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Abstract

Large-scale recordings of neuronal activity make it possible to gain insights into the
collective activity of neural ensembles. It has been hypothesized that neural populations
might be optimized to operate at a ‘thermodynamic critical point’, and that this property
has implications for information processing. Support for this notion has come from
a series of studies which identified statistical signatures of criticality in the ensemble
activity of retinal ganglion cells. What are the underlying mechanisms that give rise to
these observations?

Here we show that signatures of criticality arise even in simple feed-forward models
of retinal population activity. In particular, they occur whenever neural population
data exhibits correlations, and is randomly sub-sampled during data analysis. These
results show that signatures of criticality are not necessarily indicative of an optimized
coding strategy, and challenge the utility of analysis approaches based on equilibrium
thermodynamics for understanding partially observed biological systems.

1 Introduction

Recent advances in neural recording technology [1,|2] and computational tools for
describing neural population activity |3] make it possible to empirically examine the
statistics of large neural populations and search for principles underlying their collective
dynamics [4]. One intriguing hypothesis that has emerged from this approach is the
idea that neural populations might be poised at a thermodynamic critical point [5H7],
and that this might have important consequences for how neural populations process
and encode sensory information [7}[8]. As similar observations have been made in other
biological systems (e.g. [9-11]), it has been suggested that this might reflect a more
general organizing principle [12].

In the case of neural coding, evidence in favour of this hypothesis has been put
forward by a series of studies which measured neural activity from large populations




of retinal ganglion cells and reported that their statistics resemble those of physical
systems at a critical point [7,/8]. Using large-scale multielectrode array recordings [2],
spike-sorting methods that scale to large (N > 100) populations [2}/13] and specially
developed maximum entropy models [3}[12,|14119], Tkacik et al. observed that the
specific heat—a global population statistic which measures the range of probabilities of
spike patterns—diverges as a function of population size. In addition, when an artificial
temperature parameter is introduced, specific heat is maximised for the statistics of
the observed data rather than for statistics which have been perturbed by changing the
temperature parameter. These properties of retinal populations resemble the behaviour
of physical systems at critical points, and gave rise to the hypothesis that neural systems
might also be poised at critical points.

What neural mechanisms can explain these observations? It had been hypothesised
that the properties of the system need to be finely tuned [7}/12] to keep the system at a
critical point, for example through adaptation [20]. A competing hypothesis [21H23] had
stated that generic mechanisms based on latent-variable models could be sufficient to
give rise to activity data with these statistics, but neither of these theoretical studies had
investigated mechanistic models of retinal population activity. Thus, subsequent studies
advocating criticality in the retina [7,/8], continued to interpret their observations as
indication for the retina to be poised at a special state that is advantageous for coding.
It is therefore still an open question as to whether previously reported signatures of
criticality reveal a new mechanism of retinal coding, or they are a direct consequence of
the standard enconding models of retinal ganglion cell responses [24-28].

We here challenge the conclusion of studies which used tools from statistical physics
to search for signatures of criticality by applying exactly the same data analysis approach
to a simplistic feed-forward cascade model of retinal ganglion cell responses and showing
that it exhibits the same effects. Focusing on how the specific heat of this simulated
data varies with population size and temperature, we show that this simple model
exhibits signatures of criticality and reproduces the experimentally reported dependence
on different stimulus ensembles [7]. We provide a theoretical analysis of an analytically
tractable model [21,/29,130], and show mathematically that it exhibits signatures of
criticality under a wide range of parameters.

This analysis also points to a subtle but important difference between how practical
neural data analysis and theoretical studies often differ in how they study scaling
behaviour of the system: Whereas many theoretical studies describe different systems
of size N, in practical neural data analysis populations of different size are typically
constructed by randomly subsampling a large (but fixed) recording of neural activity.
We show that this sampling process produces ’signatures of criticality’ whenever neural
data has non-zero correlations, which could arise from a shared stimulus drive, recurrent
connectivity or global state-fluctuations [31434].

2 Results

2.1 Signatures of criticality arise in a simple model of retinal
ganglion cell activity

A hallmark of criticality is that the specific heat of the model diverges when the tempera-
ture reaches the critical temperature [5]. Tkacik et al. [7] developed a statistical approach
for translating this concept to neural data analysis. In their analysis, neural populations
of different size n are generated from the full recording by randomly subsampling the
entire population. The statistics of activity for each population of size n are characterized
using a maximum entropy model [3L[141[15,[17,18]. Finally, the maximum entropy models
are perturbed by introducing a temperature parameter, and specific heat is computed




for each population size n and temperature T from the (perturbed) maximum entropy
model fit. Divergence of specific heat with population size n, and a peak of the specific
heat near unit temperature T' = 1 (the ’temperature’ of the original data) are interpreted
as evidence for the system being at a critical point .

To test if these signatures of criticality can be reproduced by canonical properties of
retinal circuits, we first created a simple phenomenological model of retinal ganglion cell
(RGC) activity based on linear-nonlinear neuron models [24,[25,[28]. In this model (Fig.
), we assumed retinal ganglion cells to have centre-surround receptive fields
with linear spatial integration [36], sigmoid nonlinearities and stochastic binary spikes,
i.e. in each time bin of size 20ms, each neuron i either emitted a spike (z; = 1) or not
(z; = 0). We used a sequence of natural images (see Methods[3.1] for details). In addition
to the feed-forward drive by the stimulus, nearby neurons received shared Gaussian
noise, mimicking common input from bipolar cells . Thus, cross-neural correlations
in the model arise from correlations in the stimulus, receptive-field overlap and shared
noise, but not from lateral connections between RGCs. Parameters of the model were
chosen to approximate the statistics of receptive-field centre locations of RGCs (Fig.
), as well as histograms of firing rates, pairwise correlation-coefficients and population
spike-counts (Fig. ) Nevertheless, the model clearly cannot accurately capture all
statistics of real RGC activity: Our goal was not to provide a realistic model of retinal
processing. Rather, we wanted to directly test whether canonical mechanisms of retinal
processing (overlapping centre-surround receptive fields, spiking nonlinearities, shared
Gaussian noise) are sufficient for the signatures of criticality to arise, or whether this
would require fine-tuning or sophisticated neural circuitry.
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Figure 1. A simple phenomenological model of retinal ganglion cell activity
a) Model schematic: Neurons have linear stimulus selectivity with centre-surround
receptive fields and also receive correlated Gaussian noise. Neural activity is modelled
in discrete time. b) Receptive field centres in simulation. ¢) Example raster plot of the
simulated activity of 100 neurons in response to natural stimuli. d) Statistics of
population activity in response to natural stimuli. Histogram of firing rates (top left),
correlation coefficients (bottom left) and frequency of population spike-counts (right).

As a next step in the analysis, we subsampled populations of different size n by
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uniformly sampling cells from our simulated recording of size N = 316 neurons. For
each population we fit a "K-pairwise’ maximum entropy model [3]. This model assigns
a probability P(x) to each spike-pattern x. It is an extension of pairwise maximum
entropy models (i.e. Ising models) [14}/15] which reproduces the firing rates and pairwise
covariances which has additional terms which make sure that the model also captures the
population spike-counts of the data [3| (see Fig. , and Methods for details of model
specification and parameterisation). As we needed to efficiently fit this model [38-40]
to multiple simulated data sets, we developed an improved fitting algorithm based on
maximum-likelihood techniques using Markov chain Monte Carlo (MCMC) techniques,
building on work by [16]. In particular, we made the most computationally expensive
component of the algorithm, the estimation of pairwise covariances via MCMC sampling,
more efficient by using a ’pairwise’ Gibbs-sampling scheme with Rao-Blackwellisation
[41|42] (see Methods [3.2] for details). Rao-Blackwellisation resulted in a reduction of the
number of samples (and computation time) needed for achieving low-variance estimates
of the covariances by a factor of approximately 3 (Fig. , Suppl. Inf. SI1). After
parameter fitting, the model reproduced the statistics of the simulated data relevant for
the model (Fig. ) Using the formalism developed by Tkacik et al., we then introduced
a temperature parameter which rescales the probabilities of the model,

Pr(x) x P(x)Y/T. (1)

Here, temperature T' = 1 corresponds to the statistics of the empirical data. By
changing T to other parameter values one can perturb the statistics of the system [43]:
Increasing temperature leads to models with higher firing rates and weaker correlations
(Fig. ), with Pr(x) approaching the uniform distribution for very large T. If the
temperature is decreased towards zero, Pr(x) has most of its probability mass over
the most probable spike patterns. In many probabilistic systems, lowering T' leads to
increasing correlations, as the systems then ’jumps’ between several different patterns
and thus the activation probabilities of different elements are strongly dependent on each
other. However, for the simulated RGC activity, the sparsity of data leads to a decrease
of correlations: At a bin size of 20 ms [14], the most probable state is the silent state,
followed by patterns in which exactly one neurons spikes. In an example population
of size n = 100, 53.8% of observed spike patterns contain at most one spike. When
decreasing the temperature to T < 1, patterns with at most one spike dominate the
systems even more strongly: For the same population and temperature 7' = 0.8, we find
95.6% of observed patterns to contain at most one spike. Thus when the temperature is
lowered, the shift in probability mass to single-spike patterns decreases correlations.

We compute the specific heat of a population directly from the probabilistic model
fit to data [7], using

o(T) = %Var[log Pr(X|N)], (2)

i.e. the variance of the log-probabilities of the model, normalised by n [7]. Specific
heat is minimal for data in which all patterns x that occur in the data are equally
probable, and big for data in which pattern-probabilities span a large range. We used
MCMC-sampling to approximate the variance across all probabilities (see Methods ,
and used this approach to calculate, for each population of size n, the specific heat as a
function of temperature (Fig. 2H).

We found that the temperature curves obtained from the simulated data qualitatively
reproduces the critical features of those that had been observed for large-scale recordings
in the salamander |7] and rat [8] retina: The peak of the curves diverges as the population
size n is increased, and moves closer to unit temperature for increasing n (Fig. [2k).
Consistent with experimental findings, we found that specific heat diverged linearly with
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population size (Fig. ) These results show that signatures of criticality arise in a
simple feed-forward LN cascade model based on generic properties of retinal ganglion
cells, and do not require finely tuned parameters or sophisticated circuitry.
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Figure 2. Signatures of criticality in a simple simulation of RGC activity a)
Estimation-error (normalised mean square error) in pairwise covariances as function of
sample size, averaged across 10 populations of size n = 100. Use of Rao-Blackwellization
reduces the number of samples needed for a given level of accuracy by a factor of
approximately 3, making it possible to explore multiple large population models. b)
Quality of fit: After convergence, the population models (here n = 100, example
population) capture the mean firing rates (top), covariances (centre) and spike count
distribution (bottom) of the data. ¢) Changing the temperature parameter scales both
mean firing rates (top), covariances (centre) and population spike-counts (bottom) d)
Estimating specific heat via MCMC sampling: MCMC estimates of specific heat from a
K-pairwise maximum entropy model fit to an example population (same model as in
b-d). Final estimates were taken from the average over first 4h sampling time. Right:
Resulting plot of specific heat as function of temperature. e) Divergence of specific heat:
Average and individual traces for 10 randomly sampled populations for each of 6
different population sizes, exhibiting divergence of specific heat and peak in heat near
unit temperature. Inset: Specific heat at unit temperature and at peak vs. population
size.




2.2 Specific heat diverges linearly in flat population models

In the phenomenological population model above, we observed that specific heat grew
linearly with population size, as it did in previous studies built on experimental data
[7,8,/44]. Can we understand this phenomenon analytically in a simplified model? In
particular, is the divergence indeed linear, and what determines its rate? To address these
questions, we replaced the K-pairwise maximum entropy model by a model which only
captures the distribution of population spike-count K = ). x; [21,29,30%32] of the data,
and in which all neurons have the same mean firing rate and pairwise correlations. This
'flat” model can be fit to data by matching its parameters to the population spike-count
distribution, side-stepping the computational challenges of the K-pairwise model (see
Methods for details). We here introduce a new parametrised flat model in which the
spike-count distribution is given by beta-binomial distribution P(K|«, 3,n), reducing
the number of free parameters from n to 2. The beta-binomial model is a straightforward
extension of an independent (i.e. binomial) population model: At each time-point, a
new firing probability p is drawn from a beta-distribution with parameters o and S,
and neurons then spike independently with probability p. The fact that the underlying
fluctuations in p are shared across the population leads to correlations in neural activity.
This beta-binomial model provided a good fit to the population spike-count distributions
of the simulated data (Fig. [3h) across different population sizes n (Fig. |3b). The
best-fitting parameters « and 8 did not vary systematically across population sizes, and
converged to values of a = 0.38 and 3 = 12.35 (Fig. |3| ¢), corresponding to an average
firing rate of ; = 1.5 Hz (i.e. each neuron has a probability of spiking of 0.03 in each bin)
and average pairwise correlations of p = 0.073. The beta-binomial model also provided
good fits to population spike-count distributions published in [30] and [32], [8] (Fig. [31).
When we applied this flat model to populations subsampled from the RGC simulation,
we could qualitatively reproduce the heat curves of the K-pairwise model. In particular,
we found a linearly diverging peak that moved closer to T' = 1 as the population size was
increased (Fig. |3|e). Thus, linear divergence of specific heat is qualitatively captured by
flat models. We note that the absolute values of the specific heat do not match those of
the K-pairwise model or simulated data, but are substantially bigger (¢;q. = 4.02 at
T =1.07).

One of the difficulties of interpreting the scaling behaviour of maximum entropy
models fit to neural data is the fact that the construction of the limit in n differs from those
studied in statistical physics: In statistical physics, different 'n’ typically correspond to
systems of different total size, and the parameters are scaled as a deterministic function of
n (e.g. drawn from a Gaussian with variance proportional to 1/n in spin-glasses [45/46]).
In studies using maximum entropy models for neural data analysis, populations of
different n are obtained by randomly subsampling a fixed large recording, and the
parameters are fit to each subpopulation individually. Thus, there is no analytical
relationship between population size and parameter values in this approach, and this
has made it hard to determine whether the scaling observed in these studies is surprising
or not.

With the flat model, it is possible to analytically characterise the behaviour of the
specific heat for large population sizes for this sampling process: We assume that each
population of size n is randomly drawn from an underlying, infinitely large flat population
model [21},29]. Using this approach, one can mathematically show (see Methods [3.4]
Suppl. Inf. S2.3 and [21] for details) that for virtually all flat models, the specific
heat diverges linearly at unit temperature, but not for any other temperature 7' > 1
or T < 1 (Suppl. Inf. S2.4). As a consequence, the peak must move to T =1 as n is
increased. Hence almost any data set analysed with the methods developed by [7] will
under the flat model exhibit signatures of criticality. These results hold irrespective of
the details of the properties of the full populations that the subpopulations are sampled




from, including full populations that are more weakly or more strongly correlated than
real neural populations, and even for models with unrealistic population spike-count
distributions (see Suppl. Fig. S3 for an illustration). There are only two exceptions:
The first one is a model in which all neurons are independent (i.e. a binomial population
model), and the second one is a flat pairwise maximum entropy model—indeed, this is
the only flat model with non-vanishing correlations for which the specific heat does not
have its peak at unit temperature (see Fig. [3f and [21] for an illustration).

a 1007 Cc e — maxc
—e— data = cat T=1
= beta-binomial 0.45 1 4 N
wlls binomial 51
S 0.49\
>
g 0.35 1 2
g 1 -
5 ] 5
t _GCJ [ S B B
© 4] 20 60 100
@ 134\ 5 population size
(0]
Q.
. o | Bl - = = = - -
11 20 40 60 80 100120

0 50 100
pop. spike count

160
population size

300

b d o "
m—— Tkacik et al. 2012
= Tkacik et al. 2013
10- Okun et al. 2012
- oy 1 1.5 2
2 S temperature
[ 3 2
=] 10
£ = -
[
1073 Q4 1.2
2 0.3 08
8 0.4
s r [*3 T T 1 T T 1
0 20 40 0 20 40 60 @ 1 15 2 1 15 2
pop. spike count pop. spike count temperature

Figure 3. Signatures of criticality in a flat population model a) Population
spike-count distribution in RGC simulation, and approximation by different models.
Only the beta-binomial population model fits the simulated data accurately. b)
Beta-binomial model fits for different population sizes, indicating the goodness-of-fit is
robust across population size. ¢) Estimates for beta-binomial parameters «, 8 for data
from the simulation for different population sizes (mean + 1 s.t.d.), Best-fitting
parameters do not vary systematically with population size. d) Beta-binomial model
approximations to published empirically measured population spike-count distributions.
e) Specific heat traces for the beta-binomial model, exhibiting signatures of criticality.
Average and individual traces for 30 randomly sampled populations for each of 6
different population sizes. Inset: Specific heat at unit temperature and at peak vs.
population size. f) Heat traces for independent model and flat pairwise maximum
entropy model, which do not exhibit a divergence of the specific heat.

2.3 Strong neural correlations lead to fast divergence of specific
heat.

The rate at which the specific heat diverges provides a mean of quantifying the ’strength’
of criticality. What is the relationship between correlations in a neural population and
the rate of divergence? To study how the specific heat rate ¢ = ¢(T = 1)/n depends




on the strength of correlations, we used a beta-binomial model to generate simulated
data with firing rate = 1.5 Hz (i.e. each neuron has a probability of spiking of 0.03 in
each bin), and different (population-wide, as all neuron pairs have the same correlation)
pairwise correlation coefficients p ranging from p = 0.01 to p = 0.25 (Fig. [dh). We found
that the heat curves had the same shape as in the analyses above, with a peak that
increases and moves to unit temperature (Fig. ) Comparing the results for different
specified correlation strengths within the populations, we found that the specific heat
rates ¢ increased strictly monotonically with p (Fig. ,c). For the beta-binomial model,
the large-n value of ¢ can be calculated analytically (see Suppl. Inf. S3.2 for details) as
a function of the parameters « and (3,

ala+ D (a+1) + BB+ 1)y (B +1)
(a+B)(a+B+1)

L B @Wo(a+1) —go(B+ 1)
(a+ﬁ)2(a+ﬁ + 1)

This analytical evaluation of ¢ (valid for large n) was in good agreement with
numerical simulations (Fig. left). In the case of weak correlations p, equation
can be simplified: In this case, the specific heat rate is proportional to the strength of
correlations (see Suppl. Inf. S3.1 for details), i.e.

e p p(l—p) (log (1;”»2 (4)

This expression can also be derived from the Gaussian model in [8] equation (4), by
inserting the expected values of the mean and variance of the population spike-count
under random subsampling. Thus, at least for flat models and the analysis based on
specific heat proposed previously, 'being very critical’ is a consequence of 'being strongly
correlated’.
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2.4 Specific heat depends on average correlation strength in K-
pairwise model

Is the relationship between the strength and correlations and the ’strength’ of criticality
(i.e. the divergence rate of specific heat) also true in more general models? In the original
study [7], specific heat was computed from K-pairwise model fits to RGC activity resulting
from three different kind of stimuli: Checker-board stimuli (which do not have long-range
spatial correlations, although stimulus-driven cross-neural correlations can arise from
receptive field overlap), natural images, which exhibit strong spatial correlations, and
full-field flicker (which constitutes an extreme case of spatial correlations since all pixels
in the display are identical). Tkacik et al. found that specific heat diverges in all
three conditions, and interpreted this as evidence that signatures of criticality are not
‘inherited from the stimulus’ [7]. Comparing the specific heat values for n = 100 reported
in |7] across stimulus conditions, Tkacik et al. found the smallest peak for checkerboard
stimuli (¢ = 0.54 for n = 100), intermediate for natural images (¢, = 0.92) and
strongest for full-field flicker (¢pa. = 2.4).

We tested whether we find the same pattern of results in K-pairwise model fits to our
retinal simulation. Specific heat divergence also followed the pattern predicted by the
flat models (Fig. [dl): Checkerboard (which gave an average correlation between neural
activity of p = 0.033) had the smallest peak (peak specific heat ¢4, = 0.87) followed by
natural images (p = 0.075, ¢max = 1.32) and full-field flicker (p = 0.341, ¢ = 3.09).
We conclude that the experimental evidence—which showed that the specific heat
diverges, and how the speed of divergences depends on the stimulus ensemble—is entirely
consistent with a simple, feed-forward phenomenological model of retinal processing.
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Figure 4. Relationship between correlations and criticality. a) Specific heat
traces for beta-binomial model of different correlation strengths and population sizes.
Heat traces are qualitatively similar, but differ markedly quantitatively (see y-axes). b)
Specific heat diverges linearly, and the slope depends on the strength of correlations
(left). Divergence rate of specific heat for beta-binomial model as a function of
correlation strength (centre). Rightmost point (at infinity) corresponds to analytical
prediction of large-n behaviour. Divergence rates are strictly increasing with correlation
strength (right) which is captured by a weak-correlation approximation (dashed line). c)
Specific heat increases with correlation in the K-pairwise maximum entropy model:
average and individual traces for 10 randomly subsampled populations for 6 different
population sizes. Left to right: checkerboard, natural images and full-field flicker stimuli
presented to the population. Correlation strengths denote mean correlation coefficient
in each population.

2.5 Sources of criticality-inducing correlations in neural activity

In the above, we showed that a beta-binomial spike count distribution can be sufficient for
signatures of criticality to arise. For this to hold we need the variance of the population
spike-count to grow at least quadratically with population size, i.e. Var(K) o< n?. The
variance of the population spike-count is equal to the sum of all variances and covariances
in the population, Var(K) = Y"1 | Var(z;)+ >iz; Cov(zi, z;). A sufficient condition for
signatures of criticality to arise in these models is that the average covariances (and hence




correlations) between neurons are independent of n, ﬁ > oy Cov(z;, ;) ~ constant
[5,/6]. One possible correlation structure which has this properties are so called ’infinite
range’ correlations (Fig. [5p): correlation between neurons do not drop off to 0 for large
spatial distances. In this case, adding more and more neurons to a population will not
change the average pairwise correlation within the population (Fig. )

In neural systems, there are at least two reasons that can facilitate the required
correlation structure. First, as shown above, the choice of stimuli has a clear effect
on the heat capacity indicating an important effect of input-induced correlations. In
particular for full-field flicker stimuli infinite-range correlations are to be expected but
also white noise input can generate correlations of considerable extent due to overlapping
receptive fields. Second, even a neural population which does not have infinite range
correlations can appear critical if it is randomly subsampled during analysis: Suppose
that different populations of size n are obtained as above by (uniformly) subsampling
a large recording of size N. Then, for any correlation structure on the full recording
(including limited-range correlations, Fig. ), the average correlation in a population of
size n will be independent of n (Fig. ): If neurons are randomly subsampled from the
large recording, then the pairwise correlations in each subpopulation are also a random
subsample of the large correlation matrix. As a consequence, the average correlation
will be independent of n, and specific heat will diverge with constant slope (Fig. )
In contrast, if different population sizes are constructed by taking into account the
spatial structure of the population (i.e. by iteratively adding neighbouring cells) then
the average correlation in each subpopulation will drop with n, and the slope of specific
heat growth will decrease with population size.

In our RGC simulation, correlations did drop off to zero with spatial distance for
checkerboard and natural images, but not for full-field flicker (Fig. [Bg). Correlations in
the full-field flicker condition initially drop off due to distance-dependent shared noise,
but eventually saturate at a level far above zero that is determined by the full-field
stimulus. Due to these strong infinite-range correlations, both spatially structured
sampling and uniform sampling then give rise to linear growth in specific heat (Fig. [
left). For the other two stimulus conditions, however, the choice of subsampling scheme
does result in markedly different behavior of the specific heat growth: Both for natural
images and checkerboard stimuli, we can see the rate of growth decreases for large n
under spatially structured subsampling (Fig. [5f centre, right). This effect will be more
pronounced for larger simulations, and in additional simulations we found specific heat
to saturate completely once populations are substantially bigger than the spatial range
of correlations.

In summary, populations will exhibit critical behaviour if correlations have infinite
range (over the size of the recording), irrespective of the sampling scheme. In addition, if
a population is randomly subsampled (as was done in [7}§]), then signatures of criticality
will arise even if the underlying correlations have limited range.
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Figure 5. Random subsampling leads to criticality-inducing correlations. a)
Tlustration: A population with 100 neurons and infinite-range correlations, the average
correlation between any pair of neurons is close to 0.05. Correlation as function of
inter-neuron distance (left) and full correlation matrix (right). b) Average correlation in
subpopulation of different size n (left) and specific heat as function of n (right), when
neurons are sampled from 1 to 100. Random sampling gives identical results (not
shown). ¢) Population with limited-range correlations, same plots as in panel a. d)
Left: Average correlation as function of population size for ordered sampling (green)
and uniform subsampling (gray). Right: Specific heat grows linearly for random
subsampling, but shows signs of saturation for ordered sampling. e) Average correlation
as function of inter-neuron distance in RGC simulation. For checkerboard and natural
images, correlations drop to 0 for large distances. f) Specific heat for different
stimulation conditions, for ordered (colour) or random subsampling (gray).

3 Materials and Methods

3.1 Numerical simulation of retinal ganglion cell activity

Retina simulation: We simulated a population of N = 316 retinal ganglion cells as
linear threshold neurons whose receptive fields were modelled by difference-of-Gaussian
filters with ON-centres . The simulation comprised two subgroups of cells with
different receptive field sizes (surrounds 56pm and 30pm in retinal space, centres 28pm
and 15um, respectively, one third cells with large receptive fields). For both subgroups,
the weight of the surround was 0.5 of the centre weight. Locations of receptive field centres
were based on a reconstruction of 518 soma locations from a patch of mouse retina .
As the reconstructed locations in that data set also comprised about 40% amacrine cell
somata, we randomly discarded 40% of the cell locations. The resulting patch of retina
covered an area of 200 x 300um?, corresponding to 100 x 150 pixels in stimulus space.
Correlated noise across neurons was modelled using correlated additive Gaussian noise.
Correlations dropped off exponentially with soma distance with a decay constant of

7 = 30pm i.e. noise covariance matrix was chosen as ¥ = o2, _(al, + be=/T), where
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A;; is the distance between neurons ¢ and j and a2 + b2 = 1. We set 0p0i5c = 0.022
and a = 0.45. We modelled neural spiking in discrete time using 20ms bins. In each
bin ¢, the total input z;(t) to neuron i was given by z;(t) = w, s(t) + €;(t), where w; is
the receptive field of neuron ¢, s(t) the vectorised stimulus and ¢;(t) the input noise of
neuron 4. A neuron in a given bin is active (z; = 1) if z; + d > 0.5 and inactive (z; = 0)
otherwise, with offset d = 0.168. Parameters of the simulation (centre and surround
sizes, relative strength of centre and surround, magnitude and correlations of noise,
spiking threshold) were chosen to roughly match the statistics of neural spiking (firing
rates, pairwise correlations, population activity counts) reported in studies of salamander
retinal ganglion cells [2,/3,/14]. (Code will be available at www.mackelab.org/code).

Stimuli: We used three types of stimuli for this study: natural images, checkerboard
patterns and full-field flicker. For natural image stimuli, we used a sequence of 101
images of meadow sceneries taken from low hight. Each image was 400 x 400 pixels, and
each image was presented for 20ms with 300 repetitions total. The luminance histograms
of the images were transformed to a normal distribution with mean 0.5 and pixel values
between 0 and 1.

For the full-field flicker stimulus, luminance levels were drawn from a Gaussian
distribution with mean p = 0.5 and variance o2 = 0.06. Checkerboard stimuli consisted
of 80 x 80 tiles of size 5 x 5 pixels each. Luminance levels (from within the interval [0, 1])
of each tile were chosen to be either 0.15 or 0.77 with probability 0.5. The parameters
of both stimulus sets were chosen to match the dynamic range of the simulated retinal
ganglion cells. For both types of stimuli, 2000 images were generated and the image
sequences were presented with 10 repetitions. To calculate specific heat as function of
increasing population size, we randomly selected 10 subsamples of the full simulated
population of N = 316 cells at population sizes n € {20, 40, 60, 80, 100, 120} by uniformly
drawing n neurons out of the full population without replacement.

3.2 Modeling neural population data with maximum entropy
models

)

Model definition: We modelled retinal ganglion cell activity by using a 'K-pairwise
maximum entropy model [3]. In a maximum entropy model [48], the probability of
observing the binary spike word x € {0,1}" for parameters A = {h, J,V} is given by

P(x|\) = ﬁexp <th+xTJX—&-ZVk5(K(X) = k‘)) (5)
k=0

Here, the parameter vector h (of size n x 1) and the upper-triangular matrix J € R™**™
correspond to the bias-terms and interaction terms in a pairwise maximum entropy
model (also known as an Ising model or spin-glass) [14]. The term K(x) = > ., z;
denotes the population spike-count, i.e. the total number of spikes across the population
within a single time bin, and the indicator-term ¢ (K = k) is 1 whenever the population
spike-count equals k, and is 0 otherwise. The term >, _, Vid (K = k) was introduced
by [3] to ensure that the model precisely captures the population spike-count distribution
of the data using n additional free parameters. The partition function Z for given A is

chosen such that the probabilities of the model sum to 1.

Parameter fitting: To fit the model parameters A = {h, J,V} to a data set D =
{xM x@ . x(D} we maximised the penalised log-likelihood [49}/50] of the data D
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under the model,

M
. 1 1 loree
L(h, J,V): = log P(x >|h,J,V)—G—h||h||1—a—j||J||1—§VTE V.o (6)

m=1

Here, the [1-penalty controlled the magnitudes of parameters h, J, the term |J||;
favoured sparse coupling matrices, and the regularisation term ¥ on the V-parameters
ensures that the terms controlling the spike count distribution vary smoothly in k (Suppl.
Inf. S1). This smoothness prior is particularly important for large spike counts, as it
makes it possible to interpolate parameters for which the number of observed counts is
small.

In maximum entropy models, exact evaluation of the penalised log-likelihood and
its gradients requires the calculation of expectations under the model, E[z;], E[z;x;]
or equivalently cov(x;,z;), and P(K = k) (Suppl. Inf. S1.1), which in turn requires
summations over all 2™ possible states x and is prohibitive for n > 20. Following
previous work [16], we used Gibbs sampling to approximate the relevant expectations
(Suppl. Inf. S1.1 for derivations and implementation details). We used two modifications
over previous applications of Gibbs sampling to fitting maximum entropy models to
neural population spike train data, with the goals of speeding up parameter learning
and alleviating memory usage:

First, we use Rao-Blackwellisation [411/42] to speed up convergence of the estimation
of covariances of x. We used pairwise Gibbs sampling (blocked Gibbs with block size
2), where each new sample in the MCMC chain was obtained by updating two entries 4
and j of x at a time, rather than just a single entry. This allowed us to get estimates
of the conditional probabilities P(z;x; = 1|z {; }), and to use them to speed up the
estimation of the second moment E[z;z;] from empirical average of these conditional
probabilities (Suppl. Inf. S1.1).

Second, we used a variant of coordinate ascent that calculated all relevant quantities
as running averages over the MCMC sample, and thereby avoided having to store the
entire n x M MCMC sample in memory [16], where M is the length of the sample.
Because all features of the maximum entropy model are either 0 or 1 (z;, z;x; and the
indicator function for the spike count), the gain in log-likelihood obtainable from either
updating a single element of h or J [16[40], or from updating all V' simultaneously (but
not from updating multiple entries of h and J) can be computed directly from MCMC
estimates of E[z;], E[z;z;] and P(K = k) (Suppl. Inf. S1.2). For each iteration, we
calculated the gain in log-likelihood for each possible update of h;, J;; and full V, and
picked the update which led to the largest gain [16}[51].

We measured the length of Markov chains in sweeps, where one sweep corresponds
to one round of n(n — 1)/2 Markov chain updates that encompasses all pairs of entries
of x in random order. We set a learning schedule that started at 800 sweeps for the
first parameter update and doubled the number of sweeps in the chain after each set of
1000 parameter updates. We monitored convergence of the algorithm using a normalised
mean square error between empirical E[z;], cov(z;, z;), P(K = k) and their estimates
from the MCMC sample. For normalisation, we used the average squared values of the
target quantity, e.g. % Y < x? > for the firing rates. We stopped the algorithm when
a pre-set threshold was reached (0.01%, 0.25%, 0.01% for E[z;], cov(x;, z;), P(K = k),

respectively), or when the fitting algorithm took more than (L % % 72h of computation

time on a single core (2.294 GHz AMD Opteron(TM) Processc?r 6276) (Suppl. Fig. S1).
For 10 populations of size n = 100 (for natural images), the normalised MSEs after
model-fitting were 0.43%, 2.80%, 0.42%). An implementation of the fitting algorithms
in MATLAB will be available at www.mackelab.org/code.
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3.3 Calculating specific heat and temperature curves

Specific heat calculations: To investigate thermodynamic properties of neural pop-
ulation codes, Tkacik et al |7] introduced a temperature parameter T' for equation

n

k=0
Model fits are obtained at T' = 1, and the temperature parameter T is scaled to
study the system (i.e. characterised by Pr (x|h,J, V) for T = 1). We note that varying
T, in effect, modulates probabilities by exponentiating them with 1/7,

Pr(x) o (Pr—y(x))"7, 8)

and that the family of probability distributions obtained by varying 7' can be con-
structed for any distribution, not just maximum entropy models. For large temperatures
Pr approaches a uniform distribution (Pr(x) =~ 27" for each x), whereas for small
temperatures it converges to a singleton, Pr(x*) ~ 1 with x* = argmax, (Pr—1(x)).

The specific heat, as given in equation [2, can be obtained from the variance of the
log-probabilities of the model. As the variance in practice can not be outright computed
for n beyond 20, we obtained estimates of ¢(T') using a pairwise Gibbs sampler. We
note that the specific heat does not depend on Zr, as changing Zr results in a constant,
additive shift in log-probabilities which does not affect the variance. We tracked the
variance of log-probabilities over an MCMC chain x(V), ..., x(M) of length M sampled
at temperature T,

2

1 M 9 1 M
(T) = 7 Z <log Pr (X(m)|)\>) |7 leog Pr (X(m)l/\) .9

m=1

3=

For each population, we evaluated ¢(7T') for 31 temperatures between T'= 0.8 and T = 2,

and found the Gibbs sampler to provide reliable estimates over this temperature range.
n

We used a burn-in of 2 x 10* sweeps, and ran the sampler for (W)Q x 4h of CPU time,
resulting in between 9.97e5 and 1.72e6 sweeps (mean =+ std) for n = 100 (i.e. between

4.94e9 and 8.52¢9 sampled individual spike words).

3.4 Simplified population models and the beta-binomial model

For the theoretical analysis, we adopted a class of population models (here referred to as
"flat’ models) in which all neurons have identical mean firing rates, pairwise correlations
and higher-order correlations [3,21}/29,52,/53]. Such a model is fully specified by the
population spike-count distribution P(K = k), and all spike words with the same spike
count are equally probable. As a result, the probabilities of individual patterns x can be
read off from the spike count distribution by

Pex) = () =) (10)

whenever Z?:l r; = k. In a maximum entropy formalism, this model can be obtained
by setting h; = 0 and J;; = 0 for all ¢, j € {1,...,n} and only optimising entries of V.
Without loss of generality, we fixed fixed V5 = 0 [30], resulting in n degrees of freedom
for the model.

In flat models, it is possible to explicitly construct a limit n — oo which will help
us understand population analyses performed on experimental data: We assume that
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there is a spike count density f(r), r € [0, 1], which describes the population spike-count
distribution of an infinitely large population. f(r) denotes the probability density of a
fraction of r neurons spiking simultaneously. Finite-size populations of n cells are then
obtained as random subsamples out of this infinitely large system. Based on previous
findings by [21], we show in Suppl. Inf. S2.3 that, in this construction, flat models always
exhibit a linear divergence of specific heat, unless the limit f(r) is given by either a single
delta peak or a mixture of two symmetric delta peaks. These two models corresponds to
systems that (for large n) either behave like a fully independent population (whose spike
count distribution converges to a single delta peak), or a population described by a pure
pairwise maximum entropy model (which converges to two delta peaks). In particular,
any flat model with higher-order correlations [18}[27,[52}/53], or a non-degenerate f(r),
will exhibit ’signatures of criticality’. Furthermore, we show that, for continuous f(r),
¢(T) does not diverge for any T # 1. In combination, these results show that the peak
of the specific heat is mathematically bound to converge to T' = 1 for n — oo in this
model class.

We further simplified the flat model by re-parametrising P(K = k) by a beta-
binomial distribution, thereby reducing the number of parameters from n to two, and—
importantly—obtaining parameters which do not explicitly depend on n. In this model,

. (n\Beta(a+k,B+n—k)
P =k) = <k‘> Beta(a, 8) (1)
and
1 a—1 —1
f(r) = mr (1—r)P (12)

For simulated data, we found values for «, 8 extracted from the beta-binomial fits to
populations of different sizes n to be stable over a large range of n (Fig. ) We used
the beta-binomial parameters obtained from the largest investigated n to estimate the
divergence rate ¢ for n — oo.

4 Discussion

An intriguing hypothesis about the collective activity of large neural populations has
been the idea that their statistics resemble those of physical systems at a critical point.
Using a definition of criticality which is based on temporal dynamics with power-law
statistics, numerous studies have reported and studied critical behaviour in neural
population activity [8,/201/54,/55]. Multiple possible mechanisms for these dynamics
have been proposed (e.g. [20,/56,57]). It has been argued that such temporal dynamics
might be beneficial for neural computation and communication [20,/58./59] (see [5] for an
overview). More recently, a second line of studies [518)/11,/12] has studied the statistics
of time-instantenous patterns of neural activity using tools from statistical mechanics,
and argued that they also exhibit critical behaviour. This hypothesis could open up
further questions on how the system maintains its critical state, and what implications
this observation has for how neural populations encode sensory information and perform
computations on it. Similarly, signatures of criticality have also been observed in natural
images [11] and small cortical populations [6], and have been studied using the theory
of finite-size scaling and critical exponents [6]. It has been argued that systems close
to a critical point might be optimally sensitive to external perturbations [6] and that
the large dynamic range of the code (i.e. the large variance of log-probabilities) might
be beneficial for encoding sensory events which likewise have a large distribution of
occurrence-probabilities [17].

Alternatively, generic mechanisms could be sufficient to give rise to activity data with
these statistics. We had demonstrated in a previous theoretical study |21] that a simple
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models with common input can exhibit signatures of criticality. More recently, Schwab
et al. [22] and Aitchison et al. [23] elaborated on these findings, showing that common
input (or other latent variables which lead to shared modulations in firing rates) can
give rise to Zipf-like scaling of pattern probabilities (a second signature of criticality).
Mathematically, Zipf’s Law is equivalent to stating that the plot of entropy vs energy
(i.e. log-probability) is a straight line with unit slope [22/|23]. Schwab et al [22] showed
that particular latent variable models give rise to Zipf’s law. This result was generalized
by [23] which showed that, under fairly general circumstances, high-dimensional latent
variable models exhibit a wide distribution of energies (i.e. log-probabilities) and hence
a large specific heat. In addition, they showed that large fluctuations in the specific heat
are (under some additional assumptions) sufficient to achieve Zipfian scaling. While it
has also been argued that the use of data-sets which are too small might give rise to
spuriously big specific heats |[60]— while this is true in principle, additional analyses e.g.
in 7] show that their results are robust with respect to data-set size.

However, neither of these previous theoretical studies analysed mechanistic models
of neural population activity, nor did they have tools for studying population statistics
in large simulations or recordings, and they were therefore limited to studying very
small (N < 20) systems. It has thus been an open question of whether and how these
theoretical considerations can account for effects observed in retinal ganglion cells. We
here showed that surprisingly simple mechanisms are sufficient for two key signatures of
thermodynamic criticality—a divergence of specific heat and a peak of the specific heat
near unit temperature— to arise.

We found that neural population activity exhibits signatures of criticality whenever
the average correlation in population of different sizes is larger than zero and does
not depend on population size. In the thermodynamic analysis of physical systems at
equilibrium, long-range correlations typically vanish in the thermodynamic limit. In
neural systems, however, such ’criticality-inducing’ correlations can arise as a consequence
of various factors: In a local patch of retina, retinal ganglion cells have a large degree
of receptive field overlap, and natural stimuli also contain strong spatial correlations.
This can lead to correlations which do have unlimited range within the experimentally
accessible length scales. Thus, fluctuations in the stimulus will lead to common activity
modulations amongst neurons within the population. Empirically, activity correlations
between pairs of retinal ganglion cells only fall of slowly with the distance between somas
(or receptive field centres) [28]. Similarly, Mora et al [8] used a moving-bar stimulus with
strong temporal correlations, and found that including activity from multiple time-lags
markedly increase the strength of specific heat. We hypothesise that this increase in
specific heat is a consequence of temporal correlations being stronger than inter-neural
correlations in this stimulus condition. In addition, firing rates of cortical neurons are
modulated by global fluctuations in excitability [31-34], resulting in neural correlations
with infinite range.

Finally, we showed that criticality-inducing correlations arise as a consequence of
constructing different subpopulations by uniformly subsampling a large recording with
correlations. Signatures of criticality are entirely consistent with canonical properties of
neural population activity, and require neither finely-tuned parameters in the population,
nor sophisticated circuitry or active mechanisms for keeping the system at the critical
point. Signatures of criticality are likely going to be found not just in retinal ganglion
cells, but in multiple brain areas and model systems. These observation raise the question
of whether signatures of criticality are really indicative of an underlying principle, or
rather are a consequence of viewing the statistics of neural populations through the
lens of equilibrium thermodynamics. In order to realise the potential of large-scale
recordings of neural activity in the search of a theory of neural computation, we will
need data-analysis methods which are adapted to the specific properties of biological
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data [419].
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Supporting Information

S1 Fitting the K-pairwise maximum entropy model
to data

To identify the values \ of the model parameters which yield the best fit of the maximum
entropy model to data, we maximise the log-likelihood of the model given the data. The
general form of the log-likelihood of a maximum entropy model parametrised by vector
A is given by

M M
L) =Y log P(x™|\) = —Mlog Zx + Y _ AT f(x™) (13)
m=1

m=1

for the spike-data vectors z(™ ¢ {0,1}*, m = 1,..., M. Any choice of the feature
function f defines a specific maximum entropy model over this n-dimensional binary space.
For the K-pairwise maximum entropy model used in this paper, f(x) € {0, 1}”("+3)/2+1
is composed of

1. n first-order features
fi(x) ==;

with corresponding parameters collected in h. The h;, ¢ = 1,...,n control single-cell
firing rates (in units of bins rather than Hz).

2. n(n — 1)/2 second-order features
fij(x) = ziz;

with parameters J;;, 7,4 = 1,...,n, i < j, controlling pairwise neuronal correlations,
and

3. n+1 population-scale features

fr(x) = {1’ 0w =k

0, otherwise

with parameters Vi, k = 0,...,n. The vector V controls the overall number of
spikes in each temporal bin.

Note that that there is some degeneracy between the parameter vectors V' and both
h and J —a global upwards shift of firing rates for example can be achieved both by
adding a positive constant € to each h;, or by adding ek to each of the V. Similarly,
adding a constant € to every J;; can be balanced by subtracting 2= from each Vi.
Since either manipulation of V' is zero for k = 0, fixing Vj—¢ = 0 is not sufficient for
getting rid of this parameter degeneracy. As we never interpreted the parameter-values
themselves, but only the fit to data, we made no attempt to add additional constraints.

We can re-write the K-pairwise model into the general maximum entropy form by
stacking the feature functions f;, fi;, and f; into the vector-valued feature function
f and doing the same with parameters h;, J;;, and Vi to obtain A = {h,J,V} €
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R™"+3)/2+1  The derivative of the log-likelihood with respect to any single parameter
ALl=1,...,n(n+3)/2+1 is given by

M
A ZlogP (xM™A) = Z(/\Tf (m)y logZ,\)

T
u 5

= Z m)y — 5y MlogZeXp (AT f(x))
2 i

(m) Z )‘l €Xp ()‘Tf( ))
erxp(ATF( )

=M (]\1/[ mzzl fix™) —Ex [fl(x)]> (14)

As can be seen from equation , the gradient of the log-likelihood vanishes if and only
if the data means match the expectations of f(x) under the model.

To deal with data-sets of limited size, we maximised a regularised variant of the
log-likelihood,

L(h,J,V|opn,07,%) Z log P(x"|h, J, V) — —||h||1 - —||J\|1 - 7VT2 ly
m=1
(15)
Y = (658 + ogl) — SoeSoe”
(05S + o) oy 0%
(k — k)2
Skk’ = exp (—27_‘%

k2
SOk = 05 €xXp <2T2> .
S

Here, the matrix ¥ implements a combined ridge and smoothing regression over V,
with (n + 1) x (n + 1) identity matrix I and smoothing matrix S corresponding to a
squared-exponential kernel [?]. We set V) = 0 and accounted for this by conditioning on
Vo and correspondingly subtracted Spe(os + O'H)_l;S’O.T from ¥. We used o, = o7 = 10%,
os = 10, oy = 400 and 7¢ = 10.

To fit maximum entropy models to large neural populations, one needs to

1. efficiently approximate the feature moments E,[f(x)] needed for the gradients
of both eq. and eq. , which for large populations (n > 20) can not be
calculated exactly

2. find efficient methods for updating the parameters .

We introduce two modifications over previous approaches to fitting maximum entropy
models to neural data [?] to improve computational efficiency:

1. We used pairwise Gibbs sampling and Rao-Blackwellisation to considerably improve
estimation of the second-order feature moments Ej[f;;(x)]

2. The authors of [51] described a trick for efficiently updating the parameters in
pairwise binary maximum entropy models: If one restricted updates to coordinate-
wise updates, then one can calculate the gain from updating a single variable in
closed form, which makes it easy to select both the variable to update as well as
the step-length in closed form. We show how this trick can be extended to allow

2234



a joint update of all the population-count features V. In addition, the gain in
log-likelihood is linear in the feature-moments, which makes it possible to compute
it from a running average over the MCMC sample, and avoids having to store the
entire sample in memory at any point.

We describe our contributions in the sections [SI.1] and [S1.2] respectively.

S1.1 Pairwise Gibbs sampling and Rao-Blackwellisation

Following previous work [16], we used MCMC sampling to approximate the expectations
of the feature functions f(x) under the K-pairwise model with parameters A. These
expected values E,[f(x)] are required to evaluate the gradients of the (penalised) log-
likelihood, as well as the log-likelihood gains resulting from parameter updates. As
the number of pairwise terms grows quadratically with population size n, most of the
parameters of the model P(x|\) for large n control pairwise moments E [z;z;]. To make
the estimation of these pairwise interactions more efficient, we implemented a pairwise
Gibbs sampler that for each update step of the Markov chain samples two variables
xz; and zj, 1 # j, 1,5 € 1,...,n. This furthermore allowed us to 'Rao-Blackwellise’ the
single-cell and pair-wise feature components f;(x) = z; and f;;(x) = z;z; [?,[41,/42],
i.e. to use the conditional probabilities P(z; = 1|z~i, A) and P(z;x; = 1|z g 53, A) for
moment estimation, instead of the binary x; and x;x;.

Rao-Blackwellisation provably reduces the variance of the resulting estimators, and
empirically resulted in substantially faster convergence of the MCMC-estimated model
firing rates E)[fi(x)], second moments Ey[f;;(x)], and thus also of the covariances
cov (x4, X5|A) = Ea[fi;(x)] — Exlfi(x)]EA[f;(x)] (see supplementary figure . Unlike
the binary variables x;, x;2; however, the conditional probabilities are real numbers
from the interval (0,1) and cannot be stored in memory-efficient sparse matrices. We
thus implemented a running average over conditional probabilities that discards the
current chain element immediately after drawing the next one, while keeping track of
the quantities

S| -
NE

Eafi (x)] ~ P({™ =102, )
m=1
1 m
EAlfi;(x)] ~ ~ p(xgmx;m — 1|x1”{‘27j},/\)
m=1

as 1 increases from 1 to MCMC sample size M. We also kept track of the non-Rao-
Blackwellised estimates

n

Ex[/fr(x)] =~ % 6 (Z xyn),/f)

=1 i=1

for the expectations of the population-level indicator feature functions E,[fx(x)] =
P(K = k|\), with Kronecker delta function é(z,y) = 1 if z = y, and §(z,y) = 0
otherwise.

We quantified the advantage of Rao-Blackwellising the Gibbs sampler with long
Markov chains drawn from the K-pairwise maximum entropy model fits to populations
of size n = 100 drawn from the simulated RGC data. For each investigated parameter fit,
we ran two chains under different conditions: a first chain for which we Rao-Blackwellised
the single-cell and pairwise feature moments, and a second chain for which we did not.
These Markov chains were run for M = 10° sweeps and hence orders of magnitude
longer than had occurred for the invidivual parameter updates within this study, which
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comprised 800 to 30000 sweeps, or 3.96 x 10° to 1.485 x 10° individual MCMC chain
updates at n = 100. The long sample runs served to give an approximation for the
"true” expected values of the target quantities of interest to us: firing rates E)[f;(x)],
covariances covy(x;,x;) and population spike count distribution P(K = k|\).

We quantified the speed of convergence of the estimates to the "true” expected feature
moments by the normalised MSE between sampler-derived feature moments after any
given length 0 < 7 < M of the MCMC chain and the results we got after the full chain
length. After the full M = 10° sweeps, the Rao-Blackwellised and non-Rao-Blackwellised
estimates on average differed by 1.7 x 1074%, 0.013% and 4 x 10~5% normalised MSE
for firing rates, covariances and population spike count distributions, respectively. We
computed the distance to "truth” for each condition as the normalised MSE to the
E\[f(x)] averaged over both conditions. We obtained MCMC estimates for the feature
moments of the K-pairwise maximum entropy models fits to 10 subsampled populations
of n = 100 neurons each drawn from our retina simulation. Supplementary figure [Sih
displays the results for the two conditions, Rao-Blackwellised vs. non-Rao-Blackwellised,
for each of the 10 investigated fits.

MSEs of firing rates for single-cell features Ej[x;] did not benefit from Rao-Blackwellisation.
This is expected, as each z; is sampled n — 1 times per sweep and thus the moments are
already well estimated relative to the second-order features. For covariances covy(x;, X;),
normalised MSEs showed clear improvement under Rao-Blackwellisation, visible as an
approximately constant offset between the avarages over all 10 parameter fits in the
loglog-domain as seen in figure [SIp. The normalised MSE on average was 3.19 times
higher for non-Rao-Blackwellised (given by the downwards offset of the normalised
MSEs of the Rao-Blackwellised estimates). The fraction of samples needed from Rao-
Blackwellised runs to achieve the same normalised MSE on the pariwise moments than
non-Rao-Blackwellised runs (given by the leftward offset of the normalised MSEs of
the Rao-Blackwellised) overall was 32.02%. The fraction ranged from 34.93% at 800
sweeps to 31.74% at 30000 sweeps. The ratio of normalised MSEs was similarly sta-
ble, being 2.96 times higher at 800 sweeps and 3.27 times higher at 30000 sweeps for
non-Rao-Blackwellised samples than for Rao-Blackwellised ones.

S1.2 Exploiting the structure of the K-pairwise feature func-
tions allows blockwise parameter updates.

As described in the previous section, we can use MCMC to obtain the expected values
of the feature function E,[f(x)] that are needed to to optimise the model parameters
A. To find the parameter setting A which maximise the log-likelihood over the given
data vectors x("™), m = 1, ..., M, we follow an iterative update scheme introduced
previously [51], and extend it to the K-pairwise model. The update scheme optimises
parameter changes A% — \°!¢ relative to a current parameter estimate A°?¢, rather than
the parameters A directly. The benefit of this scheme over standard gradient ascent on
the regularised log-ligkelihood as in eq. is that we can give closed-form solutions for
optimal values of a single component \; when temporarily holding all other components
)\Nl fixed.

Changing the current parameter estimate A°¢ to A" leads to a change in log-
likelihood of

M M
1 1
new yoldy _ (m)|ynewy _ (m)|yold
AL(A™Y, \) mE:110g P(x\™ A mE:1log P(x\™ |\
1 M
_ ()\new _ )\old)T ( m§:1 f(x(m))> — Ejou [eXp (()\new _ )\Old)Tf(X))]
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Figure S1. Impact of Rao-Blackwellisation a) Comparison of normalised MSE
between Rao-Blackwellised and non-Rao-Blackwellised Gibbs sampling, as a function of
MCMC chain length, on the 10 subpopulations of size n = 100 used in the paper. Top:
means, i.e. first-order moments Ej[x;], Center: covariances covy(x;,x;), Bottom:
population-spike count features. No Rao-Blackwellization was used for population-spike
count features P(K = k|\). Vertical lines and horizontal axis ticks mark Markov chain
lengths used for computing the 1st, 1001st 2001st, ... updates of parameter entries A,
during training the K-pairwise models to data. All MSEs in this figure are computed as
errors between estimated firing rates / covariances / P(K) at given chain length versus
the average of the estimates obtained after 10° sweeps. b) Behavior of MSEs for large
MCMC chain lengths. Traces are averages over the 10 traces from panel a.

The only relevant expectations are w.r.t. the data distribution and P(x|\°'9), i.e. the
current parameter estimate. The term Ejyoafexp (A" — AT f(x))] can be simplified
when restricting the update vector A”** —X\°? to be non-zero only in selected components.
In the simplest case, only a single component }); is updated. In this case, the fact that
all components of the K-pairwise feature function f(x) are binary, allows to move the
exponent out of the expected value, a trick used by :

The resulting single-coordinate updates only require the feature moments Eyoua[f;(x)]:

Ejotafexp (A" = AT f(x))] = Exotalexp(AF = AP') fi(x)]
= Exa[l + (exp(A\7 = A7) — 1) fi(x)]
=1+ (exp()\?ew - )‘IOZd) - 1)E>\ozd [fl (X)}
Equation can now be solved analytically for the single free component A" that
maximises the change in log-likelihood. A closed-form optimal solution is still possible
when adding an [1-penalty to the log-likelihood . We use this [1-regularised variant

to calculate the possible gain in penalized log-likelihood for each possible update of the
single-cell (h;) and pairwise (J;;) feature moments E[z;] and E[z;x;], and then perform
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the update which yield the largest gain.
If we instead allow more than a single component [ of the update A"** — \¢?!4 to be
non-zero, we in general would have to deal with the term

Exga [TTIL+ (expA7 = A7) = 1) fi(x)]
leJ

which requires the higher-order moments Ey ,, [[1,c; fi(x)] for all I C J and J C
{1,...,n} being the index set of components that are not set to zero.

The population spike count features fr(x), however, are mutually exclusive (only one
of the n+1 features can be non-zero at any time), and therefore we can all parameters
of V jointly, and still pull the expectation term outside of the expectation. For the
population-spike count features fi,(x), hereafter collectively called £V (z) € {0,1}"+1, all
such terms of order ||I|| > 1 are zero due to the sparsity of fV (). When restricting the
current parameter update of A to only update components corresponding to V', we have

AL(V”ew, Vold) _ (Vnew o Vold)T <]\14 Z fV(X(m))> _ E)\old[exp((vnew _ VOld)TfV(X))]

m=1

and

E}\Om[exp ((Vnew _ Vold)TfK(X))] _ exp ((Vnew _ Vold)TfK(X)) P(X‘)\Old)

Z exp ((anew _ Vkoldflg( (X)) P(X|)\Old)
x:y, zi=k

exp (VP = VP fEx) Yo P
x:y_, xi=k

M= 1+ 11+

exp (VI = V') £ (x)) P(K|A)

£
I

0

We obtained estimates of the values of P(k|A\Y) = Ejowa[fy(x)] from the MCMC
sample using the indicator functions fi(x), and optimising w.r.t. V;***, k € {1,...,n}
using gradient-based methods [?].

In summary, our update-scheme for maximising the log-likelihood proceeds as follows:
For a given parameter vector A4, we first estimate the expectation of the feature
functions f;(x), fi;(x) and fi(x) using a running average over an MCMC sampling and
Rao-Blackwellization. We then calculate, for each possible single-neuron parameter h;
and each possibly pairwise term J;; the gain in penalised log-likelihood that we would get
from updating it, using methods as described above and derived in [51]. We additionally
compute the gain in penalised log-likelihood that would result from optimising all n
of the free V parameters jointly, using a convex optimization. Finally, we choose the
update that brings the largest gain, and either update a single h;, a single J;;, or
all V parameters. Subsequently, we again estimate the new feature functions using
MCMC sampling given the current estimate of \°¢ < A"¢% before we update again.
We initialised the algorithm assuming independent neurons (i.e. setting each h; using
the firing rate of each neuron, and leaving J and V zero). The algorithm then typically
first updated all V' parameters, before proceeding to jump between different J, h and V'
updates.
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Figure S2. Quality of fits for K-pairwise maximum entropy model across
multiple populations and stimulus conditions a) Normalised MSEs for firing
rates, covariances and P(K') during parameter learning. Error values collapses across 10
subpopulations at n = 100, fit to simulated activity in response to natural images, one
point for each displayed iteration and each subpopulation. Lines are moving averages
(smoothing kernel width = 150 param. updates). b) Quality of fit after parameter
learning. Data vs. model estimates for firing rates, covariances and P(K), collapsed
over all 10 subpoplations with size n = 100. ¢) Quality of fit for different stimulus types.
Normalised MSEs after maximum entropy model fitting shown for 10 subpopulations for
natural images (nat) and 5 subpopulations each for checkerboard (cb) and full-field

flicker (fff). All subpopulations of size n = 100. Vertical bars give averages. Colours as
in a), b).

S2 Supplementary Text: Specific heat in simple mod-
els

We refer to a maxmimum entropy model as ’flat’ if it is fully specified by the population
spike count distribution P(}""_; #; = k), i.e. the model class studied in [21,/29,30]. In
this model class, all neurons have the same firing rate p and pairwise correlation p. As
neuron identities become interchangeable, all (Z) possible patterns x with Z?Zl =k are
assigned the same probability P(k) = P(x) (Z) In flat models, all relevant population
properties can be computed from summing over n + 1 different spike counts, and one
never has to (explicitly) sum over the entire 2™ possible spike patterns.

S2.1 A non-critical special case: Independent neurons

A special case of a flat model is an independent model in which all neurons have the
same firing rates and zero correlations. Assuming independent spiking for each of the
n neurons and a shared probability ¢ € [0, 1] to fire in a time bin, the distribution of
population spike counts K = Y"1 | z; is given by a binomial distribution,

P(x|q) = ¢"(1 — )" 7"

P(klg) = (Z) ¢"(1—q*

To compute specific heat capacities for the underlying neural population of size n,

27 54



we can rewrite the binomial distribution in maximum entropy form

1

1 n
P(k|V) = Z(V)(k) exp (Vi)
Re-introducing parameters Vi, k = 0,...,n, we find

Vi = log P(k|q) — log (Z) +log Z(V)
= klog(q) + (n — k)log(1 — q))
and for the heat capacity, we get

Var[log P(z|V)] = Var[klog(q) + (n — k) log(1 — q)]
= (log(q) — log(1 — ¢))? Var[k]

The binomial variance is Var[k] = ng(1 — ¢). We plug this in and see that at unit
temperature T = 1, the specific heat is given by

o(T = 1) = o Varflog P(xV)] = 4(1 ~ q) los(q) ~log(1 — )" (17

which is independent of population size n.
When explicitly introducing temperatures other than T' = 1, we add a factor % = j3

T
that scales the parameters V' and renormalise, yielding
PHYVT) = oo (1) exp(8Vi)
= X
Tz k) TP
where Vi, k = 0, ..., n is defined w.r.t. ¢ as above. This is the same functional form

as was given for the binomial distribution at 7' = 1, with only parameters V' being
replaced by SV. We can also go back to the standard binomial parametrisation with

5 .
48 = gr{—q7 and obtain

n

PV = () )ab1 = 45)

Changing the temperature T = % retains the binomial form of the population model,
and we can generalise the expression for the specific heat of the independent flat
model for any temperature T' to be

o(T) = 730501 — 45)(108(q5) — log(1 — 45))’

which again is independent of the population size n. The independent flat model is a
case that does not show divergent specific heat, and for which the peak of the heat is
not necessarily at unit temperature. Next, we will derive why this makes the binomial
model one of only two non-critical special cases.

S2.2 Aside: Asymptotic entropy in flat models

To calculate the variance of log-probabilities, we first need the mean log-probability, i.e.
the (negative) entropy.
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Entropy: Recalling that P(k) = P(x)(}), the entropy of the flat model for general
P(k) can be written as

ZP ) log P(x
:-}j > P(x)log P(x)

k x>0, zi=k

:fZP @M) m@”

Thus, the entropy of a flat model is

E:}’ (bgP k) — bg(Z))

Asymptotic entropy: We assume that P(k) has a limiting distribution f(r), where
r € [0,1] is the probability density of a proportion of r neurons spiking simultaneously.
Therefore, for large n

S WICICTUR ()
() o)
z/(jf()(lgf( < ))

1

—log(n /f )log f(r)dr +n flr

0

Here, we used the fact that, for large n,

log (:J ~n(—rlogr — (1 —r)log(l —r)) =: nn(r) (18)

As the first term only grows with log(n), and the second with n, we get that the
entropy of a flat model, for large n, is given by

1
H, = n/o f(r)n(r)dr =: nh (19)

S2.3 Asymptotic specific heat in flat models at unit tempera-
ture

Next, we calculate the specific heat, first exactly and then for large n, and finally for
weakly correlated models:
First, the specific heat is given by

(T=1)= fVar[logP ZP (log P(x) — E[log P(x)])?

,Zp @g) m@yEMHﬂY
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Using E[log P(x)] = —H,,, we get that
2
(T=1)=— ZP <1ogP k) —log <Z> + Hn> or
— Z P(k <1ogP k) —log <Z>) lHZ
For large n, we have that P(k) ~ 1 f (£). We get that
2
(T=1)=~ ZP (logP k) — log (Z) + H,,)
2
U () el )
1t 2
zﬁ/o f(r)(logf() 1ognlog( >+H) dr

1
~ % /0 f(r)(og f (r) —logn —nn(r) + nhn)2 dr

=2 [ 761 (0 £ (1)~ Tog)* + n (1(s) — h)? + 20 105 1 1) ~ og ) (o
0

- %/0 £ (r) (log® f () + log f (1) (2n (hy, — n(r)) — 2logn)) dr

1
+ 1 ) f(r) (log®n —n? (hy, — n(r))) dr

n

For large n, this integral is dominated by the term in n?, and thus the specific heat
is asymptotically given by

T=1)=n / £) (1(r) — b2 dr (20)

Therefore, in general, the specific heat grows linearly, and hence diverges (see Fig
IS3). The only exception to this are models for which n(r) — h,, = 0 for almost all r.
This happens if f(r) is a delta-distribution, f(r) = d(r — ), in which case h,, = n(u)
and therefore the integral vanishes. This occurs whenever the pairwise correlations do
not grow proportionally with n2, as then the variance of the population spike count
collapses in the limit. Omne such special case is the binomial distribution over k, as
already demonstrated above using a more direct approach. There is a second special
case, namely if f(r) is a combination of two d-peaks at p and 1 — u (See [21] for details)—
this special case corresponds to a flat Ising model.

S2.4 In flat models, specific heat does not diverge for tempera-
tures which are not equal to 1:

Above we showed that at unit temperature, the specific heat for flat models (almost)
always diverges. Now, we show that this is NOT true for any other temperature. This
explains that, for any f(r), we will find that the unit temperature is ’special’.
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Figure S3. Diverging specific heat for a non-natural spike-count
distribution The values of the population spike count distribution P(K’) obtained
from the retinal simulation with NV = 316 in response to natural image stimulation
(orange, inset) were shuffled (black trace, inset) across K, to yield a ’pathological’
P(K). We simulated data for this P(K) from a flat model, and subsampled
subpopulations of size n = 20, ...,300. The specific heat traces computed from this
data also diverges and has a peak at unit temperature

First, we calculate the spike-count distribution at any inverse temperature [3:

1
_Zﬁ

P = 5-(}) iy

Pp(x) P(x)"

For large n,

fa(r) = nPs(rn)

n (n\""?
= P(rn)?
Zg (nr) (rn)

~ Z% exp (n(1 — B)n(r)) PP (rn)

For large populations, this expression is dominated by the exponential term exp (n(1 — 8)n(r)).
For 8 < 1, the exponential term is in turn dominated by the mode of n(r), which is at

r= % Thus, for 8 < 1, fg(r) =d(r — %), a delta-peak at r = %
Conversely, for 8 > 1, the argument of the exponential has its peaks at r = 0 and

r =1, and therefore f5(r) = 26(r — 1) + £6(r — 0). In this case, we also have that the

integral in the specific heat vanishes, and that the specific heat does not diverge.
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S3 Specific heat divergence rate in flat models as
function of correlation strength

In the next two sections, we will derive analytic expressions to predict the specific
heat divergence rate in flat models as a function of the correlation strength within the
population. Starting out from eq. , we will use two different approximations to f(r)
that will each yield results that allow us to better understand the behavior of the specific
heat at unit temperature ¢(T" = 1) in flat models.

S3.1 Asymptotic entropy and specific heat in weakly correlated
flat models:

Next, we examine entropy and specific heat in models with weak correlations. If the
model is weakly correlated and its mode is not at 0 or 1 we can assume it to be

approximately Gaussian with mean p and variance o2,

f(r) = 5 exp (Qi (r— ,m) |

We first calculate the entropy: We expand 7(r) to second order around p,

1) = n(+ ) = () + 1 (13 + (1) + . where

2
() =tog ()

-1
" _ }
n (T) - 7"(1-7’)7 S0
1—p 52
n(p+9) =n(u +§log( )— + ...
( ) =nlw) 1 2u(1 — p)
= a+ 8+ 6%y

Thus, the asymptotic entropy-rate is given by

h= [ semryar

=a+ 08+ vo?
1 2
=N o

) 2p(1 — )

We further investigate the variance, again neglecting all terms which are of higher
order than 2, obtaining

(n(p+8) = h)* = ((a = h) + B0 +40%)°
= (a—h)* + 6282 +2(a — h)BS + 2(a — h)yd? + 2(a — h)yd% + ...
=(a—h)>+62(a—h)B)+6* (B2 +2(a—h)y) +...

Integrating this expression over f(r), and dropping all terms in o which are of order
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higher than 2, we get

/fuxmmfhf:4afhf+azw2+%afmw
_ ot 2 o (1—pY\ o?
e <log ( 1 > u2(1—u)2>

1—
~ 02 log? (M)
I

In summary, we arrive at

11—
¢(T = 1) = no? log? <,u> and, for small p,
]
e(T =1) = no?log*(p)

In other words, a population of a given size n at fixed firing rate p that has a high
specific heat is simply a population which is very correlated. Inspecting the equations
above, we see that the final results do not critically depend on the Gaussian assumption—
the only requirement for the calculation to be accurate is that the distribution is
reasonably peaked around its mean.

S3.2 Asymptotic specific heat in the beta-binomial population
model

For the beta-binomial model, we assume f(r) to be given by a beta distribution, i.e.

ro (1= )AL,

Such f(r) arise for large populations when the population spike count k is described by
a beta-binomial distribution, and the choice for the beta distribution as a model for f(r)
was motivated by the successful application of beta-binomial models P(k|«, ) to our
simulated RGC activity (see Fig. [S4)).

For beta-distributed r, we have

Varlr = T BT BT 1)

Eflog 7] = y(a) — y(a + B),

where v denotes the digamma function.
The entropy can be calculated using known results on the expectation of the log,

h=a(a+8+1) - St ) - —Loa(+)

For the specific heat at unit temperature according to equation , we however also
require the expected values

E[r2 1og2 r],E[(1 - r)? 1og2(1 —7),E[r(1 —r)logrlog(l—r)]

ie.

E[rk(l — ) log™ rlog™(1 — r)] = /0 f(r){rk(l — ) log™ rlog™(1 — ) hdr (21)
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temperature temperature

Figure S4. (No) Influence of beta-binomial approximation on heat capacity
Specific heat capacities computed from population spike count distributions P(K).
Spike count distributions for population sizes n = 20, ...,300 were obtained from 50
uniformly drawn subpopulations each. Simulated retinal activity was taken from of the
retina simulation with in total N = 316 RGCs that responded to natural image
stimulation. Resulting specific heat traces computed from beta-binomial approximations
to the spike count distributions (left) and from raw P(K) (right) do not display visible
differences.

under beta-binomial distribution f(r), where k,1,m,n € {0,1,2}.
We begin the derivation of these terms by observing that

u(m,n)(r,a+k,+1) = log(r)mr(o”rk*l) log(1 —r)"(1 — r)(ﬁH*l)
%u(m,n) (r, o+ ]{;7 ﬂ + l) = IOg(T)er(O“"k_l) IOg(l _ T‘)n(l _ T)(ﬂ-l—l—l)
= u(m+1,n) (Ta o+ ka /8 + l)

)
%u(mvn)(r, a+k,B+1)= log(r)mr(o”rk*l) log(1 — r)”“(l - r)(ﬁﬂfl)

= u(m,n—i—l)(ra a+k, B + l)

for any k,l € N. Note that the exponents k,[ are readily absorbed into new effective
beta distribution parameters o/ = a+k, 8/ =5+ 1.

The triplets (U(m,n), Uim+1,n):%m,ns1)) for any m,n € N recursively express the
integrands of as continuous derivatives, which allows us to repeatedly apply Leibniz’
rule to the integral. We first deal with E[r*log™ 7], where m = k = 2, n = [ = 0,
o =a+2, 8 =, which is the first of the three expected values we need to compute
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the specific heat at unit temperature:

1
Beta(a, 8)E[r? log? r] = / re (1 — )P~ log? (r)r2dr
0

_ O(f2gﬂ+%1_rwwdr
{ {1 — )~} }dr
1

- % 0 5504{ =)

R
5042/ ro‘+1(1—r)ﬁ_1dr
0

62
52

The first two derivatives of Beta(a/, 8') w.r.t. « are given by

—Beta(a + 2, 0)

%Beta(a', B') = Beta(, 8')(¢o(a’) — Yo(a’ + ') and
2

2 Beta(o’, ) = Beta(a’, &) ((t(a’) — (e’ + 8))° +¥a(0’) ~va(a + 8)

We obtain the m-th derivative also for m > 2 using an iterative rule. The beta-

binomial normaliser Beta(a/, 8') furthermore cancels out with the denominator Beta(«, )
of the original beta distribution through

TT:5 (e +4) TS0 (8 +4)

Beta(a + k, 5+ 1) = — Beta(a, 8)
[ (a+ B +1)
Combining the previous results gives
1 1
E[r?’1 (1 — )P %d 22
108 1] = o [ (=) g (22)
1 52
=———— ——Bet 2
Beta(a, 8) da? cta(a +2,5)
ala+1) 1 52

(
W+5XQ+B+DBaMa+2m52B%Ma+2@
1

ala+1) ((Yola+2) — ol + B4 2))* + Y1(a+2) — 1(a+ 5+ 2))
(a+B)(a+pB+1) :

For m =2, k=1, n,l =0 the result
Elrlog?r] = _HJWMa+D dola+B+1))° +¢i(a+1) —di(a+ 5+ 1)

is identical to the one from [?] in the appendix A.3, eq. (28).

We have Beta(a, 8) = Beta(8, a), i.e. the above equations hold symmetrically for o
and [ interchanged, and n,[ instead of m, k. This gives us the second required term to
compute the specific heat at unit temperature,

E[(1 —7)%log?(1 — 7)) (23)
_ BB+ (o(B+2) —tola+B+2)° +¢1(8+2) —vi(a+f+2)
(a+B)(a+B+1)
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Including derivatives w.r.t. both a and 3, we more generally arrive at

TT55 (o +4) TT5Z6(8 +4)
1 o+ 8 +1)

We get recursive formulas for g, ), starting at g(o,0)(c, 3) = 1:

E[log(r)mrk log(1—7)"(1 — r)l] =

9(m,n) (a + kv B + l)

G100 B) = (th0(@) — wola + B)) gmmy (@, B) + 5mmnm+ﬂ>
g(m,71+1)(a7 5) = ("/}0(5) - wO(Ol + B)) 9(m,n) (OZ, B) + %g(m,n) (0[ + 5)

To compute ¢(T = 1), we still require the case of m =k =n =1=1 given by

af
(a+ B)(at g+ 170D

E[r(1 —r)log(r)log(l —r)] = (a+1,64+1) (24)

with

ganla+k,B+1) =vola+k)po(B+1) —tola+B+k+1) (Yola+k)+o(B+1))
+Yola+B+E+D2—(a+B+k+1). (25)

Combining the results of equations ([22 , , , with eq. (20)), we arrive at

Q/f
ala+ D) (a+1)+ BB+ D (B +1)
(a+B)(a+pB+1)

aB (Pola +1) = o(B + 1))
(a—l—ﬁ)?(a—&-ﬁ—Fl)

- (a+B+1).
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