46	769				1			4,44	1	4,44
			58	91				3			15.52	3	15.52
				445		1		-	3.83		- / -	1	3 83
			68	454		2		1	1.65		1 27	3	1.65
			122	-34		-		1	1,05		6,60	1	6,60
			133	74				1			0,09	1	0,05
				85				1			3,50	1	3,50
				91				5	0,62		16,93	6	16,93
		Bud13/Cwc26	151	115				8			10,72	8	10,72
				120		13		17	12,61		9,30	30	12,61
				136		3		7	7,57		13,17	10	13,17
				146		2		1	0,69		2,77	3	2,77
			154	120		3			1.97			3	1.97
				136		-		1	,		5.35	1	5,35
				146		1		2	1 81		9.42	2	9.42
			101	1 - 10		¹		1	1,01		2,42	1	3,42
			101	151							2,59		2,59
		0164	182	136				2			4,89	2	4,89
			151	458				1			2,99	1	2,99
		Cwc24	151	4		1			0,05			1	0,05
		Prp2	82	336		2		5	1,67		7,16	7	7,16
				632				1			3,53	1	3,53
				750		1		1	1,21		3,93	2	3,93
				756		1			1,91			1	1,91
			83	336		1		4	2.28		2.76	5	2.76
				632		2		2	7 68		7 77	4	7 77
1				0.52	I	I -	1	- 1	1 ,00		1,11	1 7	,,,,

					S	pectral cour	nt		Score _{max}		Total	Best
Type Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
•	•	•	640		1			4,92			1	4,92
			756		1		2	3,40		2,90	3	3,40
		95	756				1	-, -		5.34	1	5.34
		154	840		1			2.83		- / -	1	2.83
		168	461		4		6	3.34		5.84	10	5.84
		181	461				1	5,5 .		2 80	1	2 80
	Prn8	14	835		1		-	0.32		2,00	1	0.32
	Pro1	20	274		1		6	0,52		12.26	6	12.26
	RSEI	30	374				1			12,20	0	12,20
	CD2	65	574			1	1		0.21	4,20	1	4,20
6.61	SmD2	3	80			1		0.50	0,21		1	0,21
Syf1	Brr2	362	259		1			0,58			1	0,58
	Cet1	//0	293		3	4	2	3,68	4,58	3,13	9	4,58
			294			1			1,22		1	1,22
			296			1			0,78		1	0,78
			312		1			2,91			1	2,91
	Clf1	524	180		3	5	3	5,16	2,04	5,79	11	5,79
		531	180		2		1	2,81		2,27	3	2,81
		650	304		8	3	5	16,67	5,17	6,87	16	16,67
		653	289				1			8,83	1	8,83
			304		12	10	54	17,65	11,96	13,33	76	17,65
	Cus1	146	317		4	5	3	15,41	11,09	10,86	12	15,41
			329				1			1,31	1	1,31
	Cwc2	424	320		4	1	3	5,37	5,03	3,68	8	5,37
		524	310				2			4,43	2	4,43
		531	310				1			1,35	1	1,35
	Cwc22	311	548			1			26,34		1	26,34
	lsv1	146	139		2			5.57			2	5.57
			143		2	4	1	5.24	4.45	4.06	7	5.24
		220	157		_	1	4	-,	0.70	9.62	5	9.62
			161		3	7	9	2.63	2 37	4 94	19	4 94
			171		9	6	1	4 61	5.04	2.46	16	5.04
		249	157			Ŭ	1	4,01	3,04	3 79	1	3 79
		245	137				2			5,75	2	5,75
		200	, ,		1	2	6	10.40	E 14	0.25	10	10.40
		526	27			5	0	10,49	5,14	9,55	10	10,49
			27		1	2	7	2,05	2.44	4 75	12	2,05
		42.4	40		2	5	, ,	2,57	2,44	4,75	12	4,75
	1 1	424	222		1	2	5	1,18	5,11	7,02	8	7,02
	Leal	32	232			1		4.07	2,40	1,79	2	2,40
	Ntc20	498	27		6		2	4,07		8,58	8	8,58
		558	27		2	2	2	1,41	1,40	5,11	6	5,11
	Pml1	372	153				1			1,13	1	1,13
	Prp11	424	192		1		4	2,48		7,93	5	7,93
	Prp21				4		12	3,40		6,01	16	6,01
	Prp8	2	300			1			0,08		1	0,08
	Syf2	362	11		3	4	8	7,31	2,06	5,86	15	7,31
			14		1		9	10,00		5,80	10	10,00
		413	23		1			9,20			1	9,20
			26		2	4	4	4,66	3,68	5,31	10	5,31
		424	26			1	1		1,10	3,29	2	3,29
		524	132				1			0,86	1	0,86
		531	121				3			9,05	3	9,05
	Yju2/Cwc16	790	234		1			1,32			1	1,32
Syf2	Cef1	159	240				1			3,73	1	3,73
			247			1			1,07		1	1,07
		173	239		3	1		4,95	0,55		4	4,95
			240		5	6	10	7,61	11,75	9,07	21	11,75
			247			4	6		3,71	6,44	10	6,44
			251		2	1	2	4,91	1,42	8,77	5	8,77
			259		1			0,55			1	0,55
	Clf1	121	180				8			9,41	8	9,41
		159	113		7	7	5	4,73	2,95	7,19	19	7,19
		173	25			4	6		2,24	4,57	10	4,57
			113		4		2	10,42	·	7,42	6	10,42
	Cwc15	9	102		1			0,13			1	0,13
	Ecm2	148	138		1			0.08			1	0.08
	lsv1	26	7		1	4	3	1.75	2.47	4.26	8	4.26
	- /		27		-	1	4	,	1.36	4.12	5	4,12
		173	42		1	2		5.98	1.83	,	3	5.98
	Prp11	26	192		2	3	5	3.34	5.17	6.42	10	6.42
	Prp21				-	1	1	.,	3.40	4.02	2	4.02
	Prp45	1	71			1	2			0.22	2	0.22
		142	36				1			1 02	-	1 02
		145	36		15	10	27	13 10	3.00	5 38	52	13 10
		151	36		4	5	10	12 24	4 37	18 80	19	18 80
	Prn46	1/5	56				1	,	,,,,	20,00	1	25,50
		145	67				1			3 17	1	2,52
			87		1		2	7 4 4		6.64	4	7 44
			22		2			2 20		0,04	2	2 20
	SmR	1/1	117		¹		1	3,50		2 70	1	2 70
	Svf1	11	362		3	А	8	7 31	2.06	5 86	15	7 31
	5911	1/	302		1	⁻	a	10.00	2,00	5,00	10	10.00
		14	JUZ //10		1		, ,	0,00		3,60	1	10,00
		25	410		2	4	4	5,20	2 60	E 21	10	5,20
1		20	415	I	²	1 4	1 4	4,00	3,00	5,51	10	3,51

						S	pectral cour	ıt		Score _{max}		Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
				424			1	1		1,10	3,29	2	3,29
			121	531				3			9,05	3	9,05
			132	524				1			0,86	1	0,86
		Yju2/Cwc16	11	22		1			1,04			1	1,04
	Yju2/Cwc16	lsy1	63	103			1			0,27		1	0,27
		Prp2	29	732		2			0,44			2	0,44
		Prp45	1	129		1			0,59			1	0,59
		Prp9	68	371				1			2,32	1	2,32
		SmB	2	105				1			1,39	1	1,39
		SmD1	74	128				1			2,94	1	2,94
				140				1			1,97	1	1,97
		Syf1	234	790		1			1,32			1	1,32
		Syf2	22	11		1			1,04			1	1,04
	Yst3	Cus1	12	102				1			3,31	1	3,31
			15	102		1		1	0,22		1,15	2	1,15
		Cwc22	15	203	147,7	1			0,49			1	0,49
		Hsh155	4	932	12.7		2			0,68		2	0,68
		0.1.2	12	932	12,7		3			3,56		3	3,56
		RdS3	9	13	16,6		1			0,14		1	0,14
Intra	Brr2	Brr2	1	2108			1	_		0,54		1	0,54
			2	28		1		7	4,24		6,67	8	6,67
				50				6			10,41	6	10,41
				74				1			1,99	1	1,99
				304				1			2,1/	1	2,17
				96/				1			4,29	1	4,29
				1437				2			2,83	2	2,83
				1623				1			2,94		2,94
			7	1634				4			9,97	4	9,97
			/	25				1			3,/5	1	3,/5
				50				2			4,06	2	4,06
			0	967				1			1,41	1	1,41
			9	91				1			2,74	1	2,74
			11	720				1			0,99	1	0,99
			25	7			2	1		1 47	3,75	1	3,75
				50			3	2		1,47	3,50	5	3,50
				59			1	1		0.74	2,26	1	2,26
				454			1	1		0,74	1 20	1	0,74
				1622			1	1		1 27	1,50	1	1,50
			20	1025		1	1	7	4.24	1,57	6.67	1	1,57
			20	50		1		, 0	4,24	274	0,07	0	0,07
				50			4	9		3,74	4,69	15	4,69
				71			1	2		1,55	E 74	2	1,33
				74 92				2			5,74	1	5,74
				02			1	1		0.30	3,57	1	0.39
				454			1			2 5 8		1	2.58
				454			±	1		2,50	10.20	1	10.20
			50	2				6			10,20	6	10,20
			50	7				2			4.06	2	4.06
				, 25			3	2		1 47	3 50	5	3 50
				28			4	9		3 74	4 89	13	4 89
				59		2	4	57	5.07	10.06	14.40	63	14.40
				71			2	8	-,	3.53	3.39	10	3.53
				74			2	13		7.80	9.88	15	9.88
				82				4		,	7.03	4	7.03
				85			1	4		0,48	6,86	5	6,86
				91			1	4		5,34	8,41	5	8,41
				967				1			1,11	1	1,11
				1623				1			3,23	1	3,23
				1634				1			4,28	1	4,28
			59	25				1			2,26	1	2,26
				50		2	4	57	5,07	10,06	14,40	63	14,40
				74		4	9	11	6,95	14,69	10,62	24	14,69
				82			1	7		0,59	9,87	8	9,87
				85			3	1		1,78	2,87	4	2,87
				91			1	7		7,99	19,64	8	19,64
			71	28			1			1,55		1	1,55
				50			2	8		3,53	3,39	10	3,53
				82			7	6		6,25	5,63	13	6,25
				85			6	3		5,97	4,96	9	5,97
				90			3	1		4,12	2,51	4	4,12
				91			4	4		5,55	9,23	8	9,23
			74	2				1			1,99	1	1,99
				28				2			5,74	2	5,74
				50			2	13		7,80	9,88	15	9,88
				59		4	9	11	6,95	14,69	10,62	24	14,69
				85		1	6	20	4,46	5,70	8,15	27	8,15
				90			2	3		0,97	4,30	5	4,30
				91			5	9		13,71	15,07	14	15,07
			82	28				1			5,97	1	5,97
				50				4			7,03	4	7,03
				59			1	7		0,59	9,87	8	9,87
l				71			7	6	l	6,25	5,63	13	6,25

_					٥	5	pectral coun	t		SCOLEmax		Iotai	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	A	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
				90			1	12		0,39	5,76	13	5,76
				91		2	6	19	4,57	8,99	13,27	27	13,27
				1051				1			1,49	1	1,49
			85	50			1	4		0,48	6,86	5	6,86
				59			3	1		1,78	2,87	4	2,87
				71			6	3		5,97	4,96	9	5,97
				74		1	6	20	4,46	5,70	8,15	27	8,15
				91		11	17	30	8,76	9,01	11,41	58	11,41
				454			2			0,25		2	0,25
			90	71			3	1		4,12	2,51	4	4,12
				74			2	3		0,97	4,30	5	4,30
				82			1	12		0,39	5,76	13	5,76
				454		1	6	5	1.51	2.79	4.69	12	4.69
			91	9				1	,	,	2.74	1	2.74
				28			1			0 39	,	1	0 39
				50			1	4		5 34	8 41	5	8 41
				59			1	7		7 99	19.64	8	19.64
				71			4	4		5 55	9.23	8	9.23
				74			5	9		13 71	15.07	14	15.07
				82		2	6	10	4 57	8 00	13,07	27	13.07
				02		11	17	20	976	0,00	11 /1	27 EQ	11 /1
				421		11	1/	1	8,70	9,01	5 50	1	11,41 E E0
				451				1		F 04	5,50	1	5,50
				445			2	2	1 7 4	5,94	4.21	2	5,94
			150	100	11.0	4		2	1,74		4,21	20	4,21
			152	190	11,8	1		20	0.51	1.24	21,00	20	21,08
			100	/1/	9,9	<u> </u>		2	0,51	1,34	2,54	5	2,54
			190	152	11,8			20		2.22	21,68	20	21,68
			2/1	304				ь		3,22	7,63		7,63
			275	351				1			1,03	1	1,03
			276	304				1			/,89	1	/,89
				380				1			14,08	1	14,08
				967	52,2			1			4,52	1	4,52
			304	2				1			2,17	1	2,17
				271			1	6		3,22	7,63	7	7,63
				276				1			7,89	1	7,89
				339		5	7	3	6,02	8,77	9,54	15	9,54
				414				2			1,99	2	1,99
				417			2	7		3,17	12,29	9	12,29
				967				1			1,95	1	1,95
				1372				1			12,26	1	12,26
				1529				2			10,19	2	10,19
				1634				1			2,70	1	2,70
			339	304		5	7	3	6,02	8,77	9,54	15	9,54
			351	271				1			1,03	1	1,03
				398				1			1,86	1	1,86
				417				1			1,71	1	1,71
			364	1529				1			6,89	1	6,89
			380	276				1			14,08	1	14,08
			390	398			1			0,09		1	0,09
				417			2	2		5,20	1,46	4	5,20
			398	351				1			1,86	1	1,86
				390			1			0,09		1	0,09
				967				1			3,64	1	3,64
			414	304				2			1,99	2	1,99
				417		3	7	10	9,40	3,59	6,31	20	9,40
				967		2	1	13	2,60	0,39	8,45	16	8,45
			417	304			2	7		3,17	12,29	9	12,29
				351				1			1,71	1	1,71
				390			2	2		5,20	1,46	4	5,20
				414		3	7	10	9,40	3,59	6,31	20	9,40
				967		5	10	25	5,15	7,58	8,61	40	8,61
			431	91				1			5,50	1	5,50
			445	91			2			5,94		2	5,94
				457	21,5		2			1,49		2	1,49
			454	25			1			0,74		1	0,74
				28			1			2,58		1	2,58
				85			2			0,25		2	0,25
				90		1	6	5	1,51	2,79	4,69	12	4,69
			457	445	21,5		2			1,49		2	1,49
			546	549	8,3	24	54	12	14,56	9,53	11,58	90	14,56
			549	546	8,3	24	54	12	14,56	9,53	11,58	90	14,56
				584	13,3	7	4	8	11,10	9,36	9,50	19	11,10
				1904	21,4	7	8	51	18,55	7,94	9,46	66	18,55
			564	611	9,9		9	8		8,38	11,63	17	11,63
				1138	20,9	2	8	95	2,38	4,23	10,34	105	10,34
			584	549	13,3	7	4	8	11,10	9,36	9,50	19	11,10
				597	13,3	2	2	7	6,03	8,55	15,58	11	15,58
			597	584	13,3	2	2	7	6,03	8,55	15,58	11	15,58
				1589	19,0	5	6	69	11,85	11,53	25,58	80	25,58
				1896	13,4	12	10	29	3,90	1,34	3,41	51	3,90
				1904	20,8	3	13	15	2,55	3,42	4,62	31	4,62
			611	564	9,9		9	8		8,38	11,63	17	11,63
				1138	22,4			4			10,10	4	10,10

Г

						5	pectral cour	nt		Score _{max}		lotal	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Á	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
			659	967	22,4			1			2,35	1	2,35
			717	168	9,9	1	2	2	0,51	1,34	2,54	5	2,54
				720	4,9	1	7	9	5,58	0,65	3,77	17	5,58
			720	11				1	ŕ	,	0.99	1	0.99
				717	4.9	1	7	9	5.58	0.65	3.77	17	5.58
				748	17.1	-	4	10	5,50	3 83	5.87	14	5,80
			749	740	17,1		4	10		2 92	5,07 E 97	14	5,07
			740	720	17,1		4	10		3,65	3,87	14	3,87
				/58	15,6			Z			1,11	2	1,11
				760	18,2		1			3,01		1	3,01
				769	25,3		1			1,75		1	1,75
				795	15,6	17	68	128	10,40	6,59	7,71	213	10,40
				1088	14,8			2			1,49	2	1,49
			758	748	15,6			2			7,77	2	7,77
				778	16,5		8	28		7,79	11,55	36	11,55
				782	16.8		12	1		2 09	1 53	13	2 09
				705	0.2	11	21	5	7 3 2	4 1 2	3.85	37	7 3 2
			760	735	10.2		1	5	7,52	4,12	5,65	57	7,52
			760	740	16,2		1			5,01		1	5,01
			769	748	25,3					1,75		1	1,75
				778	13,2		2	1		3,98	1,63	3	3,98
			778	758	16,5		8	28		7,79	11,55	36	11,55
				769	13,2		2	1		3,98	1,63	3	3,98
				795	13,5	3	12	9	4,65	4,52	5,37	24	5,37
			782	758	16,8		12	1		2,09	1,53	13	2,09
				795	10.5		7	6		13,60	9,20	13	13,60
			795	748	15.6	17	68	128	10.40	6.59	7.71	213	10.40
				758	9.2	11	21	5	7 3 2	4 1 2	3.85	37	7 3 2
				750	1) E	2	12	0	1,52	4 5 2	5,00	24	,,52 E 37
				7/0	10,5	3	- 12	Э с	4,05	4,52	0.20	12	3,37
			0.07	/82	10,5		'	D		13,00	9,20	13	13,60
			967	2				1			4,29	1	4,29
				7				1			1,41	1	1,41
				28				1			10,20	1	10,20
				50				1			1,11	1	1,11
				276	52,2			1			4,52	1	4,52
				304				1			1,95	1	1,95
				398				1			3,64	1	3,64
				414		2	1	13	2,60	0,39	8,45	16	8,45
				417		5	10	25	5,15	7,58	8,61	40	8,61
				659	22.4			1	ŕ	,	2.35	1	2.35
			1042	1055	20.3		1 1	-		1.60	_,	1	1 60
			1051	82	,-		-	1		_,	1 / 0	1	1 / 9
			1051	01		1		2	1 74		1 21	6	1,45
				1055	EQ	1		12	2.44	2 76	6.40	10	4,21
			1055	1033	3,8	1	1	15	2,44	2,70	0,40	15	0,40
			1055	1042	20,3			40		1,60	6.40	1	1,60
				1051	5,8	1	5	13	2,44	2,76	6,40	19	6,40
			1088	748	14,8			2			1,49	2	1,49
			1138	564	20,9	2	8	95	2,38	4,23	10,34	105	10,34
				611	22,4			4			10,10	4	10,10
				1150	14,1	1	8	31	3,91	9,00	14,48	40	14,48
			1150	1138	14,1	1	8	31	3,91	9,00	14,48	40	14,48
				1187	15,1		2			0,96		2	0,96
				1634	57,5		1			1,42		1	1,42
			1158	1187	13.9		4	6		2.27	8.41	10	8.41
			1187	1150	15.1		2	-		0,96	-,	2	0.96
			1107	1158	13.0		-	6		2 27	8 /1	10	8 / 1
			1070	201	13,5			1		2,21	12 26	1	12.26
			13/2	1504	12.0			1			1 70	1	1 70
			1392	1504	12,8			1			1,78	1	1,/8
			1437	2				2			2,83	2	2,83
				25				1			1,30	1	1,30
				2116	16,9			3			6,61	3	6,61
				2121	16,5	7	14	74	14,39	7,39	13,36	95	14,39
			1441	2121	19,1			2			15,61	2	15,61
			1504	1392	12,8			1			1,78	1	1,78
			1529	304	,-			2			10,19	2	10,19
				364				1			6.89	1	6.89
			1589	597	19.0	5	6	69	11 85	11 53	25 58	80	25 58
			1000	1896	10.2	1	4	24	1 08	0.98	3 73	29	3 73
				1904	10,2	8		77	16.27	6 25	10 71	91	16.27
			1600	1624	1/ 5		**	6	10,27	0,20	0.10	6	0.10
			1600	1624	14,5			6		1 0 2	1 60	0	5,10
			1600	1054	14,4			1		1,02	4,02	5	4,02
			1023	2				T		4.27	2,94	1	2,94
				25						1,37	2.00	1	1,37
				50				1			3,23	1	3,23
			1634	2				4			9,97	4	9,97
				50				1			4,28	1	4,28
				304				1			2,70	1	2,70
				1150	57,5		1			1,42		1	1,42
				1600	14,5			6			9,18	6	9,18
				1603	14,4		3	6		1,02	4,62	9	4,62
			1896	597	13,4	12	10	29	3,90	1,34	3,41	51	3,90
				1589	10,2	1	4	24	1,08	0,98	3,73	29	3,73
				1904	14,9		4	6		3,36	5,90	10	5,90
			1904	549	21,4	7	8	51	18,55	7,94	9,46	66	18,55
				597	20,8	3	13	15	2,55	3,42	4,62	31	4,62
											•		

-			1		۰	3				Scoremax		i otai	Dest
Туре	Protein 1	Protein 2	Residue 1	Residue 2	A	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
				1589	19,2	8	11	72	16,27	6,25	10,71	91	16,27
				1896	14,9		4	6		3,36	5,90	10	5,90
			2070	2115	12,7		6	8		6,52	10,99	14	10,99
			2108	1			1			0,54		1	0,54
			2115	2070	12,7		6	8		6,52	10,99	14	10,99
				2121	17,3		5	4		2,09	2,43	9	2,43
			2116	1437	16.9			3		,	6.61	3	6.61
			2121	1437	16.5	7	14	74	14 39	7 39	13 36	95	14 39
				1441	19.1		- ·	2	1,55	1,00	15 61	2	15.61
				2115	173		5	4		2.09	2 43	9	2 43
	Pud12/Cwc26	Pud12/Cwc26	2	101	17,5		5	1		2,05	2,45	1	2,43
	Buu13/CWC20	Buu15/CWC20	15	101		1		1	0.21		3,08	1	3,08
			15	15		1			5.01			1	0,21
			10	21		1			5,91			1	5,91
			19	15		1			0,21			1	0,21
				41				1			1,56	1	1,56
			21	15		1			5,91			1	5,91
			24	35				3			3,80	3	3,80
				41				1			3,47	1	3,47
				53				1			2,49	1	2,49
			25	35		1	1	2	1,20	0,84	5,34	4	5,34
				41				1			2,07	1	2,07
			28	41		1		8	6,18		14,29	9	14,29
				53				6			6,54	6	6,54
			35	24				3			3,80	3	3,80
				25		1	1	2	1,20	0,84	5,34	4	5,34
				53				3			8,98	3	8,98
				61				1			3,56	1	3,56
			41	19				1			1,56	1	1,56
				24				1			3.47	1	3.47
				25				1			2.07	1	2.07
				23		1		8	6 18		14 29	<u> </u>	14 29
				52		-	4	0	0,10	2.00	12 17	12	12 17
				55			4	2		2 24	7.60	6	7.60
				61			5	5		3,34	7,09	0	7,09
				64				2		1,88	7.40	1	1,88
				68		1	1	2	4,67	1,93	7,43	4	7,43
				/2				1			3,22	1	3,22
			53	24				1			2,49	1	2,49
				28				6			6,54	6	6,54
				35				3			8,98	3	8,98
				41			4	9		3,09	12,17	13	12,17
				68			1	3		1,13	5,85	4	5,85
				115				1			2,39	1	2,39
			61	35				1			3,56	1	3,56
				41			3	3		3,34	7,69	6	7,69
				66		1			3,45			1	3,45
				68		2		7	7,24		5,57	9	7,24
				72				1			3,68	1	3,68
				115				3			4,79	3	4,79
			64	41			1			1.88	, -	1	1.88
				68		1	5	3	2.98	1.90	3.80	9	3.80
				97		-	-	1		_,	2.58	1	2.58
			66	61		1			3 4 5		_,	1	3 4 5
			68	41		1	1	2	4 67	1 93	7 43	4	7 43
			00	53		-	1	3	.,.,	1 13	5.85	4	5 85
				61		2	- ⁻	7	7 24	1,10	5 57	4	7 24
				51 01		1	5	2	2 00	1 00	2 20	6	2 00
				04		¹		5	2,30	1,30	3,00	1	3,0U 7 0 0
			77	97				1			20,10	1	20,10
			12	41				1			3,22	1	3,22
			07	01				1			3,08	1	3,08
			97	64				1			2,58		2,58
				68				1			7,93		7,93
				120				1			5,85		5,85
			101	2				1	40.00		3,08	1	3,08
				115		2		5	16,70		6,15	/	16,70
				120			2	1		1,30	4,37	3	4,37
			115	53				1			2,39	1	2,39
				61				3			4,79	3	4,79
				101		2		5	16,70		6,15	7	16,70
				120		6	10	20	2,96	9,61	6,67	36	9,61
				130		1	2	12	3,08	6,06	9,19	15	9,19
				136		3		7	7,16		9,97	10	9,97
			120	97				1			5,85	1	5,85
				101			2	1		1,30	4,37	3	4,37
				115		6	10	20	2,96	9,61	6,67	36	9,61
				130		3	13	36	11,28	6,89	10,21	52	11,28
				136		3	3	3	7,47	3,22	2,54	9	7,47
				146		1	2		8,97	5,49		3	8,97
				151		4			10.35	, -		4	10.35
			130	115		1	2	12	3.08	6.06	9.19	15	9,19
				120		3	13	36	11.28	6.89	10.21	52	11.28
				146		-		2	,0	2,35	7.00	2	7.00
			136	115		3		7	7.16		9.97	10	9,97
			100	120		3	3	3	7.47	3.22	2.54	9	7,47
				-20		-	· - I	-	,.,	-,	_,_,,,	-	.,.,

Г

						9	Spectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Scoreman
71: -				146			1	13		0.49	11.3/	1/	11.3/
				140			1	15		0,49	11,54	14	11,54
				151		4		2	8,47		2,60	6	8,47
			146	120		1	2		8,97	5,49		3	8,97
				130				2			7.00	2	7.00
				126			1	12		0.40	11 24	14	11.24
			454	130			1	15	40.05	0,49	11,54	14	11,54
			151	120		4			10,35			4	10,35
				136		4		2	8,47		2,60	6	8,47
			179	181			5	2		4.64	5.41	7	5.41
				201			_	1		, -	5 33	1	5 33
				201		-	6	12	6 72	8.07	6.07	24	9,55
				206		5	0	15	0,72	8,97	0,97	24	8,97
				256			1	4		0,05	9,52	5	9,52
			180	206				1			7,72	1	7,72
				256				1			4,92	1	4,92
			181	179			5	2		4 64	5 41	7	5 41
			101	200		6	0	-	10.07	5,70	0,72		10.07
				206		0	9	54	19,67	5,70	0,75	49	19,67
				256				5			7,16	5	7,16
			201	179				1			5,33	1	5,33
				206		3	6	24	17,55	10,00	11,33	33	17,55
				213				7			9 31	7	9 31
				213				2			9 21	,	9.01
				217		_		2			0,21	2	0,21
			206	179		5	6	13	6,72	8,97	6,97	24	8,97
				180				1			7,72	1	7,72
				181		6	9	34	19,87	5,70	8,73	49	19,87
				201		3	6	24	17.55	10.00	11.33	33	17.55
				212				2	,55	5 5 2	6.91	1	6.21
				213				2 0		3,30	0,01	4	0,01
				21/			3	×		4,81	8,80	11	8,80
			213	201			1	7			9,31	7	9,31
				206			2	2		5,58	6,81	4	6,81
			217	201			1	2			8 21	2	8 21
			217	201			2	0		4.01	0,21	11	0,21
				206			5	°		4,61	0,00	11	8,80
			256	179			1	4		0,05	9,52	5	9,52
				180				1			4,92	1	4,92
				181				5			7,16	5	7,16
	Bud31	Bud31	5	20		1			2 5 3			1	2 53
	50051	54451	10	20		1			1 02			1	1.02
			10	20					1,52			1	1,52
			20	5		1			2,53			1	2,53
				10		1			1,92			1	1,92
			37	44	10,2		1			0,28		1	0,28
			44	37	10.2		1			0.28		1	0.28
			69	71	5.8	1			0.53			1	0.53
			71	/1 (0	5,8	1			0,55			1	0,55
			/1	69	5,8	1			0,53			1	0,53
	Cef1	Cef1	22	59	12,4	1	3		2,22	6,24		4	6,24
			59	22	12,4	1	3		2,22	6,24		4	6,24
			180	187				1			7.80	1	7.80
			187	180				1			7 80	1	7 80
			107	201		2		-	1.01		7,00	2	1,00
				201		2			1,81			2	1,81
			201	187		2			1,81			2	1,81
			239	247	13,0	1		1	0,64		3,78	2	3,78
				251	19.0			1			6.43	1	6.43
			240	247	11.0	7	10	11	6.18	3 89	4.69	28	6.18
			240	251	16.0	,	6	2	11 12	5,05	F 20	10	11 12
				251	10,9	2	0	2	11,15	3,50	3,20	10	11,15
			247	239	13,0	1		1	0,64		3,78	2	3,78
				240	11,0	7	10	11	6,18	3,89	4,69	28	6,18
				251	6,2		2			1,16		2	1,16
				257	15.3		1			0,06		1	0,06
				259	18 5		1			0.19		1	0 19
			251	200	10,0		*	1		5,15	6 17	1	6 43
			201	239	13,0	-		1	11.10	F 65	0,43	1	0,43
				240	16,9	2	6	2	11,13	5,98	5,20	10	11,13
				247	6,2		2			1,16		2	1,16
			257	247	15,3		1			0,06		1	0,06
			259	247	18.5		1			0.19		1	0.19
			202	206	/-	10		22	19 98	1.64	14 00	45	19.02
			200	200		10		27	10.00	1.64	14.00	45	10.00
			296	293		10	2	33	19,98	1,04	14,00	45	19,98
				308			1			0,26		1	0,26
			305	312		2	1		4,54			2	4,54
				314		4			12,62			4	12,62
				318				2			6.69	2	6.69
				252		1	2	-	1 0/	1 00	2,00	2	1 0/
				333		¹		-	1,54	1,50	4.22	د ۸	1,74
				356			.	1			4,33	1	4,33
				359			1	2		0,23	2,73	3	2,73
			308	296			1			0,26		1	0,26
				321				1			3,27	1	3,27
				353		1		1	6.11		3.15	2	6.11
				350		1		- -	2 2 2 2		3,13	1	2,11
			242	205		1 ¹			2,23				2,23
			312	305		2			4,54			2	4,54
				314		2			3,18			2	3,18
				318		4		5	5,43		6,08	9	6,08
				353				2			8,80	2	8,80
				356		1			0.73		-,	1	0.73
				350		1	1		1 00	1.00		- -	1 00
			~ ~ ~	559			[⊥]		12.00	1,09			12.60
			314	305		4			12,62			4	12,62
				312		2			3,18			2	3,18
				321		5		1	7,68		4,29	6	7,68

						S	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Scoreman
7.			318	305				2			6.69	. 2	6.69
			-10	212		Δ		5	5.43		6.08	9	6.08
				271		2	1	1	1 62	3 63	1 01	7	J 01
				521		2	1	4	1,05	5,05	4,01	1	4,01
				335				1			1,76	1	1,76
				353				1			3,81	1	3,81
			321	308				1			3,27	1	3,27
				314		5		1	7,68		4,29	6	7,68
				318		2	1	4	1,63	3,63	4,01	7	4,01
			335	318				1			1,76	1	1,76
			353	305		1	2		1,94	1,90		3	1,94
				308		1		1	6,11	-	3,15	2	6,11
				312				2			8.80	2	8.80
				318				1			3 81	1	3 81
				350		1	1	1	0.24	1 70	2 12	3	2 4 2
				339		1	1	1	0,24	1,75	2,42	5	2,42
				364		2	2	3	0,84	0,85	1,96	/	1,96
			356	305				1			4,33	1	4,33
				312		1			0,73			1	0,73
				364				1			1,53	1	1,53
			359	305			1	2		0,23	2,73	3	2,73
				308		1			2,23			1	2,23
				312		1	1		1,80	1,09		2	1,80
				353		1	1	1	0.24	1.79	2.42	3	2.42
			364	353		2	2	3	0.84	0.85	1 96	7	1 96
			554	356		-		1	0,04	3,35	1 53		1 5 2
	Clf1	Clf1	24	220				Ę			2 75	5	2,55
	CIT	CIT	24	20		1		1	0 47		2,75	2	2,13
			25	111		1 ¹			0,47		3,22	<u>_</u>	5,22
			28	24				5	a /-		2,75	5	2,75
			111	25		1		1	0,47		3,22	2	3,22
			281	304		1		1	0,19		4,13	2	4,13
			304	281		1		1	0,19		4,13	2	4,13
			352	399				2			5,61	2	5,61
			399	352				2			5,61	2	5,61
			529	532		11	4	9	5,44	3,71	4,44	24	5,44
			532	529		11	4	9	5.44	3.71	4.44	24	5.44
			605	679		1			1.17	,	,	1	1.17
			635	640		-		3			6 37	3	6.37
			640	625				2			6.27	2	6.27
			040	669				1			2.57	1	0,57
				008		2		2	F 20		2,34	1	2,34
				679		2		2	5,39		7,80	4	7,80
			668	640				1			2,54	1	2,54
				673		5	3	26	11,23	4,56	9,23	34	11,23
				679				2			4,00	2	4,00
			670	679		3		2	0,80		3,82	5	3,82
				680				1			0,47	1	0,47
			673	668		5	3	26	11,23	4,56	9,23	34	11,23
			679	605		1	_	-	1 17	,	-, -	1	1 17
			075	640		2		2	5 30		7 80	1	7.80
				668		-		2	5,55		4.00	2	4.00
				670		2		2	0.00		2,00	-	4,00
				670		5	2	2	0,80	2.40	3,62	5	5,62
				682		4	3	1	5,77	2,48	2,21	8	5,77
			680	670				1			0,47	1	0,47
			682	679		4	3	1	5,77	2,48	2,21	8	5,77
	Cus1	Cus1	2	58		1			0,87			1	0,87
			39	41		4	11	22	2,49	4,59	6,67	37	6,67
				48		2	5	18	0,94	4,56	8,19	25	8,19
				50			2			0,43		2	0,43
				53		1	3	7	1,97	1,07	5,10	11	5,10
			40	53				1			5,61	1	5,61
			41	39		4	11	22	2.49	4.59	6.67	37	6.67
				50				1	,	,	0.80	1	0.80
				53		1	7	16	5.65	4 56	7 37	24	7 37
			10	20		2	,	10	0.04	4,50	9 10	24	9 10
			40	53		E E	2	20	264	4,30	11 00	23	0,19
				55		0	5	22	2,64	5,74	11,98	51	11,98
				58		1	5	1	1,95	1,58	2,06	/	2,06
				61			1			0,49		1	0,49
				64				3			3,01	3	3,01
			50	39			2			0,43		2	0,43
				41				1			0,80	1	0,80
				58			1	9		0,41	3,33	10	3,33
				64			1			0,30		1	0,30
			53	39		1	3	7	1,97	1,07	5,10	11	5,10
				40				1			5,61	1	5,61
				41		1	7	16	5.65	4.56	7.37	24	7.37
				48		6	3	22	2 64	5 74	11 98	31	11 98
				61		5	11	74	11.87	2 66	9.67	90	11 87
				61		5	0	10	8 61	7 22	9.56	33	0.56
			EQ	04 2		1		1.7	0,01	1,20	5,50	1	0.07
			30	40			-	1	1.05	1 5 0	2.00	-	0,07
				48		1 ¹	5		1,95	1,58	2,06	10	2,06
				50		-		9		0,41	3,33	10	3,33
				64		6	9	10	5,40	4,87	9,31	25	9,31
			~	83				1		0.40	2,06		2,06
			61	48		-	1			0,49	a	1	0,49
				53	I	5	11	/4	11,82	2,66	9,67	90	11,82

						S	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
Type	Hotem 1	110tell12	nesidae 1	The statue 2	~	5001	3012	5005	5001	3012	5005	spectrarcount	Scoremax
				/9				2			6,33	2	6,33
			64	48				3			3,01	3	3,01
				50			1			0.30		1	0,30
				50		_	1			0,50		1	0,50
				53		5	9	19	8,61	7,23	9,56	33	9,56
				58		6	9	10	5,40	4,87	9,31	25	9,31
				79				2		-	8 20	2	8 20
				,,,				-			0,20	-	0,20
				83				4			6,60	4	6,60
			79	61				2			6,33	2	6,33
				64				2			8,20	2	8,20
				04					7.02	5.00	0,20	-	0,20
				86		8	1	44	7,02	5,02	9,78	53	9,78
				95				3			11,01	3	11,01
			83	58				1			2.06	1	2.06
			00	64				-			2,00	-	2,00
				64				4			6,60	4	6,60
				95			3	5		1,03	3,62	8	3,62
			86	70		Q	1	11	7.02	5.02	0 78	53	0.78
			00	75		l v	-		7,02	5,02	5,70	2	5,70
			95	79				3			11,01	3	11,01
				83			3	5		1,03	3,62	8	3,62
				102		3	5	4	16 44	3 76	11 26	12	16 44
			102	102			5	-	10,44	3,70	11,20	12	10,44
			102	95		3	5	4	16,44	3,76	11,26	12	16,44
			202	226			1	2		3,89	9,01	3	9,01
				246		12	17	41	22 72	14 98	14 75	70	22 72
				270			17		22,72	14,50	14,75	,0	7.04
				379				2			7,64	2	7,64
			223	236				2			2,17	2	2,17
			226	202			1	2		3 89	9.01	3	9.01
			220	202				6		E 22	4.01	1.4	5,01
				236			×	ь		5,33	4,01	14	5,33
			236	223				2			2,17	2	2,17
				226			8	6		5 2 2	4 01	14	5 2 2
				220						0.00	10.04		10.04
				246			5	2		9,36	10,64	/	10,64
			246	202		12	17	41	22,72	14,98	14,75	70	22,72
				236			5	2		936	10 64	7	10.64
			217	247			2	-		3,30	10,01	,	20,01
			317	347			3			3,78		3	3,78
			329	347		1	4		3,04	4,83		5	4,83
			347	317			3			3.78		3	3.78
			517	220					2.04	3,70		-	5,70
				329		1	4		3,04	4,83		5	4,83
				358		3	2		2,00	0,20		5	2,00
			358	347		3	2		2 00	0.20		5	2 00
			270	202			-	2	2,00	0,20	7.04	2	2,00
			379	202				2			7,64	2	7,64
	Cwc15	Cwc15	38	41		2	2		7,21	2,26		4	7,21
				43			1			0.03		1	0.03
						_	-		7.24	0,05		-	7,00
			41	38		2	2		7,21	2,26		4	7,21
			43	38			1			0,03		1	0,03
			88	102		1	2		2 13	1 13		3	2 1 3
			01	101		-	-		2,10	1,15		1	2,13
			91	104			1			0,77		1	0,77
			102	88		1	2		2,13	1,13		3	2,13
				108		2	2	4	1.08	4.06	6.02	8	6.02
				100		-	-		1,00	.,00	0,02	ő	0,02
				118				1			2,99	1	2,99
			104	91			1			0,77		1	0,77
				129				2			7.19	2	7.19
			109	102		2	2	-	1.09	4.06	6.02		6.02
			108	102		2	2	4	1,08	4,06	0,02	°	0,02
				129		2			8,61			2	8,61
			118	102				1			2.99	1	2.99
				120		6	-		0.14	7.10	0.75	22	0,75
				129		6	5	11	8,14	7,16	9,75	22	9,75
				140		1	1		1,09	2,63		2	2,63
			129	104				2			7,19	2	7,19
				109		2			9.61		, -	2	9.61
				100			_	l	0,01			<u></u>	0,01
				118		6	5	11	8,14	7,16	9,75	22	9,75
				137		3	1		8,29	0,85		4	8,29
				140		А	6	5	6 64	9 52	7 70	15	9 52
				140		"			0,04	5,52	,,,0		5,52
				145			1			3,95		1	3,95
			137	129		3	1		8,29	0,85		4	8,29
				145		2			3.46			2	3.46
			140	110		-	4		1.00	2.02		-	3,40
			140	118			1		1,09	2,63		2	2,63
				129		4	6	5	6,64	9,52	7,70	15	9,52
				151			2	2		2 07	5 16	4	5 16
			145	100			-	-		2,05	-,10		2.05
			145	129			1			3,95			3,95
				137		2			3,46			2	3,46
				151		1	2	4	4.45	3.80	6.62	7	6.62
			454	1.01		1			-,-5	3,50	5,52 F 4 C	í í	5,02
			151	140			2	2		2,07	5,16	4	5,16
				145		1	2	4	4,45	3,80	6,62	7	6,62
	Cwc2	Cwc2	2	10			1			2.02		1	2.02
	0	0	-	- <u>`</u>						2,02			2,02
			10	2			1			2,02		1	2,02
				86	13,6			1			3,30	1	3,30
			61	86	10 5			1			1 98	1	1 98
			00	10	10,5			1			2,50	4	2,50
			86	10	13,6			1			3,30		3,30
				61	10,5			1			1,98	1	1,98
			116	152			3			3.54		3	3.54
			125	150			1			1 20		1	1 20
			135	152			1			1,28		1	1,28
			152	116			3			3,54		3	3,54
				135			1			1.28		1	1.28
				170						2,20		-	2,20
				1/9			4			2,12		<u> </u>	2,12
			179	152			2			2,12		2	2,12
				236	28.0			2			11.38	2	11.38
			105	200	1 - 4			-		1 7 2	,50		1 70
			100	230	13,4	I	I 4	I	I	1,75	I	l ^	1,/3

						5	pectral cour	nt		Score _{max}		Total	Best
Type I	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
		1	236	179	28.0			2			11.38	2	11.38
				185	15 /		2	_		1 73	,	2	1 73
			210	220	13,4	2	4	-	2.22	1,75	F 67	14	1,75
			310	320		3	4	/	3,22	5,82	5,67	14	5,82
			320	310		3	4	7	3,22	5,82	5,67	14	5,82
	Cwc21	Cwc21	47	53		3	2	4	4,27	1,64	5,88	9	5,88
			53	47		3	2	4	4,27	1,64	5,88	9	5,88
				62		1	3		0.66	3.71		4	3.71
			67	52		1	2		0,66	2 71		1	2 71
			02	33		10	3	07	0,00	3,71	20.00	4	3,71
			97	105		19	9	97	13,12	10,74	20,89	125	20,89
			98	105		35	34	89	11,32	6,04	16,07	158	16,07
			105	97		19	9	97	13,12	10,74	20,89	125	20,89
				98		35	34	89	11,32	6,04	16,07	158	16,07
	Cwc22	Cwc22	294	316	12.8			2	-	-	10.65	2	10.65
			316	294	12.8			2			10.65	2	10.65
			400	254	12,0			-			10,05	1	10,05
			406	444	6,3			1			9,70	1	9,70
			444	406	6,3			1			9,70	1	9,70
			495	505				5			3,07	5	3,07
			496	505				1			2,78	1	2,78
			505	495				5			3,07	5	3,07
				496				1			2 78	1	2 78
				500		c		-	2.05		2,70	c -	2,05
			500	508		0			2,05			0	2,05
			508	505		6			2,05			ь	2,05
			520	530		6	5	7	6,60	1,97	3,93	18	6,60
			530	520		6	5	7	6,60	1,97	3,93	18	6,60
	Cwc24	Cwc24	63	67		2	2		4,00	3,97		4	4,00
			67	63		2	2		4.00	3.97		4	4.00
			03	172		_	1	5	3 57	3 21	7 1 2	10	7 1 2
			122	123		4		-	3,37	3,31	7,10	10	7,10
			123	93		4		5	3,57	3,31	/,13	10	7,13
			148	169	15,2		5	2		4,97	3,91	7	4,97
			169	148	15,2		5	2		4,97	3,91	7	4,97
			186	232	16,5	1		1	3,36		5,25	2	5,25
			194	203	19,0	4	3	4	4,38	5,27	5,88	11	5,88
				256	-,-	1			0.08	-,	- ,	1	0.08
			202	104	10.0	1	2		4.20	F 27	F 00	11	5,00 F 99
			205	194	19,0	4	5	4	4,50	5,27	5,00	11	5,66
				229	18,7	1		2	3,05		1,27	3	3,05
			225	229	6,6			1			1,98	1	1,98
			229	203	18,7	1		2	3,05		1,27	3	3,05
				225	6.6			1	-		1.98	1	1.98
			232	186	16.5	1		1	3 36		5 25	2	5 25
			252	100	10,5	1		1	5,50		5,25	-	5,25
			256	194		1			0,08			1	0,08
	Cwc27	Cwc27	36	171		3			2,82			3	2,82
			56	146				1			2,68	1	2,68
			146	56				1			2,68	1	2,68
			171	36		3			2 82			3	2 82
			225	234		5		1	2,02		2 9/	1	2,02
			225	234				1			2,94	1	2,54
			234	225				1			2,94	1	2,94
			278	289		3		6	7,00		6,15	9	7,00
			289	278		3		6	7,00		6,15	9	7,00
				295		1			0,27			1	0,27
				297		4	6	14	5 00	4 97	6 99	24	6 99
			205	280		1	-		0.27	.,	-,	1	0.27
			207	205			6	14	5,27	4.07	C 00	24	6,27
			297	289		4	b	14	5,00	4,97	6,99	24	6,99
	Ecm2	Ecm2	47	57	9,0			3			4,44	3	4,44
			57	47	9,0			3			4,44	3	4,44
			116	138				1			2,97	1	2,97
				157				1			1,82	1	1,82
			119	157				5			7.84	5	7.84
			122	116				1			2 07	1	2 07
			130	110				-			2,57	1	2,57
				15/				5			5,28	5	5,28
				164				1			1,77	1	1,77
				167				1			7,61	1	7,61
			140	164				1			5,66	1	5,66
			157	116				1			1.82	1	1.82
				119				5			7 84	5	7 84
				120				-			F 20	5	F 20
				138				5		a = -	5,28	5	5,28
				167		4	2	10	8,34	3,76	12,22	16	12,22
				173				3			4,01	3	4,01
				247				1			1,49	1	1,49
				277		1			0,27			1	0,27
			164	138				1	,		1 77	1	1 77
			104	140				1			=,, = cc	1	-,,,,
				140							5,00		5,00
				173				5			6,16	5	6,16
				337				1			5,06	1	5,06
			167	138				1			7,61	1	7,61
				157		4	2	10	8.34	3.76	12.22	16	12.22
				247		2	2	1	5 86	4 25	5.43	7	5 86
				211				2	5,50	7,23	10.05	,	10.05
				311				2			10,95	2	10,95
				318				1			5,27	1	5,27
				337				1			8,56	1	8,56
			173	157				3			4,01	3	4,01
				164				5			6,16	5	6,16
				245	18 2			1			4.58	1	4.58
				245	1/1 2	1		2	3 56		5 00	5	-,50 E 0E
I				247	14,2	1 1	I I		5,50		5,65	ا ^د ا	2,02

						9	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
7.				311				1			5 13	. 1	5 13
			177	245	12.2		1	-		0.04	5,15	1	0.04
			1//	245	12,5		1			0,94		1	0,94
			188	274				3			4,38	3	4,38
			189	265			1			2,93		1	2,93
			198	265		5	5	5	28,24	10,98	8,48	15	28,24
				277		1			1,19			1	1,19
			230	233			4	3		4.11	4.96	7	4.96
				265	20.2	10	12	22	22.22	6.16	10 72	64	22.27
			222	205	20,5	15	12	2	52,27	4 1 1	10,72	7	32,27
			255	250			4	э	0.00	4,11	4,90		4,96
				265		1			0,06			1	0,06
			245	173	18,2			1			4,58	1	4,58
				177	12,3		1			0,94		1	0,94
			247	157				1			1,49	1	1,49
				167		3	3	1	5,86	4,25	5,43	7	5,86
				173	14.2	1		2	3.56		5.85	3	5.85
			265	180	,_	-	1	-	-,	2 93	-,	1	2 93
			205	109		- E		E	70 71	10.09	0 10	15	2,55
				100	20.2	10	12	22	20,24	10,50	10,70	15	20,24
				230	20,3	19	12	33	32,27	6,16	10,72	64	32,27
				233		1			0,06			1	0,06
			274	188				3			4,38	3	4,38
				318				2			6,59	2	6,59
				331				1			2,85	1	2,85
				337				1			3.12	1	3.12
				342				1			1 44	1	1 44
			277	157		1		-	0.27		_,	1	0.27
			2//	100		1			1 10			1	1 10
				198		<u> </u>		-	1,19		40.07		1,19
			311	167				2			10,95	2	10,95
				173				1			5,13	1	5,13
			318	167				1			5,27	1	5,27
				274				2			6,59	2	6,59
			331	274				1			2,85	1	2,85
			337	164				1			5.06	1	5.06
				167				1			8 56	1	8 56
				274				1			2,50	1	2,50
			242	274				1			5,12	1	5,12
			342	274				1			1,44	1	1,44
	Hsh155	Hsh155	35	45		1	1	10	2,62	5,55	7,08	12	7,08
				51			1	3		0,37	5,65	4	5,65
				66				2			4,45	2	4,45
				72				1			2,34	1	2,34
			45	35		1	1	10	2.62	5.55	7.08	12	7.08
				66			3	1	, -	3 20	9.81	4	9.81
			E1	25			1	2		0.27	5,01	4	5,01
			51	33			1	5		0,37	3,03	4	3,03
				66			1	_		0,81		1	0,81
			66	35				2			4,45	2	4,45
				45			3	1		3,20	9,81	4	9,81
				51			1			0,81		1	0,81
			72	35				1			2,34	1	2,34
				237			3	2		4,63	5,77	5	5,77
			150	151				1		,	1.84	1	1.84
				158		2	6	42	2 30	5 25	11 34	50	11 34
			151	150		-	Ů	1	2,50	5,25	1 94	1	1 9/
			151	150		2	6	12	2.20	5.25	11.24	50	11.04
			158	150		2	6	42	2,30	5,25	11,34	50	11,34
				191			8	6		9,77	5,29	14	9,77
			172	191	16,0			1			1,81	1	1,81
			191	158			8	6		9,77	5,29	14	9,77
				172	16,0			1			1,81	1	1,81
			237	72			3	2		4,63	5,77	5	5,77
				276	10,8	12	1		8,55	1,25		13	8,55
			276	237	10,8	12	1		8,55	1,25		13	8,55
			410	455		1			2,56			1	2,56
			455	410		1			2 56			1	2 56
			473	501	16.0	-		2	2,50		5 2/	2	5 2/
				127	16.0			5			5,34 E 24	5	5,34
			521	475	10,9			э		1 20	5,54	5	5,54
			696	699	9,3		1			1,39		1	1,39
			699	696	9,3		1			1,39		1	1,39
	Hsh49	Hsh49	1	2				1			3,97	1	3,97
			2	1				1			3,97	1	3,97
			22	39		11	5	16	3,26	0,85	1,87	32	3,26
				42		4	2	2	1,36	0,20	2,19	8	2,19
			39	22		11	5	16	3.26	0.85	1.87	32	3.26
			47			4	2	2	1 36	0.20	2 19	8	2 19
			101	100			1	1	1,50	0.40	4 52	2	2,17 / ED
			101	100			1 I	1		0,40	4,33	1	4,35
			113	193				T		o /-	4,87		4,87
			126	133			1	_		0,45		1	0,45
			130	160			1	3		1,53	2,99	4	2,99
				166		2	17	2	3,42	3,45	2,68	21	3,45
			133	101			1	1		0,40	4,53	2	4,53
				126			1			0,45		1	0,45
				213				1		, -	5.74	1	5.74
			160	130			1	3		1.53	2.99	4	2.99
			166	120		2	17	2	3 1 2	3 /15	2,55	21	2,55
			100	110			1/	1	5,42	3,43	2,00	1	3,43
			193	113				1			4,87		4,87
			204	213	I	I	I	1			5,08	1	5,08
						5	pectral cour	nt		Score _{max}		Total	Best
------	-----------	-----------	-----------	-----------	---	-------	------------------	-------	-------	----------------------	-------	----------------	----------------------
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
			213	133				1			5,74	1	5,74
				204				1			5.08	1	5.08
	lsv1	lsv1	7	27		3	2	6	11 09	5 81	12.96	11	12.96
	1591	1391	,	12			2	1	11,05	0.70	1 60	3	1 60
				42		1	2	1	0.96	0,70	1,00	3	2,00
				45		1	5		0,80	5,71		4	5,71
				59					0,47			1	0,47
			27	/		3	2	6	11,09	5,81	12,96	11	12,96
				40		7	3	2	4,61	1,77	2,80	12	4,61
				42			1	2		2,63	1,73	3	2,63
				45		3	2	4	8,36	6,79	10,44	9	10,44
				56		2	3	11	1,01	2,43	4,30	16	4,30
				59			1			0,35		1	0,35
				61				1		- /	1.94	1	1.94
			40	27		7	3	2	4 61	1 77	2,80	12	4 61
			40			,	2	1	4,01	0,70	1,60	2	1,01
			42	27			2	2		0,70	1,00	2	1,00
				27			1	2		2,63	1,73	3	2,63
			45	/		1	3		0,86	3,71		4	3,71
				27		3	2	4	8,36	6,79	10,44	9	10,44
			56	27		2	3	11	1,01	2,43	4,30	16	4,30
				61				3			5,35	3	5,35
			59	7		1			0,47			1	0,47
				27			1			0,35		1	0,35
			61	27				1			1.94	1	1.94
				56				3			5.35	3	5.35
			121	139		9	9	11	5.87	5.51	6.68	29	6.68
			161	1/2		1	1	**	2.06	0.58	0,00	25	2 06
			120	101				11	2,00	0,30	6.60	20	2,00
			139	121		9	9	L 11	5,87	5,51	0,08	29	0,08
			143	121		1	1		2,06	0,58		2	2,06
	Lea1	Lea1	194	215		2	6	6	4,07	0,65	4,87	14	4,87
				232		2	2	10	5,00	3,61	4,08	14	5,00
			205	215			3	1		0,95	1,30	4	1,30
				232			3	6		4,59	4,67	9	4,67
			215	194		2	6	6	4,07	0,65	4,87	14	4,87
				205			3	1		0,95	1,30	4	1,30
				232				1			1,74	1	1,74
			232	194		2	2	10	5,00	3,61	4,08	14	5,00
				205			3	6		4,59	4,67	9	4,67
				215				1			1,74	1	1,74
	Msl1	Msl1	2	7				1			1.99	1	1.99
				8			3	2		1.72	3.22	5	3.22
			7	2			5	1		1,72	1 99	1	1 99
			, 8	2			3	2		1 72	3 22	5	3 22
	NHc20	NHc20	0 0E	04			5	1		1,72	5,22	1	5,22
	NIC20	NIC20	85	94				1			5,51	1	5,51
	D=== 1.1	D	94	20						1.00	5,51	1	5,51
	Prp11	Prp11	11	28			2	6		4,08	11,92	8	11,92
				36				3			9,36	3	9,36
				60				1			9,75	1	9,75
				192				3			6,66	3	6,66
			28	11			2	6		4,08	11,92	8	11,92
				48				2			9,07	2	9,07
				60				1			2,84	1	2,84
				192				1			9,70	1	9,70
			36	11				3			9,36	3	9,36
				60				5			8,01	5	8,01
				126				1			3,24	1	3,24
				192				3			4,78	3	4,78
			48	28				2			9,07	2	9,07
				126				1			6,08	1	6,08
				192				2			3 54	2	3 54
			60	11				1			9.75	1	9.75
			00	28				1			2 84	1	2 84
				36				5			8 01	5	2,04 8 01
			103	176			6	0		2.06	0,01	1/	0,01
			105	120			0	°		5,90	9,95	14	9,95
			121	144			1			0,21		1	0,21
				1/3				1			2,81	1	2,81
			126	36				1			3,24	1	3,24
				48				1			6,08	1	6,08
				103			6	8		3,96	9,95	14	9,95
				144			1			0,15		1	0,15
			144	121			1			0,21		1	0,21
				126			1			0,15		1	0,15
				175			1			0,40		1	0,40
			173	121				1			2,81	1	2,81
			175	144			1			0,40		1	0,40
			192	11				3			6,66	3	6,66
				28				1			9,70	1	9,70
				36				3			4,78	3	4,78
				48				2			3,54	2	3,54
	Prp17	Prp17	121	239		4	5	6	6,28	5,94	4,87	15	6,28
			239	121		4	5	6	6,28	5,94	4,87	15	6,28
			307	366		1			0,79	,		1	0,79
			366	307		1			0.79			1	0.79
			404	477		12	17	7	5 10	1 10	3.07	27	5 10
1			404	422	I	1 10	I [⊥] ′	I (5,15	, T, T,	3,07	I 37	J,15

						5	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score
Type	110tcm1	110tem 2	nesidue 1	Incolute 2	~	5001	3012	3003	3001	3002	3003	spectrureoune	Scoremax
				427			1			0,20		1	0,20
			422	404		13	17	7	5,19	4,49	3,07	37	5,19
			427	404			1			0,20		1	0,20
			427	404			1	24	46.47	0,20	40.50	1	0,20
				450		8	6	24	16,47	10,59	13,52	38	16,47
			450	427		8	6	24	16,47	10,59	13,52	38	16,47
	Prn19	Prn19	1	1		2			0.09			2	0.09
	11915	11915	107	275		-			0,05	0.50		2	0,05
			107	275			2			0,53		2	0,53
			108	120		7	13	36	10,19	12,01	10,04	56	12,01
				130		1	2	1	8 10	9.46	1 06	7	9.46
				135		-	-	-	0,15	3,40	4,00	, -	3,40
				1/0		1	4		0,75	2,58		5	2,58
				202		1			1,74			1	1,74
				275		1			1 30			1	1 30
				275		-			1,50			1	1,50
				404		1			1,37			1	1,37
			120	108		7	13	36	10,19	12,01	10,04	56	12,01
				135		2	3	10	2 12	3 57	5.07	16	5.07
				155		5	5	10	2,42	5,57	5,07	10	5,07
				139			2			5,92		2	5,92
			130	139			2			6,22		2	6,22
			135	120		3	3	10	2 4 2	3 57	5.07	16	5.07
			155	120			5	10	2,42	0,00	5,07	10	3,07
				139		1	1		1,67	0,39		2	1,67
				272			1	1		0,12	3,74	2	3,74
				275		1	2		1 5 2	0.16		2	1 52
				275		1	2		1,52	0,10		5	1,52
			139	108		4	2	1	8,19	9,46	4,06	/	9,46
				120			2			5,92		2	5,92
				130			2			6.22		2	6.77
				100		4	1		1.07	0,22		5	4 67
				135		1	1		1,67	0,39		2	1,67
				139			2	2		1,94	3,41	4	3,41
				275		1	1		3 68	0.16		2	3 68
			400	213		*		~	3,00	0,10	2.62	-	3,00
			168	433				6			3,63	6	3,63
				452		2		3	0,33		1,26	5	1,26
			170	102		1	4		0.75	2 5 2	, .	5	2 52
			170	100		1	4		0,75	2,50		5	2,50
				202		6	9	3	9,23	2,56	2,87	18	9,23
				275		1			1,54			1	1,54
				452		1	1	6	1 59	3 49	4 13	8	4 13
				452		-	1	0	1,55	3,45	4,15	0	4,13
			1/3	202			1			1,49		1	1,49
				229		3	5	6	7,09	6,18	5,53	14	7,09
				433		3	1	15	4 59	1 24	4 51	19	4 59
				455		5	1	15	4,55	1,24	4,51	15	4,55
				452		3			1,90			3	1,90
				455		1	1		14,22	3,43		2	14,22
			202	108		1			1 74			1	1 74
			202	100		-			1,74			1	1,74
				1/0		6	9	3	9,23	2,56	2,87	18	9,23
				173			1			1,49		1	1,49
				226		1	6	2	13 0/	1 80	6.26	12	13 0/
				220		4	0	2	13,94	4,65	0,20	12	13,54
				229		2	5	4	2,01	8,09	8,68	11	8,68
				272		2	3	1	1,91	4,52	4,51	6	4,52
			226	202		4	6	2	13 94	4 89	6.26	12	13 94
			220	202		-	-	-	13,34	4,05	0,20	12	13,54
			229	173		3	5	6	7,09	6,18	5,53	14	7,09
				202		2	5	4	2,01	8,09	8,68	11	8,68
			272	135			1	1		0 12	3 74	2	3 74
			272	155			1	1		0,12	3,74	2	5,74
				202		2	3	1	1,91	4,52	4,51	6	4,52
			275	107			2			0,53		2	0,53
				108		1			1 30			1	1 30
				100		1			1,50			1	1,50
				135		1	2		1,52	0,16		3	1,52
				139		1	1		3,68	0,16		2	3,68
				170		1			1 54			1	1 54
				1/0		1			1,34			4	1,34
				404		¹			1,22			1	1,22
			404	108		1			1,37			1	1,37
				275		1			1.22			1	1.22
				152		1			0.61			1	0 61
				432			_		0,01			1	0,01
				455		10	7	1	1,72	2,98	1,86	18	2,98
			433	168				6			3,63	6	3,63
				170		2	1	15	1 50	1.24	1 51	10	1 50
				1/5		5	1	10	4,39	1,24	4,51	19	4,39
				455		3	10	25	2,74	4,45	4,69	38	4,69
			452	168		2		3	0.33		1.26	5	1.26
				170		1	1	F	1 50	3 40	/ 12	, ,	/ 10
				1/0		<u>-</u>		U	1,39	3,49	4,13	0	4,13
				173		3			1,90			3	1,90
				404		1			0.61			1	0.61
				155		1			0.00			1	0.09
				455		<u>+</u>			0,08			1	0,08
			455	173		1	1		14,22	3,43		2	14,22
				404		10	7	1	1.72	2.98	1.86	18	2.98
				100		2	10	25	2 74	1 15	1 60	20	1 60
				433		3	10	25	2,74	4,45	4,69	ъŏ	4,69
				452		1			0,08			1	0,08
	Prp2	Prp2	2	40				13			12.82	13	12.82
	· · · · · -		-	40				6			10.22	<i>c</i>	10.33
				43				b			10,23	σ	10,23
				52				14			13,80	14	13,80
				60				12			18.06	12	18.06
				71				1			0.24		
				/1				1			9,34	1	9,34
				75				8			14,79	8	14,79
				83				10			16.56	10	16.56
				07				20			2 67	20	20,00
				87				3			3,07	3	3,67
				91				3			10,76	3	10,76
				101				6			11.26	6	11.26
				102				2			11 70	2	11 70
				102				3			11,70	3	11,70
				113	1	I	1	3			14,59	3	14,59

						S	pectral coun	nt		Score _{max}		Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
				120				5			8,80	5	8,80
				128				2			14 67	2	14 67
				122				1			2 24	1	2.24
				135							3,34		3,54
				211				0			13,57	D	13,57
				311				3			7,66	3	7,66
				454				1			5,92	1	5,92
				560				1			4,74	1	4,74
				718				2			3,94	2	3,94
				732				8			6,84	8	6,84
				756				7			17,20	7	17,20
				820				1			3.90	1	3.90
			10	14				3			3 67	3	3.67
			10	15				3			7.09	3	7.09
				5				2			8,09	2	0,05
				52				2			8,08	2	8,08
				60				1			4,28	1	4,28
				/5				1			2,04	1	2,04
				87				1			6,49	1	6,49
				101				1			4,08	1	4,08
				102				3			3,09	3	3,09
				756				1			1,81	1	1,81
			14	10				3			3,67	3	3,67
			40	2				13			12.82	13	12.82
				45				28			11 49	28	11 49
				52		2		15	1 / 0		9.58	17	0.58
				07		-		1	1,45		2,50	1	2,50 2 FE
			42	0/				с Г			2,00		2,05
			43	2		~		D	0.00		10,23	D A	10,23
				52		3		11	0,82		8,87	14	8,87
				84				1			4,92	1	4,92
			45	10				3			7,09	3	7,09
				40				28			11,49	28	11,49
				60				6			12,75	6	12,75
				71				2			5,80	2	5,80
				75				2			4,02	2	4,02
				87				2			4,54	2	4,54
			52	2				14			13,80	14	13,80
				10				2			8,08	2	8,08
				40		2		15	1,49		9,58	17	9,58
				43		3		11	0,82		8,87	14	8,87
				60		8		49	12,05		9,88	57	12,05
				71		3		6	5,22		6,45	9	6,45
				75				8			8,26	8	8,26
				83				1			2.87	1	2.87
				84		1		3	0.62		5.66	4	5.66
				87				5	- , -		8.35	5	8.35
				91				3			5.24	3	5.24
				101				5			9 32	5	932
				102				2			7 20	2	7 20
				130				1			3 97	1	3 97
				718		1		-	1 70		3,57	1	1 79
			60	210		1		12	1,75		19.06	12	19.06
			00	10				1			10,00	12	10,00
				10				-			4,20	1	4,20
				45				0	42.05		12,75		12,75
				52		8		49	12,05		9,88	57	12,05
				/5		3		34	8,01		18,94	37	18,94
				83		1		6	1,00		9,85	7	9,85
				84				1			2,78	1	2,78
				87				5			7,52	5	7,52
				91				3			18,89	3	18,89
				101				3			3,96	3	3,96
				102		1		7	1,63		10,86	8	10,86
				113				2			6,15	2	6,15
				211				1			2,25	1	2,25
				718		1			1,82			1	1,82
				756				1			6,52	1	6,52
			71	2				1			9,34	1	9,34
				45				2			5,80	2	5,80
				52		3		6	5,22		6,45	9	6,45
				83		4		7	3,81		8,07	11	8,07
				84				4			3,69	4	3,69
				87		1		8	2,44		7,38	9	7,38
				91				6	, í		5.36	6	5.36
				102				2			9.28	2	9.28
				137				1			2 42	1	2 42
				560				1			1 75	1	1 75
				712		1		-	0.88		1,75	1	1,75 0.88
			75	, 10		- -		8	0,00		14 70	2 A	14 70
			75	10				1			201	1	204
				10				1 2			4.03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,04
				45				2			4,02		4,02
				52		2		8	0.01		8,2b	ð 27	8,26
				60		5		34	8,01		18,94	3/	18,94
				84				2			9,22	10	9,22
				8/		_		19	2.00		7,46	19	7,46
				91		2	I I	11	3,80		9,65	13	9,65

						S	pectral coun	ıt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Scoremax
				101				5			6.24	5	6.24
				102				2			12 54	2	12 54
				102				2			12,54	2	12,34
				120				2			8,13	2	8,13
				128				1			2,49	1	2,49
				130				1			1,92	1	1,92
				756				3			5,75	3	5,75
			83	2				10			16,56	10	16,56
				52				1			2,87	1	2,87
				60		1		6	1,00		9,85	7	9,85
				71		4		7	3.81		8.07	11	8.07
				87		3		47	5.82		10.73	50	10 73
				01		1		22	8 15		1/ 13	23	14 13
				101		-		0	0,15		6 94	25	6 9 1
				101				9			14.02	5	0,84
				102				ð			14,02	8	14,02
				113				2			1,82	2	1,82
				130				4			6,05	4	6,05
				137				2			4,51	2	4,51
				211				1			3,67	1	3,67
				718		1			0,95			1	0,95
				756				1			3,86	1	3,86
			84	43				1			4.92	1	4.92
				52		1		3	0.62		5.66	4	5 66
				60		-		1	0,02		2 78	1	2 78
				71				1			2,70	1	2,70
				71				-+ >			0.22	-+ -	3,05
				/5		4		2	1 74		9,22	4	9,22
				91					1,/1				1,/1
				101		1		10	0,64		14,24	11	14,24
				102				4			2,53	4	2,53
				128				1			3,59	1	3,59
				137				1			4,46	1	4,46
				211				1			10,64	1	10,64
			87	2				3			3,67	3	3,67
				10				1			6,49	1	6,49
				40				1			2,65	1	2,65
				45				2			4,54	2	4,54
				52				5			8,35	5	8,35
				60				5			7,52	5	7,52
				71		1		8	2,44		7,38	9	7,38
				75				19			7,46	19	7,46
				83		3		47	5,82		10,73	50	10,73
				101		2		10	3,21		8,67	12	8,67
				102				13	ŕ		8.10	13	8.10
				113				1			4.56	1	4.56
				120				2			4.07	2	4.07
				128				2			8.92	2	8 92
				130				1			1 30	1	4 30
				211				2			9.35	2	4,55
				756				1			5,55	1	5,55
			01	730				2			10.76	2	10.76
			51	52				3			5.24	2	5.24
				52				2			3,24	2	3,24
				60				3			18,89	3	18,89
				/1				6			5,36	6	5,36
				/5		2		11	3,86		9,65	13	9,65
				83		1		22	8,15		14,13	23	14,13
				84		1			1,71			1	1,71
				102		2		38	4,76		24,32	40	24,32
				113				6			10,94	6	10,94
				120				1			7,13	1	7,13
				128				1			2,94	1	2,94
				130				1			1,56	1	1,56
				133				2			4,48	2	4,48
				756				2			6,74	2	6,74
			101	2				6			11,26	6	11,26
				10				1			4,08	1	4,08
				52				5			9,32	5	9,32
				60				3			3.96	3	3.96
				75				5			6.24	5	6.24
				83				9			6.84	9	6.84
				84		1		10	0.64		14.24	11	14.24
				87		2		10	3.21		8.67	12	8.67
				113		1		6	0.28		5 95	7	5 95
				120		1		2	1 17		5 59	3	5,55
				179		1		1	1 00		6.82	2	6 8 8
				120		⁺		+ 2	1,55		4 16	Ŕ	1 16
				100				0			4,40	17	4,40
				133				11			10,03	11	10,03
				13/				11			2 2 2 7	11	7,91
				454				1 2			4.05		2,57
				560		4		2	1.00		4,85	2	4,85
				/18		1			1,08		7.04		1,08
				732				4			7,01	4	7,01
			103	/50				1			3,/b	1	3,/b
			102	2				3			11,/0	3	11,70
				10	I	I		3	I		3,09	3	3,09

						5	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
				52				2			7,20	2	7,20
				60		1		7	1.63		10.86	8	10.86
				71		-		,	1,05		0.20	2	10,00
				/1				2			9,28	2	9,28
				75				2			12,54	2	12,54
				83				8			14,02	8	14,02
				84				4			2,53	4	2,53
				87				13			8,10	13	8,10
				91		2		38	4.76		24.32	40	24.32
				120		_		18	.,		12 55	18	12 55
				120		1		20	1 45		12,55	2	4.50
				120		1		2	1,45		4,50	5	4,50
				130		1		4	0,49		2,61	5	2,61
				133				2			5,63	2	5,63
				137				5			5,65	5	5,65
				211				2			11,21	2	11,21
				732				2			4,71	2	4,71
			113	2				3			14.59	3	14.59
				60				2			6 15	2	6.15
				83				2			1.82	2	1.82
				97				1			1,02	1	1,02
				01							4,50	1	4,30
				91				6			10,94	ь	10,94
				101		1		6	0,28		5,95	7	5,95
				128		1		5	0,61		6,01	6	6,01
				130				5			2,45	5	2,45
				133				9			7,71	9	7,71
				137				1			3.87	1	3.87
				718				1			2.65	1	2.65
				710				1			1 77	1	2,05
			120	/32				-			1,//	1 F	1,//
			120	2				5			8,80	5	8,80
				75				2			8,13	2	8,13
				87				2			4,07	2	4,07
				91				1			7,13	1	7,13
				101		1		2	1,17		5,59	3	5,59
				102				18			12,55	18	12,55
				130		1		-	0.64		,	1	0.64
				122		1		2	4 27		1 22	2	4 27
				107		1		2	4,37		4,22	5	4,37
				137		1		2	0,12		1,69	3	1,69
				211				1			5,08	1	5,08
				756				2			6,73	2	6,73
			128	2				2			14,67	2	14,67
				75				1			2,49	1	2,49
				84				1			3,59	1	3,59
				87				2			8 92	2	8 92
				91				1			2 94	1	2 94
				101		1		1	1.00		2,54	2	2,54
				101		1		1	1,99		0,00	2	0,00
				102		1		2	1,45		4,50	3	4,50
				113		1		5	0,61		6,01	6	6,01
				133		6		15	6,32		7,13	21	7,13
				137		1		11	2,73		5,82	12	5,82
			130	52				1			3,97	1	3,97
				75				1			1,92	1	1,92
				83				4			6.05	4	6.05
				87				1			4 39	1	4 39
				01				1			1 56	1	1,55
				101				0			1,50	1 0	1,50
				101		4		0	0.00		4,40	° -	4,40
				102		1		4	0,49		2,61	5	2,61
				113				5			2,45	5	2,45
				120		1			0,64			1	0,64
				137		3		9	5,88		4,22	12	5,88
				211				9			5,07	9	5,07
				560				1			3,67	1	3,67
				820				1			3,03	1	3,03
			133	2				1			3.34	1	3.34
				91				2			4 48	2	4 48
				101				12			10.63	12	10.63
				101				24			±0,05	- <u>+</u> -	10,05
				102				2			5,03	2	5,03
				113				9			/,/1	9	/,/1
				120		1		2	4,37		4,22	3	4,37
				128		6		15	6,32		7,13	21	7,13
				211				2			9,86	2	9,86
				718				1			3,98	1	3,98
				820				1			2,61	1	2,61
			137	71				1			2,42	1	2,42
			-	83				2			4.51	2	4.51
				84				1			4 46	1	4 46
				101				11			7 01	11	7 01
				101				- I I			7,51 E.CE		7,51
				102				3			5,05	5	5,05
				113				1			3,8/	1	3,87
				120		1		2	0,12		1,69	3	1,69
				128		1		11	2,73		5,82	12	5,82
				130		3		9	5,88		4,22	12	5,88
				211				3			5,38	3	5,38
				454				6			3,78	6	3,78
				467				1			2,10	1	2,10

						5	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Scoremax
			I I	485				2			1 07	. 2	1 97
				405				2			1,57	2	1,57
				/18		1			2,09			1	2,09
				732				1			4,63	1	4,63
				820				1			2 10	1	2 10
			211	220				- c			12 57	- c	12 57
			211	2				0			15,57	0	15,57
				60				1			2,25	1	2,25
				83				1			3,67	1	3,67
				84				1			10 64	1	10.64
				04				1			10,04	1	10,04
				87				2			8,33	2	8,33
				102				2			11,21	2	11,21
				120				1			5.08	1	5.08
				130				٥			5.07	٩	5.07
				130				9			3,07	5	3,07
				133				2			9,86	2	9,86
				137				3			5,38	3	5,38
				221		14		11	10.43		9 69	25	10.43
				211				2	10,10		6 47	20	6 47
				511				2			0,47	2	0,47
				467		1		1	5,48		1,33	2	5,48
				560		1		3	0,29		4,27	4	4,27
				756				1			3 80	1	3 80
			221	211		14		11	10.42		5,00	25	10,42
			221	211		14		11	10,43		9,69	25	10,43
			270	316	10,5			7			3,20	7	3,20
			300	311	10.5	17		96	12.63		8.36	113	12.63
				316	5 1	18		61	11 21		8.08	70	11 21
				510	5,1	10		01	11,21		0,00	,,,	11,21
			311	2				3			7,66	3	7,66
				211				2			6,47	2	6,47
				300	10.5	17		96	12.63		8.36	113	12.63
				722	15.0	10		22	10.20		7 25	E1	10.20
				/32	15,5	19		52	10,39		1,35	51	10,39
			316	270	10,5			7			3,20	7	3,20
				300	5,1	18		61	11,21		8,08	79	11,21
			454	2				1			5 92	1	5 92
				101				1			2,22	1	3,52
				101				1			2,57	1	2,57
				137				6			3,78	6	3,78
			467	137				1			2,10	1	2,10
				211		1		1	5 / 8		1 33	2	5.48
			405	211		1		1	3,40		1,55	2	5,40
			485	137				2			1,97	2	1,97
				728	20,5			1			2,31	1	2,31
				732	19.4	4		18	3.26		3.88	22	3.88
			560	2	-,			1	-, -		4 74	1	4.74
			500					1			4,74	1	4,74
				/1				1			1,75	1	1,75
				101				2			4,85	2	4,85
				130				1			3 67	1	3.67
				200		1		-	0.20		4.27	-	4.27
				211		1		3	0,29		4,27	4	4,27
			632	640	17,0			14			9,06	14	9,06
			640	632	17,0			14			9,06	14	9,06
				750	13.8	1		10	10.69		5.47	11	10.69
				750	15,0	-		10	10,05		42,52	11	10,05
				/56	22,0	3		58	4,80		12,53	61	12,53
			718	2				2			3,94	2	3,94
				52		1			1.79			1	1.79
				60		1			1.82			1	1.82
				71		-			0.00			-	0.00
				/1		1			0,88			1	0,00
				83		1			0,95			1	0,95
				101		1			1,08			1	1,08
				113				1	,		2.65	1	2.65
				122				1			2,00	1	2,00
				122				1			3,30	1	3,90
				137		1			2,09			1	2,09
			728	485	20,5			1			2,31	1	2,31
			732	2				8			6.84	8	6.84
				101				1			7 01	-	7.01
				101				4			7,01	4	7,01
				102				2			4,71	2	4,71
				113				1			1,77	1	1,77
				137				1			4.63	1	4.63
				211	15.2	10		37	10.30		7 25	51	10.30
				511	13,5	1.5		52	10,35		2,00	31	10,35
				485	19,4	4		18	3,26		3,88	22	3,88
			750	640	13,8	1		10	10,69		5,47	11	10,69
			756	2				7			17.20	7	17.20
				10				1			1 01	1	1 01
				10							1,01	1	1,01
				60				1			6,52	1	6,52
				75				3			5,75	3	5,75
				83				1			3,86	1	3,86
				27				1			5 21	1	5 21
				0/				-			5,21	-	5,21
				91				2			6,74	2	6,74
				101				1			3,76	1	3,76
				120				2			6,73	2	6,73
				211				1			3 80	1	3 80
				640	22.0	2		-	4.00		12 52		13 53
				0 40	22,0	3		58	4,80		12,53	10	12,53
				763	14,1	2		40	9,09		12,10	42	12,10
			763	756	14,1	2		40	9,09		12,10	42	12,10
			820	2				1			3.90	1	3.90
				120				1			3 03	1	3 03
				130							3,03	1	3,03
				133				1			2,61	1	2,61
				137				1			2,10	1	2,10
				840				1			2.40	1	2.40
			010	070				1			1 70	1	1 70
I			020	0/0		l	I	1 ¹	I		1,75	1 I	1,/3

						5	pectral cour	nt		Score _{max}		Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
			840	820				1			2.40	1	2.40
			970	020				1			1 72	1	1 72
	D 2.1	D 21	870	020			60	224	20.67	12.04	1,75	220	1,75
	Prp21	Prp21				44	68	224	20,67	13,04	17,06	336	20,67
	Prp45	Prp45	60	71	16,5	4	4	22	4,27	2,96	8,71	30	8,71
			71	60	16,5	4	4	22	4,27	2,96	8,71	30	8,71
			242	265			1			3,28		1	3,28
			262	265		22	12	60	16,56	13,76	15,33	94	16,56
				274		15	2	6	16.38	4.84	11.87	23	16.38
			264	274		11	2	5	11 70	5 32	9.86	18	11 70
			204	2/4		11	1	J	11,70	2,52	5,80	10	2 20
			205	242				60	46.56	5,20	45.00	1	5,20
				262		22	12	60	16,56	13,76	15,33	94	16,56
				274		24	14	43	11,26	12,12	13,33	81	13,33
				287				1			6,89	1	6,89
			274	262		15	2	6	16,38	4,84	11,87	23	16,38
				264		11	2	5	11,70	5,32	9,86	18	11,70
				265		24	14	43	11,26	12,12	13,33	81	13,33
				287		5	4	9	11.49	6.89	9.14	18	11.49
			287	265		_		1	, -	-,	6.89	1	6.89
			207	200		5		9	11 /0	6.89	9.14	18	11 /0
	Drn 16	Drn 46	56	67		5	2	7	11,45	0,85 E 94	12 61	10	12,45
	P1p40	P1p40	50	67		4	3	,	11,92	5,64	12,01	14	12,01
				87		2		2	4,54		10,59	4	10,59
			66	88		2			5,10			2	5,10
			67	56		4	3	7	11,92	5,84	12,61	14	12,61
				88		4			5,27			4	5,27
			87	56		2		2	4,54		10,59	4	10,59
				100		1			3,30			1	3,30
				434				1	,		7 51	1	7 51
			22	-2-		2		-	5 10		.,51	2	5 10
			00	00 C7		4			5,10			4	5,10
				6/		4		~	5,27		0.07	4	5,27
				434				2			8,97	2	8,97
			100	87		1			3,30			1	3,30
			130	427	5,6	1			1,68			1	1,68
			319	409	12,6	2	2	1	3,03	2,00	4,05	5	4,05
			409	319	12,6	2	2	1	3,03	2,00	4,05	5	4,05
				427	14.2		3		l í	2.81		3	2.81
			427	130	5.6	1			1.68	,=		1	1.68
			/	409	14.2	-	3		1,00	2.81		3	2,00
			42.4	409	14,2		3	-		2,01	7.54	5	2,01
			434	8/				1			7,51	1	7,51
				88				2			8,97	2	8,97
	Prp8	Prp8	89	96		1		3	1,18		2,86	4	2,86
			90	98		10	10	44	11,94	5,37	8,84	64	11,94
				103			3	3		7,29	8,18	6	8,18
			96	89		1		3	1,18		2,86	4	2,86
				98		10	12	5	9.77	5.19	5.53	27	9.77
				103			5	5	5,	3.04	5,55	5	3.04
			09	105		10	10	4.4	11.04	5,04	0.04	64	11.04
			96	90		10	10	44	11,94	5,57	0,04	04	11,94
				96		10	12	5	9,77	5,19	5,53	27	9,77
			103	90			3	3		7,29	8,18	6	8,18
				96			5			3,04		5	3,04
				121				1			0,41	1	0,41
				611				3			1,40	3	1,40
			121	103				1			0,41	1	0,41
			131	141	19,0			2			6,72	2	6,72
			141	131	19.0			2			6.72	2	6.72
			152	159	14.2		1			2.84	- /	1	2.84
			159	152	14.2		1			2.84		1	2 84
			155	555	14,2			2		2,04	1 98	2	1 98
				555	19,0			10		6.67	11 67	11	11 67
				200	14,4			10		0,05	11,02	4	11,02
				000	23,5					0,46		1	0,46
			325	334	13,8	1	3	4	3,20	7,63	6,84	8	7,63
			334	325	13,8	1	3	4	3,20	7,63	6,84	8	7,63
			351	519	13,2	1			2,41			1	2,41
				524	8,9	1	4	2	0,72	2,53	3,46	7	3,46
			517	524	10,5		2			0,76		2	0,76
				681	10,8		1	2		0,03	5,56	3	5,56
				684	11.3	32	39	14	17.30	11.19	12.75	85	17.30
				697	16.6	7	8	1	14.38	10.61	6.39	16	14.38
			519	251	12.7	1		-	2 41	,01		1	2 41
			574	251	20,2	1	1	2	0.72	2 5 2	2 16	7	2,41
			524	531	10 5	¹		4	0,72	0.76	3,40	<u>,</u>	0.76
				51/	10,5		4	~		0,70		2	0,76
			555	159	14,3			2			4,98	2	4,98
			586	159	12,2		1	10		6,63	11,62	11	11,62
				612	8,2		1			0,76		1	0,76
				743	24,3	4	19	37	4,97	4,66	8,41	60	8,41
			600	159	23,5		1			0,46		1	0,46
				611	15.4		4			0.86		4	0.86
				743	34.6		3			0.71		3	0.71
			609	613	5-1,0 E 0			1		0,71	2.01	1	2 01
			000	102	0,9			1			3,91		3,91
			011	103	45.5		.	3		0.00	1,40	3	1,40
			a · -	600	15,4		4			0,86		4	0,86
			612	586	8,2					0,76		1	0,76
				608	6,9			1			3,91	1	3,91
			681	517	10,8		1	2		0,03	5,56	3	5,56

Turne	Drotoin 1	Drotoin 2	Desidue 1	Decidue 2	Å	Sot 1	pectral cour	IL Cot 2	Cot 1	Scot 2	Cot 2	TOTAL constral count	Best
туре	Protein 1	Protein 2	Residue 1	Residue 2	A 11.2	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
			684	517	11,3	32	39	14	17,30	11,19	12,75	85	17,30
				697	13,9	5	21	8	7,47	8,93	9,86	34	9,86
			697	517	16,6	7	8	1	14,38	10,61	6,39	16	14,38
				684	13,9	5	21	8	7,47	8,93	9,86	34	9,86
				1926	24,8	1			0,85			1	0,85
			743	586	24,3	4	19	37	4,97	4,66	8,41	60	8,41
				600	34,6		3			0,71		3	0,71
				847	23,9		1	3		4,19	6,45	4	6,45
			747	847	13,7		1	3		1,66	4,97	4	4,97
			794	819	10,7		14	4		15,35	14,19	18	15,35
				847	13,1		7	3		2,50	3,65	10	3,65
				1093	10.5		9	10		14.53	11.74	19	14.53
			810	817	10.7	1	14	15	3.52	3.42	4.05	30	4.05
			817	810	10.7	1	14	15	3 52	3 42	4 05	30	4.05
			819	794	10.7	-	14	4	-,	15 35	14.19	18	15 35
			015	847	15 5		9	2		2 71	2 90	10	2 90
			842	847	86		2	-		2,71	2,50	2	2,50
			042	1224	17.9		1	7		1 10	6.40	2	6.40
			946	1002	15.2		1	1		0.14	2.04	2	2.04
			840	1055	13,2		1	2		4 10	5,04	2	5,04
			047	745	25,9			2		4,19	0,45	4	0,45
				747	13,7			3		1,66	4,97	4	4,97
				794	13,1		/	3		2,50	3,65	10	3,65
				819	15,5		9	2		2,/1	2,90	11	2,90
				842	8,6		2			2,62		2	2,62
				858	16,6		4	4		2,10	5,81	8	5,81
				1093	14,5	1	16	42	4,29	4,49	6,79	59	6,79
			858	847	16,6		4	4		2,10	5,81	8	5,81
			920	1589	25,2			6			11,44	6	11,44
			926	1330	16,4			2			2,13	2	2,13
			956	965	15,3		1	9		7,59	8,31	10	8,31
			965	956	15,3		1	9		7,59	8,31	10	8,31
			1093	794	10,5		9	10		14,53	11,74	19	14,53
				846	15,2		1	1		0,14	3,04	2	3,04
				847	14,5	1	16	42	4,29	4,49	6,79	59	6,79
			1150	1294	17,6			3			4,68	3	4,68
			1205	1310	14,1	4	5	6	3,84	7,76	5,90	15	7,76
				1416	29,2		1	3		0,73	3,40	4	3,40
			1209	1416	23.0			7		,	4.45	7	4.45
			1294	1150	17.6			3			4.68	3	4.68
			1310	1205	14.1	4	5	6	3.84	7 76	5.90	15	7 76
			1330	926	16.4		Ĵ	2	5,5 .	.,	2 13	2	2 13
			1334	842	17.8		1	7		1 19	6.49	8	6.49
			1/16	1205	20.2		1	2		0.73	3.40	1	3.40
			1410	1205	23,2			7		0,75	3,40	7	3,40
			1590	020	25,0			6			11 44	,	11 44
			1907	1029	23,2			6			11,44	6	11,44
			1807	1938	27,3	4	1	2	1 5 7	4.00	10.24	5	11,77
				2080		1	1	2	1,57	4,96	10,54	5	10,54
			1021	2069			2	3		2.04	0,25	2	0,25
			1821	2089			2	1		2,04	9,85	3	9,85
			1001	2097				1			6,01	1	6,01
			1864	1903	23,2			2			9,16	2	9,16
				2016	20,0			2			8,28	2	8,28
				2108		_		3			5,03	3	5,03
				2122		3		39	9,51	0,36	12,14	43	12,14
			1873	1903	13,7		1	6		2,31	5,25	7	5,25
				2122				3			8,01	3	8,01
			1892	1910	13,5		1			0,12		1	0,12
				1912	11,2		2			3,97		2	3,97
			1903	1864	23,2			2			9,16	2	9,16
				1873	13,7		1	6		2,31	5,25	7	5,25
				1910	13,0	1	5		5,80	5,02		6	5,80
				2122		1	1	2	6,77	0,79	6,25	4	6,77
			1910	1892	13,5		1			0,12		1	0,12
				1903	13,0	1	5		5,80	5,02		6	5,80
				1938	10,5	1	4	10	6,36	4,60	4,92	15	6,36
				2094				1			2,66	1	2,66
				2097				1			2,86	1	2,86
				2108		1	3	4	0,68	1,28	2,72	8	2,72
				2122		2	1	15	2,18	2,25	6,80	18	6,80
				2149	27,0			1			2,68	1	2,68
			1912	1892	11,2		2			3,97		2	3,97
			1926	697	24,8	1			0,85			1	0,85
			1938	1807	27,3			6			11,77	6	11,77
				1910	10,5	1	4	10	6,36	4,60	4,92	15	6,36
				2016	20,2			2			9,82	2	9,82
				2089		1	1	7	0,97	1,24	8,39	9	8,39
				2094				4			4,70	4	4,70
				2097				3			8,74	3	8,74
			2016	1864	20,0			2			8,28	2	8,28
				1938	20,2			2			9,82	2	9,82
				2066	13,6	37	22	181	10,94	10,87	13,52	240	13,52
				2089		14	17	51	10,35	7,92	10,17	82	10,35
				2094		13	5	19	13,88	2,39	9,90	37	13,88
							. 1		•	•	•		

						5	pectral cour	nt		Score _{max}		Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
		•	• • •	2097		7	8	53	8,40	9,47	15,21	68	15,21
				2108				50			13.74	50	13.74
				2122		13	5	176	13.68	10.45	18 77	194	18 77
				2124			1	27	10,00	1 /6	10.09	28	10.09
			2066	2016	12.6	27	22	101	10.04	10.97	12 52	240	12 52
			2000	2010	13,0	2	- 22	101	10,94	10,87	13,32	240	15,52
				2089		3	5	1	16,26	10,47	4,79	9	16,26
				2094				1			1,43	1	1,43
				2097		1	1	3	5,68	3,12	9,49	5	9,49
				2108				1			12,86	1	12,86
				2122				3			7,78	3	7,78
			2080	1807		1	1	3	1,57	4,98	10,34	5	10,34
				2094			1			0,52		1	0,52
			2089	1807				3			6,25	3	6,25
				1821			2	1		2.04	9.85	3	9.85
				1938		1	1	7	0.97	1 24	8 39	9	8 39
				2016		14	17	51	10.35	7 92	10.17	82	10.35
				2010		2		1	16.26	10.47	4 70	0	16.26
				2000		2	5	6	2 76	10,47	4,75	12	6 46
			2004	2097		5	4	1	3,70	4,65	0,40	15	0,40
			2094	1910				1			2,00		2,66
				1938			_	4			4,70	4	4,70
				2016		13	5	19	13,88	2,39	9,90	37	13,88
				2066				1			1,43	1	1,43
				2080			1			0,52		1	0,52
				2097		1	2	3	2,50	2,28	3,09	6	3,09
				2108				1			2,58	1	2,58
				2122				3			3,48	3	3,48
			2097	1821				1			6,01	1	6,01
				1910				1			2,86	1	2,86
				1938				3			8,74	3	8,74
				2016		7	8	53	8.40	9.47	15.21	68	15.21
				2066		1	1	3	5.68	3.12	9,49	5	9,49
				2089		3	4	6	3.76	4.85	6.46	13	6.46
				2003		1	2	3	2 50	2 28	3.09	6	3.09
				2004		-	2	1/	2,50	0 71	12 /1	17	12 /1
				2108			5	24		0,71	0 11	2	13,41
			2100	2154				3			8,11	3	8,11
			2108	1864				3	0.00	1.20	5,03	3	5,03
				1910		1	3	4	0,68	1,28	2,72	8	2,72
				2016				50			13,74	50	13,74
				2066				1			12,86	1	12,86
				2094				1			2,58	1	2,58
				2097			3	14		8,71	13,41	17	13,41
				2154		1		4	0,40		12,04	5	12,04
			2122	1864		3	1	39	9,51	0,36	12,14	43	12,14
				1873				3			8,01	3	8,01
				1903		1	1	2	6.77	0.79	6.25	4	6.77
				1910		2	1	15	2 18	2.25	6.80	18	6.80
				2016		13	5	176	13.68	10.45	18 77	194	18 77
				2010		15	5	2	15,00	10,45	7 70	2	7 70
				2000				2			2 10	2	2 10
				2054				1			5,40	1	5,40
			2124	2154			1	1		1.40	5,00	1	5,66
			2124	2016	27.0		1	2/		1,40	10,09	20	10,09
			2149	1910	27,0			1			2,68		2,68
				2154	11,1			1			3,72	1	3,72
			2154	2097				3			8,11	3	8,11
				2108		1		4	0,40		12,04	5	12,04
				2122				1			5,88	1	5,88
				2149	11,1			1			3,72	1	3,72
	Prp9	Prp9	2	115				9			8,22	9	8,22
			89	140			3	21		7,09	12,66	24	12,66
			95	107				8			5,74	8	5,74
			107	95				8			5,74	8	5,74
				115		19	18	106	15,02	10,77	15,60	143	15,60
			115	2				9			8,22	9	8,22
				107		19	18	106	15,02	10,77	15,60	143	15,60
				124		1	3	16	7.42	17.05	11.60	20	17.05
			124	115		1	3	16	7 42	17.05	11 60	20	17.05
			140	89		-	3	21	.,.=	7.09	12 66	24	12.66
			278	290				1		.,	5 55	1	5 55
			200	200				1			5,55	1	5,55
			250	270		2	_ _	0 1	2 17	0.26	1 10	12	1 10
			302	202			2	°	2,17	0,50	4,40	10	4,40
			306	302		5	2	8	2,1/	0,36	4,48	13	4,48
			468	492				1			2,75		2,/5
			492	468		_		1			2,75	1	2,75
			_	519		7	2	35	14,33	4,31	10,25	44	14,33
			518	525				3			11,09	3	11,09
			519	492		7	2	35	14,33	4,31	10,25	44	14,33
				526			1			1,71		1	1,71
			525	518				3			11,09	3	11,09
			526	519			1			1,71		1	1,71
	Rse1	Rse1	172	221	11,9			2			16,26	2	16,26
				1269				1			2,32	1	2,32
			221	172	11,9			2			16,26	2	16,26
				1269	, ·			1			9,63	1	9,63
									•				

						S	pectral cour	nt		Score _{max}		Total	Best
Type	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Scoremax
			347	462				1			7 93	. 1	7 93
			252	462		2		-	6 00		1,55	2	6.99
			352	462		2			6,88			2	0,88
			361	948	41,6	2			4,89			2	4,89
				949	40,2		1	1		0,77	2,39	2	2,39
			462	347				1			7,93	1	7,93
				352		2			6.88		,	2	6.88
			049	261	41 C	2			4 80			2	4.80
			948	501	41,0	2 ×			4,69			2	4,69
			949	361	40,2		1	1		0,77	2,39	2	2,39
				1001	32,1	4	6	15	4,50	5,93	6,24	25	6,24
			1001	949	32.1	4	6	15	4.50	5.93	6.24	25	6.24
			1007	1057	13.9	1	1	2	4 79	1.61	6 13	4	6.13
			1057	1007	13,5	1	1	2	4,75	1,01	6 12	4	6 1 2
			1057	1007	15,9	1	1	2	4,79	1,01	0,15	4	0,15
			1269	1/2				1			2,32	1	2,32
				221				1			9,63	1	9,63
			1316	1342			13	3		14.76	21.63	16	21.63
			1342	1316			13	3		14 76	21.63	16	21.63
	CmD	ConD	1042	100			15	1		14,70	10 51	10	10 51
	SIIID	SILID	2	100				1			10,51	1	10,51
			19	100	5,7			2			3,05	2	3,05
			55	76	8,7	8	12	40	6,64	3,56	11,39	60	11,39
			60	65		4	4	7	4,30	3,31	5,84	15	5,84
				68		2	3	1	1 37	5 46	4 25	6	5.46
				76		25	10	71	1,57	11.00	15 56	114	15,40
				76		25	10	/1	9,00	11,00	15,50	114	15,50
			65	60		4	4	/	4,30	3,31	5,84	15	5,84
				76		1	1	4	1,71	2,16	3,38	6	3,38
			68	60		2	3	1	1,37	5,46	4,25	6	5,46
			76	55	8.7	8	12	40	6.64	3.56	11.39	60	11.39
				60	-,-	25	10	71	0.06	11.00	15 56	114	15 56
				00		25	10	/1	9,00	11,00	13,30	114	13,50
				65		1	1	4	1,/1	2,16	3,38	6	3,38
				100	25,9		5			3,05		5	3,05
				186			1			0,89		1	0,89
			100	2				1			10.51	1	10.51
				19	57			2			3.05	2	3.05
				76	25.0		-	-		2.05	3,05	-	3,05
				76	25,9		5			3,05		5	3,05
				117				4			2,62	4	2,62
				186				1			4,81	1	4,81
			105	117			1	3		3,86	3,45	4	3,86
			114	117				1		-,	3.62	1	3.62
			114	121				4			4 11	1	4 1 1
				121				4			4,11	4	4,11
			117	100				4			2,62	4	2,62
				105			1	3		3,86	3,45	4	3,86
				114				1			3.62	1	3.62
				124				1			2.96	-	2.96
				124				2			4.67	7	4.67
				138				3			4,67	3	4,67
			121	114				4			4,11	4	4,11
				127				5			5,72	5	5,72
				131				1			3.87	1	3.87
				138				1			1.87	1	1.87
			124	117				1			2,07	1	1,07
			124	11/				4			2,96	4	2,96
				138			2			0,87		2	0,87
				186			1			0,43		1	0,43
			127	121				5			5,72	5	5,72
			121	121				1			3.87	1	3 87
			151	121		2	6	10	4.05	2.00	5,67	1	5,67
				138		2	6	10	4,95	3,88	6,45	24	6,45
				186				2			5,10	2	5,10
			132	138		2	5	6	1,64	0,84	3,47	13	3,47
				186			1			1,00		1	1,00
			138	117				3		,	4 67	3	4.67
			130	171				1			1 07	1	1 07
				121			_	1		0.07	1,07	1	1,07
				124			2			0,87		2	0,87
				131		2	6	16	4,95	3,88	6,45	24	6,45
				132		2	5	6	1,64	0,84	3,47	13	3,47
				186		1	3	7	3.47	5.07	7.22	11	7.22
				104		-	5	1	5,	3,07	2 00	1	2 00
			4.45	194				-	0.24	4 00	2,00	1	2,00
			145	180		1	1	5	0,24	1,08	8,93	/	8,93
			186	76			1			0,89		1	0,89
				100				1			4,81	1	4,81
				124			1			0.43		1	0.43
				121				2		·, ·-	5 10	2	5 10
				100			1	-		1 00	3,10	1	1 00
				132				_	a	1,00		1	1,00
				138		1	3	7	3,47	5,07	7,22	11	7,22
				145		1	1	5	0,24	1,08	8,93	7	8,93
			194	138				1			2,88	1	2,88
	SmD1	SmD1	1	111				1			7 56	1	7 56
	JIIIDT	JIIDI	1	111				4			10.15	1	10.15
			2	111				1			10,15	1	10,15
				128			1			0,40		1	0,40
			8	111		1	1	9	0,72	2,50	6,04	11	6,04
				128				3			7,32	3	7,32
				179				1			2 81	1	2.81
				140				1			1 07	- 1	2,01
			-	140				1			1,8/	1	1,87
			9	128				3			8,18	3	8,18
				129				1			7,12	1	7,12
			111	1				1			7,56	1	7,56
				2				1			10.15	1	10 15
				4	1	I	1	I	I		1 -0,20	- ÷	10,10

						S	pectral cour	nt		Score _{max}		Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
·	•		• • •	8		1	1	9	0,72	2,50	6,04	11	6,04
				128			4	10		5,45	7,08	14	7,08
				140			1	2		0.16	3.04	3	3.04
			128	2			1	_		0.40	-,	1	0.40
				8			_	3		-,	7.32	3	7.32
				9				3			8.18	3	8.18
				111			4	10		5.45	7.08	14	7.08
				140		7	18	37	4 55	6 31	12.00	62	12.00
			170	240		· /	10	1	4,55	0,51	2 81	1	2 81
			125	0				1			2,01	1	2,01
			140	9				1			1,12	1	7,12
			140	0			1	1		0.16	1,0/	1	1,67
				111		_	1	2	4.55	0,16	3,04	3	3,04
	6	6	50	128	47.5		18	37	4,55	6,31	12,00	62	12,00
	SmD2	SmD2	53	59	17,5		10			6,35		10	6,35
				73	8,0	11	35	4	6,78	6,85	5,79	50	6,85
				79	15,6		1			0,17		1	0,17
			59	53	17,5		10			6,35		10	6,35
				73	14,7		3			2,22		3	2,22
				79	31,5		4			1,61		4	1,61
				82	38,7		1			2,37		1	2,37
				93	9,7	1	4	1	3,38	6,61	6,73	6	6,73
			73	53	8,0	11	35	4	6,78	6,85	5,79	50	6,85
				59	14,7		3			2,22		3	2,22
			79	53	15,6		1			0,17		1	0,17
				59	31,5		4			1,61		4	1,61
				82	7,8	3	8	12	9,75	7,33	9,77	23	9,77
			82	59	38,7		1			2,37		1	2,37
			-	79	7.8	3	8	12	9,75	7,33	9,77	23	9,77
				93	33.8		1		·, -	2.75	-, -	1	2.75
			93	59	97	1	4	1	3 38	6.61	6 73	6	6 73
			55	82	33.8	-	1	-	5,50	2 75	0,75	1	2 75
	SmD3	SmD3	2	85	55,0	2	2	7	11 37	3 17	5 24	11	11 37
	51125	511125	-	86		2	3	12	1 5 3	4 23	1 37	17	137
			0	95	12.0	2	5	12	1,55	4,25	2 21	1	4,57
			9	85	13,0			2			3,31	2	3,51
			70	80		1		2	0.24		2,15	2	2,15
			79	80			2	1	0,24	2.17	1,67	2	1,07
			85	2	12.0	2	2		11,37	3,17	5,24	11	11,37
				9	13,0			1			3,31	1	3,31
			86	2		2	3	12	1,53	4,23	4,37	1/	4,37
				9				2			2,13	2	2,13
				79		1		1	0,24		1,67	2	1,67
	SmG	SmG	8	13	10,0	2	5	23	4,60	4,73	5,69	30	5,69
			13	8	10,0	2	5	23	4,60	4,73	5,69	30	5,69
			14	24	13,0	2	2	3	6,97	11,25	12,31	7	12,31
			24	14	13,0	2	2	3	6,97	11,25	12,31	7	12,31
	Snt309	Snt309	46	48			3			1,72		3	1,72
			48	46			3			1,72		3	1,72
			67	94		2	3	8	4,52	1,90	3,38	13	4,52
			72	94				1			0,61	1	0,61
			94	67		2	3	8	4,52	1,90	3,38	13	4,52
				72				1			0,61	1	0,61
	Snu114	Snu114	59	72				1			0,91	1	0,91
			60	81				3			5,77	3	5,77
			72	59				1			0,91	1	0,91
			81	60				3			5.77	3	5.77
			99	111				1			1.75	1	1.75
				494		2	5	15	4,52	7,48	6,92	22	7,48
			111	99				1	,-	, -	1,75	1	1,75
			115	159	6.1		3	1		1.76	3.29	4	3,29
			159	115	6.1		3	1		1.76	3.29	4	3.29
			494	99	0,1	2	5	15	4.52	7.48	6.92	22	7.48
				581	14.0	1	3	9	1.83	5 39	14 42	13	14.42
			520	583	15.2	[*]		1	1,55	3,35	2 21	1	2 21
			558	581	15,2			1			2,21	1	2,21
			E 9 1	404	14.0	1	2	0	1 9 2	E 20	14.42	12	14.42
			100	434	15 1	¹	5	1	1,05	5,59	14,42 2 E1	13	14,4Z 2 E 1
			E00	530	15,1			1			2,31	1	2,51
			617	520	13,2	2	2	- -	2 20	3.24	4 40	10	2,21
			017 665	617	3,5	2	2	6	2,29	3,34	4,49	10	4,49
			200	740	9,5	_	2		2,29	5,54	4,49	- 10	4,49
			/50	749		1		4	1.00	1.07	3,11	0	3,11
			740	890			3	л	1,90	1,07	3 11	4	1,90
			749	/30	10.2		4	4	4.25	0,50	3,11	D A	3,11
			804	843	10,2	5			1,35	0,60		4	1,35
			843	804	10,2	3	1	_	1,35	0,60		4	1,35
			ar -	991	17,0		1	3	0,36	1,97	2,28	5	2,28
			890	/30			3		1,96	1,07		4	1,96
			947	955	18,0			4			4,69	4	4,69
			955	947	18,0			4			4,69	4	4,69
	e	C. 4=4.1-	991	843	17,0		1	3	0,36	1,97	2,28	5	2,28
	Snu17/lst3	Snu17/Ist3	96	103		4	3	7	10,92	7,53	10,43	14	10,92
			103	96		4	3	7	10,92	7,53	10,43	14	10,92
			123	133	17,9	2		30	0,60		9,88	32	9,88
				138				1			2,41	1	2,41

						S	pectral cour	nt		Score _{max}		Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
			133	123	17,9	2		30	0,60		9,88	32	9,88
				143	,	2	4		2.87	2.22	,	6	2.87
			138	123		-		1	2,07	_,	2 41	1	2,07
			100	144			2	-		0.88	2,12	2	0.88
			142	122		2	2		2 07	2,00		6	0,00
			143	133		2	4		2,87	2,22		2	2,87
	62	62	144	150		1	2		7.05	0,88		2	0,88
	Sppz	Sppz	/	15					7,65			1	7,65
			11	15		1			0,59			1	0,59
			15	7		1			7,65			1	7,65
				11		1			0,59			1	0,59
			38	52				3			13,55	3	13,55
				58				1			7,55	1	7,55
				68				1			3,42	1	3,42
				74				1			9.31	1	9.31
				83				2			4 37	2	4 37
				95				1			5.46	1	5.46
			52	38				3			13 55	3	13 55
			52	20				1			13,55	1	13,55
			50	30				1			7,55	1	7,35
			00	30				1			5,42	1	5,42
				70				9			17,04	9	17,04
			70	68				9			17,04	9	17,04
				133				1			2,95	1	2,95
			74	38				1			9,31	1	9,31
			82	95				4			3,94	4	3,94
			83	38				2			4,37	2	4,37
			95	38				1			5,46	1	5,46
				82				4			3,94	4	3,94
			124	133				1			0,10	1	0,10
			127	133				4			7.30	4	7.30
			133	70				1			2 95	1	2.95
			100	174				1			0.10	1	0 10
				127				1			7 30	1	7 30
				154				1			12.09	1	12.09
			154	134				1			13,98	1	13,50
			154	133				1			13,98	1	13,98
			168	181				2			2,64	2	2,64
			181	168				2			2,64	2	2,64
	Syf1	Syf1	192	367				1			4,84	1	4,84
			220	249		2	3	3	5,33	5,17	3,14	8	5,33
			249	220		2	3	3	5,33	5,17	3,14	8	5,33
			367	192				1			4,84	1	4,84
			413	419	10,4	2	5	7	3,53	3,25	5,41	14	5,41
				424	21,1		1			0,40		1	0,40
			419	413	10.4	2	5	7	3.53	3.25	5.41	14	5.41
			424	413	21.1	_	1	-	-,	0.40	-,	1	0.40
			424	415	21,1		1			2 72		1	2 72
			420	435			1			2,72		1	2,72
			435	424 521			2	22	0.00	6.16	0.55	25	2,72
			534	531		9	3	23	9,89	6,16	9,55	35	9,89
			524	531		8	4	6	4,68	4,30	15,22	18	15,22
			531	439		9	3	23	9,89	6,16	9,55	35	9,89
				524		8	4	6	4,68	4,30	15,22	18	15,22
			770	802			4			1,78		4	1,78
			790	798				2			5,42	2	5,42
			798	790				2			5,42	2	5,42
			802	770			4			1,78		4	1,78
	Syf2	Syf2	23	26		9	11	16	3,47	6,27	8,99	36	8,99
			26	23		9	11	16	3,47	6,27	8,99	36	8,99
			121	159				2			5,88	2	5,88
			132	142				1			1,66	1	1,66
			136	142				4			4,15	4	4,15
				145				1			3.27	1	3.27
			142	132				1			1.66	1	1.66
				136				4			4.15	4	4.15
			145	136				1			3 27	. 1	2 27
			140	150		11	4	, s	5 16	2 20	A 10	22	5,27
			151	145		11	-	0	5,10	2,50	4,10	20	5,10
			151	145		111	4	ð	5,10	3,30	4,10	23	5,16
			159	121		_			0.00	0.05	5,88	2	5,88
			199	206		2	2	4	0,86	0,65	4,86	8	4,86
			206	199		2	2	4	0,86	0,65	4,86	8	4,86
	Yju2/Cwc16	Yju2/Cwc16	5	68			1			3,01		1	3,01
			22	26		1		1	1,17		2,07	2	2,07
			26	22		1		1	1,17		2,07	2	2,07
			32	68			2			2,62		2	2,62
			36	68		3	7	8	5,78	3,70	6,46	18	6,46
				74			4			3,95	, -	4	3,95
				80		1	4		0.96	2.88		5	2.88
			60	120		2	2	5	3 3 3	1 27	8 10	9	2,00 8 10
			63	68		1	2	2	3.05	4 29	5 41	5	5 41
			50 50	C 00		⁺	1	- ⁻	3,05	2 01	5,41	1	2 01
			80	5			1 2			3,01		⊥ 	3,01
				32		2	2		F 70	2,62	<i>c.c.</i>	2	2,62
				36		3		8	5,78	3,70	6,46	18	6,46
				63		1	2	2	3,05	4,29	5,41	5	5,41
				74			1			1,18		1	1,18
				80		18	9	20	14,57	3,40	6,29	47	14,57

						S	pectral cour	nt	Score _{max}			Total	Best
Туре	Protein 1	Protein 2	Residue 1	Residue 2	Å	Set 1	Set 2	Set 3	Set 1	Set 2	Set 3	spectral count	Score _{max}
			74	36			4			3,95		4	3,95
				68			1			1,18		1	1,18
			80	36		1	4		0,96	2,88		5	2,88
				68		18	9	20	14,57	3,40	6,29	47	14,57
			120	60		2	2	5	3,33	1,27	8,10	9	8,10
			168	172		2			2,42			2	2,42
			172	168		2			2,42			2	2,42
			242	253		1			2,43			1	2,43
			253	242		1			2,43			1	2,43
				259		1	4	4	8,00	5,45	6,27	9	8,00
			255	259			1	1		1,22	2,43	2	2,43
			259	253		1	4	4	8,00	5,45	6,27	9	8,00
				255			1	1		1,22	2,43	2	2,43
			272	275			1	1		0,24	6,37	2	6,37
			275	272			1	1		0,24	6,37	2	6,37
	Ysf3	Ysf3	12	17	7,9		3			1,89		3	1,89
			17	12	7,9		3			1,89		3	1,89

Validation	All RNA	%	Pre-mRNA	%	U6	%	U2	%	U5	%		
All-Atom Contacts												
Clash score	5	94	3.45	97	3	98	6	91	6	90		
Nucleic Acid Geometry												
Probably wrong sugar puckers:	12	3.2	0	0	6	5.9	2	2.5	4	3		
Bad backbone conformations:	121	32	28	51	41	40.2	21	26	31	22		
Bad bonds:	0 / 8965	0	0 / 1286	0	0 / 2427	0	0 / 1902	0	0 / 335	0		
Bad angles:	0 / 13938	0	0 / 1995	0	0/3778	0	0 / 2956	0	0 / 5209	0		

Table S3: MolProbity validation of the final RNA model of the yeast B^{act} complex

References and Notes

- M. C. Wahl, C. L. Will, R. Lührmann, The spliceosome: Design principles of a dynamic RNP machine. *Cell* 136, 701–718 (2009). <u>Medline doi:10.1016/j.cell.2009.02.009</u>
- P. Fabrizio, J. Dannenberg, P. Dube, B. Kastner, H. Stark, H. Urlaub, R. Lührmann, The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. *Mol. Cell* 36, 593–608 (2009). <u>Medline doi:10.1016/j.molcel.2009.09.040</u>
- Z. Warkocki, C. Schneider, S. Mozaffari-Jovin, J. Schmitzová, C. Höbartner, P. Fabrizio, R. Lührmann, The G-patch protein Spp2 couples the spliceosome-stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic activation of the spliceosome. *Genes Dev.* 29, 94–107 (2015). Medline doi:10.1101/gad.253070.114
- 4. T. Ohrt, M. Prior, J. Dannenberg, P. Odenwälder, O. Dybkov, N. Rasche, J. Schmitzová, I. Gregor, P. Fabrizio, J. Enderlein, R. Lührmann, Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. *RNA* 18, 1244–1256 (2012). <u>Medline doi:10.1261/rna.033316.112</u>
- 5. S. H. Kim, R. J. Lin, Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. *Mol. Cell. Biol.* 16, 6810–6819 (1996). <u>Medline doi:10.1128/MCB.16.12.6810</u>
- 6. R. M. Lardelli, J. X. Thompson, J. R. Yates 3rd, S. W. Stevens, Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. *RNA* 16, 516–528 (2010). <u>Medline doi:10.1261/rna.2030510</u>
- 7. S. M. Fica, M. A. Mefford, J. A. Piccirilli, J. P. Staley, Evidence for a group II intron-like catalytic triplex in the spliceosome. *Nat. Struct. Mol. Biol.* 21, 464–471 (2014). <u>Medline</u> <u>doi:10.1038/nsmb.2815</u>
- H. D. Madhani, C. Guthrie, A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. *Cell* 71, 803–817 (1992). <u>Medline doi:10.1016/0092-8674(92)90556-R</u>
- 9. J. P. Staley, C. Guthrie, Mechanical devices of the spliceosome: Motors, clocks, springs, and things. *Cell* **92**, 315–326 (1998). <u>Medline doi:10.1016/S0092-8674(00)80925-3</u>
- C. Yan, J. Hang, R. Wan, M. Huang, C. C. Wong, Y. Shi, Structure of a yeast spliceosome at 3.6-angstrom resolution. *Science* 349, 1182–1191 (2015). <u>Medline</u> <u>doi:10.1126/science.aac7629</u>
- W. P. Galej, C. Oubridge, A. J. Newman, K. Nagai, Crystal structure of Prp8 reveals active site cavity of the spliceosome. *Nature* 493, 638–643 (2013). <u>Medline</u> doi:10.1038/nature11843
- 12. R. J. Grainger, J. D. Beggs, Prp8 protein: At the heart of the spliceosome. *RNA* **11**, 533–557 (2005). <u>Medline doi:10.1261/rna.2220705</u>
- T. H. Nguyen, W. P. Galej, X. C. Bai, C. Oubridge, A. J. Newman, S. H. Scheres, K. Nagai, Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution. *Nature* 530, 298–302 (2016). <u>Medline doi:10.1038/nature16940</u>

- 14. T. H. Nguyen, W. P. Galej, X. C. Bai, C. G. Savva, A. J. Newman, S. H. Scheres, K. Nagai, The architecture of the spliceosomal U4/U6.U5 tri-snRNP. *Nature* 523, 47–52 (2015). <u>Medline doi:10.1038/nature14548</u>
- R. Wan, C. Yan, R. Bai, L. Wang, M. Huang, C. C. Wong, Y. Shi, The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis. *Science* 351, 466–475 (2016). <u>Medline doi:10.1126/science.aad6466</u>
- 16. D. E. Agafonov, B. Kastner, O. Dybkov, R. V. Hofele, W. T. Liu, H. Urlaub, R. Lührmann, H. Stark, Molecular architecture of the human U4/U6.U5 tri-snRNP. *Science* 351, 1416– 1420 (2016). <u>Medline doi:10.1126/science.aad2085</u>
- Z. Warkocki, P. Odenwälder, J. Schmitzová, F. Platzmann, H. Stark, H. Urlaub, R. Ficner, P. Fabrizio, R. Lührmann, Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. *Nat. Struct. Mol. Biol.* 16, 1237–1243 (2009). <u>Medline doi:10.1038/nsmb.1729</u>
- 18. B. Sander, M. M. Golas, E. M. Makarov, H. Brahms, B. Kastner, R. Lührmann, H. Stark, Organization of core spliceosomal components U5 snRNA loop I and U4/U6 Di-snRNP within U4/U6.U5 Tri-snRNP as revealed by electron cryomicroscopy. *Mol. Cell* 24, 267– 278 (2006). <u>Medline doi:10.1016/j.molcel.2006.08.021</u>
- E. Absmeier, J. Wollenhaupt, S. Mozaffari-Jovin, C. Becke, C. T. Lee, M. Preussner, F. Heyd, H. Urlaub, R. Lührmann, K. F. Santos, M. C. Wahl, The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation. *Genes Dev.* 29, 2576– 2587 (2015). <u>Medline</u>
- 20. T. H. Nguyen, J. Li, W. P. Galej, H. Oshikane, A. J. Newman, K. Nagai, Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. *Structure* 21, 910–919 (2013). <u>Medline doi:10.1016/j.str.2013.04.017</u>
- 21. S. Bessonov, M. Anokhina, A. Krasauskas, M. M. Golas, B. Sander, C. L. Will, H. Urlaub, H. Stark, R. Lührmann, Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. *RNA* 16, 2384–2403 (2010). <u>Medline doi:10.1261/rna.2456210</u>
- 22. K. S. Keating, N. Toor, P. S. Perlman, A. M. Pyle, A structural analysis of the group II intron active site and implications for the spliceosome. *RNA* 16, 1–9 (2010). <u>Medline doi:10.1261/rna.1791310</u>
- N. Toor, K. S. Keating, S. D. Taylor, A. M. Pyle, Crystal structure of a self-spliced group II intron. *Science* 320, 77–82 (2008). <u>Medline doi:10.1126/science.1153803</u>
- 24. S. M. Fica, N. Tuttle, T. Novak, N. S. Li, J. Lu, P. Koodathingal, Q. Dai, J. P. Staley, J. A. Piccirilli, RNA catalyses nuclear pre-mRNA splicing. *Nature* 503, 229–234 (2013). <u>Medline</u>
- 25. J. Hang, R. Wan, C. Yan, Y. Shi, Structural basis of pre-mRNA splicing. *Science* **349**, 1191–1198 (2015). <u>Medline doi:10.1126/science.aac8159</u>
- 26. T. A. Steitz, J. A. Steitz, A general two-metal-ion mechanism for catalytic RNA. *Proc. Natl. Acad. Sci. U.S.A.* **90**, 6498–6502 (1993). <u>Medline doi:10.1073/pnas.90.14.6498</u>

- 27. R. T. Chan, A. R. Robart, K. R. Rajashankar, A. M. Pyle, N. Toor, Crystal structure of a group II intron in the pre-catalytic state. *Nat. Struct. Mol. Biol.* **19**, 555–557 (2012). <u>Medline doi:10.1038/nsmb.2270</u>
- M. Marcia, A. M. Pyle, Visualizing group II intron catalysis through the stages of splicing. *Cell* 151, 497–507 (2012). <u>Medline doi:10.1016/j.cell.2012.09.033</u>
- 29. E. J. Sontheimer, J. A. Steitz, The U5 and U6 small nuclear RNAs as active site components of the spliceosome. *Science* **262**, 1989–1996 (1993). <u>Medline</u> doi:10.1126/science.8266094
- 30. A. J. Newman, C. Norman, U5 snRNA interacts with exon sequences at 5' and 3' splice sites. *Cell* 68, 743–754 (1992). <u>Medline doi:10.1016/0092-8674(92)90149-7</u>
- 31. A. L. Steckelberg, V. Boehm, A. M. Gromadzka, N. H. Gehring, CWC22 connects premRNA splicing and exon junction complex assembly. *Cell Reports* 2, 454–461 (2012). <u>Medline doi:10.1016/j.celrep.2012.08.017</u>
- 32. T. C. Yeh, H. L. Liu, C. S. Chung, N. Y. Wu, Y. C. Liu, S. C. Cheng, Splicing factor Cwc22 is required for the function of Prp2 and for the spliceosome to escape from a futile pathway. *Mol. Cell. Biol.* **31**, 43–53 (2011). <u>Medline doi:10.1128/MCB.00801-10</u>
- 33. G. Buchwald, S. Schüssler, C. Basquin, H. Le Hir, E. Conti, Crystal structure of the human eIF4AIII-CWC22 complex shows how a DEAD-box protein is inhibited by a MIF4G domain. *Proc. Natl. Acad. Sci. U.S.A.* **110**, E4611–E4618 (2013). <u>Medline</u> <u>doi:10.1073/pnas.1314684110</u>
- 34. L. A. Lindsey-Boltz, G. Chawla, N. Srinivasan, U. Vijayraghavan, M. A. Garcia-Blanco, The carboxy terminal WD domain of the pre-mRNA splicing factor Prp17p is critical for function. *RNA* 6, 1289–1305 (2000). <u>Medline doi:10.1017/S1355838200000327</u>
- 35. C. Schneider, D. E. Agafonov, J. Schmitzová, K. Hartmuth, P. Fabrizio, R. Lührmann, Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes. *PLOS Genet.* **11**, e1005539 (2015). <u>Medline</u> doi:10.1371/journal.pgen.1005539
- D. S. McPheeters, P. Muhlenkamp, Spatial organization of protein-RNA interactions in the branch site-3' splice site region during pre-mRNA splicing in yeast. *Mol. Cell. Biol.* 23, 4174–4186 (2003). <u>Medline doi:10.1128/MCB.23.12.4174-4186.2003</u>
- 37. C. Cretu *et al.*, Molecular architecture of SF3b and structural consequences of its cancerrelated mutations. *Mol. Cell*, PDB ID: 5IFE (2016).
- 38. C. L. Will, C. Schneider, A. M. MacMillan, N. F. Katopodis, G. Neubauer, M. Wilm, R. Lührmann, C. C. Query, A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. *EMBO J.* 20, 4536–4546 (2001). <u>Medline</u> doi:10.1093/emboj/20.16.4536
- C. C. Query, S. A. Strobel, P. A. Sharp, Three recognition events at the branch-site adenine. *EMBO J.* 15, 1392–1402 (1996). <u>Medline</u>

- 40. G. Edwalds-Gilbert, D. H. Kim, E. Silverman, R. J. Lin, Definition of a spliceosome interaction domain in yeast Prp2 ATPase. *RNA* 10, 210–220 (2004). <u>Medline</u> <u>doi:10.1261/rna.5151404</u>
- 41. A. M. Wlodaver, J. P. Staley, The DExD/H-box ATPase Prp2p destabilizes and proofreads the catalytic RNA core of the spliceosome. *RNA* **20**, 282–294 (2014). <u>Medline</u> doi:10.1261/rna.042598.113
- 42. H. L. Liu, S. C. Cheng, The interaction of Prp2 with a defined region of the intron is required for the first splicing reaction. *Mol. Cell. Biol.* **32**, 5056–5066 (2012). <u>Medline</u> <u>doi:10.1128/MCB.01109-12</u>
- 43. R. B. Darman, M. Seiler, A. A. Agrawal, K. H. Lim, S. Peng, D. Aird, S. L. Bailey, E. B. Bhavsar, B. Chan, S. Colla, L. Corson, J. Feala, P. Fekkes, K. Ichikawa, G. F. Keaney, L. Lee, P. Kumar, K. Kunii, C. MacKenzie, M. Matijevic, Y. Mizui, K. Myint, E. S. Park, X. Puyang, A. Selvaraj, M. P. Thomas, J. Tsai, J. Y. Wang, M. Warmuth, H. Yang, P. Zhu, G. Garcia-Manero, R. R. Furman, L. Yu, P. G. Smith, S. Buonamici, Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point. *Cell Reports* 13, 1033–1045 (2015). <u>Medline doi:10.1016/j.celrep.2015.09.053</u>
- 44. S. Alsafadi, A. Houy, A. Battistella, T. Popova, M. Wassef, E. Henry, F. Tirode, A. Constantinou, S. Piperno-Neumann, S. Roman-Roman, M. Dutertre, M. H. Stern, Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. *Nat. Commun.* 7, 10615 (2016). <u>Medline doi:10.1038/ncomms10615</u>
- 45. S. Bonnal, L. Vigevani, J. Valcárcel, The spliceosome as a target of novel antitumour drugs. *Nat. Rev. Drug Discov.* **11**, 847–859 (2012). <u>Medline doi:10.1038/nrd3823</u>
- 46. B. C. Rymond, M. Rosbash, Cleavage of 5' splice site and lariat formation are independent of 3' splice site in yeast mRNA splicing. *Nature* **317**, 735–737 (1985). <u>Medline</u> doi:10.1038/317735a0
- 47. C. Kappel, U. Zachariae, N. Dölker, H. Grubmüller, An unusual hydrophobic core confers extreme flexibility to HEAT repeat proteins. *Biophys. J.* **99**, 1596–1603 (2010). <u>Medline</u> doi:10.1016/j.bpj.2010.06.032
- 48. E. Conti, C. W. Müller, M. Stewart, Karyopherin flexibility in nucleocytoplasmic transport. *Curr. Opin. Struct. Biol.* **16**, 237–244 (2006). <u>Medline doi:10.1016/j.sbi.2006.03.010</u>
- 49. A. G. Cook, E. Conti, Nuclear export complexes in the frame. *Curr. Opin. Struct. Biol.* **20**, 247–252 (2010). <u>Medline doi:10.1016/j.sbi.2010.01.012</u>
- 50. C. Yan, R. Wan, R. Bai, G. Huang, Y. Shi, Structure of a yeast catalytically activated spliceosome at 3.5 Å resolution. *Science* 10.1126/science.aag0291 10.1126/science.aag0291 (2016). <u>Medline doi:10.1126/science.aag0291</u>
- 51. A. Yokoi, Y. Kotake, K. Takahashi, T. Kadowaki, Y. Matsumoto, Y. Minoshima, N. H. Sugi, K. Sagane, M. Hamaguchi, M. Iwata, Y. Mizui, Biological validation that SF3b is a target of the antitumor macrolide pladienolide. *FEBS J.* 278, 4870–4880 (2011). <u>Medline</u> <u>doi:10.1111/j.1742-4658.2011.08387.x</u>

- T. W. Chiang, S. C. Cheng, A weak spliceosome-binding domain of Yju2 functions in the first step and bypasses Prp16 in the second step of splicing. *Mol. Cell. Biol.* 33, 1746– 1755 (2013). <u>Medline doi:10.1128/MCB.00035-13</u>
- 53. S. L. Yean, R. J. Lin, U4 small nuclear RNA dissociates from a yeast spliceosome and does not participate in the subsequent splicing reaction. *Mol. Cell. Biol.* 11, 5571–5577 (1991). <u>Medline doi:10.1128/MCB.11.11.5571</u>
- 54. A. Chari, D. Haselbach, J. M. Kirves, J. Ohmer, E. Paknia, N. Fischer, O. Ganichkin, V. Möller, J. J. Frye, G. Petzold, M. Jarvis, M. Tietzel, C. Grimm, J. M. Peters, B. A. Schulman, K. Tittmann, J. Markl, U. Fischer, H. Stark, ProteoPlex: Stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. *Nat. Methods* 12, 859–865 (2015). Medline doi:10.1038/nmeth.3493
- 55. G. Edwalds-Gilbert, D. H. Kim, S. H. Kim, Y. H. Tseng, Y. Yu, R. J. Lin, Dominant negative mutants of the yeast splicing factor Prp2 map to a putative cleft region in the helicase domain of DExD/H-box proteins. *RNA* 6, 1106–1119 (2000). <u>Medline</u> doi:10.1017/S1355838200992483
- 56. A. Leitner, T. Walzthoeni, R. Aebersold, Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. *Nat. Protoc.* 9, 120–137 (2014). <u>Medline</u> <u>doi:10.1038/nprot.2013.168</u>
- 57. B. Yang, Y. J. Wu, M. Zhu, S. B. Fan, J. Lin, K. Zhang, S. Li, H. Chi, Y. X. Li, H. F. Chen, S. K. Luo, Y. H. Ding, L. H. Wang, Z. Hao, L. Y. Xiu, S. Chen, K. Ye, S. M. He, M. Q. Dong, Identification of cross-linked peptides from complex samples. *Nat. Methods* 9, 904–906 (2012). <u>Medline doi:10.1038/nmeth.2099</u>
- 58. M. van Heel, G. Harauz, E. V. Orlova, R. Schmidt, M. Schatz, A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996). <u>Medline</u> <u>doi:10.1006/jsbi.1996.0004</u>
- 59. J. A. Mindell, N. Grigorieff, Accurate determination of local defocus and specimen tilt in electron microscopy. *J. Struct. Biol.* **142**, 334–347 (2003). <u>Medline doi:10.1016/S1047-8477(03)00069-8</u>
- 60. S. H. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). <u>Medline doi:10.1016/j.jsb.2012.09.006</u>
- E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, UCSF Chimera—a visualization system for exploratory research and analysis. *J. Comput. Chem.* 25, 1605–1612 (2004). <u>Medline doi:10.1002/jcc.20084</u>
- 62. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). <u>Medline</u> doi:10.1107/S0907444910007493
- 63. P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart, PHENIX: A comprehensive Python-based system for macromolecular structure solution.

Acta Crystallogr. D Biol. Crystallogr. **66**, 213–221 (2010). <u>Medline</u> doi:10.1107/S0907444909052925

- 64. I. W. Davis, A. Leaver-Fay, V. B. Chen, J. N. Block, G. J. Kapral, X. Wang, L. W. Murray, W. B. Arendall 3rd, J. Snoeyink, J. S. Richardson, D. C. Richardson, MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. *Nucleic Acids Res.* 35 (Web Server), W375 (2007). <u>Medline doi:10.1093/nar/gkm216</u>
- 65. D. E. Agafonov, J. Deckert, E. Wolf, P. Odenwälder, S. Bessonov, C. L. Will, H. Urlaub, R. Lührmann, Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. *Mol. Cell. Biol.* **31**, 2667–2682 (2011). <u>Medline doi:10.1128/MCB.05266-11</u>
- 66. P. C. Lin, R. M. Xu, Structure and assembly of the SF3a splicing factor complex of U2 snRNP. *EMBO J.* **31**, 1579–1590 (2012). <u>Medline doi:10.1038/emboj.2012.7</u>
- 67. E. Absmeier, L. Rosenberger, L. Apelt, C. Becke, K. F. Santos, U. Stelzl, M. C. Wahl, A noncanonical PWI domain in the N-terminal helicase-associated region of the spliceosomal Brr2 protein. *Acta Crystallogr. D Biol. Crystallogr.* 71, 762–771 (2015). <u>Medline doi:10.1107/S1399004715001005</u>
- 68. A. M. van Roon, J. C. Yang, D. Mathieu, W. Bermel, K. Nagai, D. Neuhaus, ¹¹³Cd NMR experiments reveal an unusual metal cluster in the solution structure of the yeast splicing protein Bud31p. *Angew. Chem. Int. Ed. Engl.* **54**, 4861–4864 (2015). <u>Medline doi:10.1002/anie.201412210</u>
- M. Albers, A. Diment, M. Muraru, C. S. Russell, J. D. Beggs, Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. *RNA* 9, 138–150 (2003). <u>Medline doi:10.1261/rna.2119903</u>
- 70. A. Dziembowski, A. P. Ventura, B. Rutz, F. Caspary, C. Faux, F. Halgand, O. Laprévote, B. Séraphin, Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. *EMBO J.* 23, 4847–4856 (2004). <u>Medline</u> doi:10.1038/sj.emboj.7600482
- 71. P. Wysoczański, C. Schneider, S. Xiang, F. Munari, S. Trowitzsch, M. C. Wahl, R. Lührmann, S. Becker, M. Zweckstetter, Cooperative structure of the heterotrimeric premRNA retention and splicing complex. *Nat. Struct. Mol. Biol.* 21, 911–918 (2014). <u>Medline doi:10.1038/nsmb.2889</u>
- 72. M. A. Brooks, A. Dziembowski, S. Quevillon-Cheruel, V. Henriot, C. Faux, H. van Tilbeurgh, B. Séraphin, Structure of the yeast Pml1 splicing factor and its integration into the RES complex. *Nucleic Acids Res.* 37, 129–143 (2009). <u>Medline</u> <u>doi:10.1093/nar/gkn894</u>
- 73. S. Trowitzsch, G. Weber, R. Lührmann, M. C. Wahl, Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. *J. Mol. Biol.* 385, 531–541 (2009). <u>Medline doi:10.1016/j.jmb.2008.10.087</u>
- 74. H. Walbott, S. Mouffok, R. Capeyrou, S. Lebaron, O. Humbert, H. van Tilbeurgh, Y. Henry, N. Leulliot, Prp43p contains a processive helicase structural architecture with a specific regulatory domain. *EMBO J.* 29, 2194–2204 (2010). <u>Medline</u> <u>doi:10.1038/emboj.2010.102</u>