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Abstract
In this work, we discuss the parametric modeling for the (electro)-thermal analysis of
components of nanoelectronic structures and automatic model order reduction of
the consequent parametric models. Given the system matrices at different values of
the parameters, we introduce a simple method of extracting system matrices which
are independent of the parameters, so that parametric models of a class of linear
parametric problems can be constructed. Then the reduced-order models of the
large-scale parametric models are automatically obtained using a posteriori output
error bounds for the reduced-order models. Simulations of both thermal and
electro-thermal systems confirm the validity of the proposed methods.

1 Introduction
Parameter variations have become essential in the design of micro- and nano-electronic
(-mechanical) systems as well as of coupled electro-thermal problems, since in many anal-
yses such as optimization and uncertainty quantification, modeling and simulation at
many values of the parameters are unavoidable. For many design and analysis tools, mod-
eling and simulation need to be done at each instance of the parameter from scratch: given
a fixed value of the parameter, say p∗, a certain numerical discretization method, e.g., a fi-
nite element method, is used to build a spatially discretized model only valid for p∗, and
numerical integration is then performed to get the output response corresponding to p∗. If
additional analysis beyond the capability of the aforementioned software is required, the
software often can provide only the (conductivity, capacitance) matrices corresponding
to certain samples of the parameter, rather than explicit matrix functions that are more
convenient for mathematical analysis.

It is desired to derive a single parametric discretized system that is valid for all pos-
sible values of the parameters, so that discretization does not have to be implemented
anew for each value of interest, which can save much simulation time. In this paper, we
propose a simple method of extracting matrix functions that is capable of calculating the
matrices corresponding to any parameter value efficiently. Thanks to these matrix func-
tions, the dynamics of the parametric system can be described by a single system of para-
metric ordinary differential equations (ODEs) or differential-algebraic equations (DAEs).
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The approach is in particular suitable for the (electro)-thermal analysis of nanoelectronic
structures, as the parameters there often appear in a linear affine form required by this
extraction for a parametric model.

Simulating the consequent parametric system is, however, still very time consuming,
because of the high dimension of the system. We propose to use parametric model order
reduction (PMOR) to compute a reduced-order model (ROM) that is not only of a much
lower dimension, but also accurate for all values of the parameters within a specified range.
Therefore, using the parametric ROM to replace the full-order model (FOM) in simulation
and other analyses like optimization and uncertainty quantification leads to significant
speedup and high accuracy. Many PMOR methods have been proposed so far. A survey
of PMOR methods can be found in []. In this paper, we use a multi-moment-matching
PMOR method [] to construct the reduced-order model. These methods are popular in
practical applications since they are easy to implement, need less computations than most
of the other methods, and are therefore suitable to reduce high-dimensional ODE/DAE
systems that commonly arise in design and analysis of VLSI (very-large-scale integration)
circuits. Furthermore, we propose to use an a posteriori output error bound [] to con-
struct the ROM automatically, i.e., the algorithm can build a reduced-order model satisfy-
ing a prescribed error tolerance without further specification of algorithmic parameters,
e.g., interpolation points and the order of the ROM, which can be automatically deter-
mined by the algorithm in an adaptive manner.

The paper is organized as follows. In Section , we propose a simple method of extract-
ing the state-space representation of a class of parametric problems. Section  reviews the
basic idea of PMOR methods and Section  describes an algorithm that implements the
multi-moment-matching PMOR method adaptively based on an a posteriori output er-
ror bound for the ROM. Section  describes the (electro-)thermal simulation for two test
models: a package model and a Power-MOS device model. The parametric modeling and
PMOR of these models, especially the extraction of the tensors and PMOR for the one-way
nonlinearly coupled dynamical system, are discussed in Section . The numerical results
are presented in Section , and the paper is concluded in Section . In all test cases, the
matrices are efficiently extracted and the parametric ROMs automatically obtained meet
the requirements on accuracy and compactness.

2 Parametric modeling
In this section, we introduce a method for extracting system matrices of a class of para-
metric problems, so that the parametric representation of the models in state-space form
can be derived. Assume that the parametric problem can be generally described by the
following partial differential equation,

∂a(t, z; p)
∂t

+ L
[
a(t, z; p)

]
= f (t, z; p), t ∈ [, T], z ∈ �, p ∈P , ()

whereL[·] is a linear spatial differential operator, f (t, z; p) is the excitation, p = (p, . . . , pm)T

is a vector of parameters, � ⊆ R
d (d = , , ) is the spatial domain and P ⊆ R

m is the
parameter domain.

In many engineering problems, we are interested in the input-output behavior of sys-
tem (). In simulation of integrated circuits, for example, we are often concerned with the
currents at the contacts (outputs) rather than inside the circuit when certain voltages are
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exerted on the contacts (inputs). In such cases, state-space representation is often used
for the spatially discretized system. Using finite-element simulation software, we can usu-
ally conduct spacial discretization only at a fixed value p∗ of p and obtain the discretized
system

E
(
p∗)dx(t, p∗)

dt
= A

(
p∗)x

(
t, p∗) + B

(
p∗)u(t),

y
(
t, p∗) = C

(
p∗)x

(
t, p∗) + D

(
p∗)u(t),

()

where only E(p∗), A(p∗) ∈ R
n×n, B(p∗) ∈ R

n×lI , C(p∗) ∈ R
lO×n, and D(p∗) ∈ R

lO×lI at the
fixed value p∗ of p are available. Here, x ∈ R

n is the state vector, and y ∈ R
lO is the output

response. For design purposes, the simulation results at many fixed values of p should be
derived and analyzed. If we simply use the software, the discretization must be repeated
at many values of p. To avoid repeated discretization in space, and hence to save design
time, it is desired that a parametric representation of the model is available.

We will show that if E(p), A(p), B(p), C(p), D(p) are in the form of

M(p) = pM + · · · + pmMm, ()

we can easily compute M, . . . , Mm based on the data of M(p) at m fixed values of p (here
and below, M(p) stands for any of the matrices E(p), A(p), B(p), C(p), D(p)). Hence, the
parametric representation of () is available, i.e.,

E(p)
dx(t, p)

dt
= A(p)x(t, p) + B(p)u(t),

y(t, p) = C(p)x(t, p) + D(p)u(t).
()

The discretized parametric model in () not only prevents repeated discretization at all
values of p, but also retains the same system order n as the nonparametric system ()
regardless of the number of the parameters. Note that the linear-affine form () does not
require linear dependence on geometrical and/or physical parameters since pi may present
abstract parameters. It covers a rather broad range of applications since any system of the
form

M(q) = φ(q)M + · · · + φm(q)Mm, ()

where φi represents an arbitrary scalar function of q, can easily be rewritten into form ()
with the change of parameter pi = φi(q). The vectors p and q can be of different lengths,
e.g., for the package model that will be described in Section , we set p = , p = h, p = 

h ,
where h is the top layer thickness of the package. Note that any parametric matrix M(q)
can be written into the form () theoretically since if we denote the (i, j)-th entry of M(q)
by mi,j(q), M(q) can be at least expanded as

M(q) =
n∑

i=

n∑

j=

mi,j(q)
(
eieT

j
)
,
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where ei is the i-th column of the n × n identity matrix. In practice, however, m in ()
should be small enough, e.g., below ten, if PMOR is expected to be efficient on the ex-
tracted system. A concise form can often be obtained by physical reasoning provided by
engineers. For our test examples in Section , M(h) = M + hM + 

h M when the thick-
ness parameter h changes, and M(σ ) = M + σM when the conductivity parameter σ

changes. However, there are still cases where the space-discretization does not yield a
concise affine-linear structure. For such cases, empirical interpolation method [, ] is
commonly applied to obtain an approximation with an affine structure.

Suppose that m groups of matrices E(pai ), A(pai ), B(pai ), C(pai ), D(pai ) have been ob-
tained, e.g., by simulation software at m different samples pai , i = , . . . , m. Using the for-
mulation in (), one can get a group of equations as below,

pa
 M + · · · + pa

m Mm = M
(
pa

)
,

...

pam
 M + · · · + pam

m Mm = M
(
pam

)
.

()

The equations above can be re-written as

(Pm ⊗ In)

⎛

⎜⎜
⎝

M
...

Mm

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

M(pa )
...

M(pam )

⎞

⎟⎟
⎠ , ()

where In ∈R
n×n is the identity matrix, and

Pm =

⎛

⎜⎜
⎝

pa
 . . . pa

m
...

...
pam

 . . . pam
m

⎞

⎟⎟
⎠ ∈R

m×m.

If p, p, . . . , pm are independent parameters, it is possible to select the samples pai such
that the corresponding m × m matrix Pm in () is nonsingular, since otherwise, one or
more parameters can be removed. Under this assumption,

⎛

⎜
⎜
⎝

M
...

Mm

⎞

⎟
⎟
⎠ =

(
P–

m ⊗ In
)

⎛

⎜
⎜
⎝

M(pa )
...

M(pam )

⎞

⎟
⎟
⎠ ,

where we use the following property of the Kronecker product: (U ⊗ Q)– = U– ⊗ Q–

for any nonsingular matrices U ∈ R
nU×nU and Q ∈ R

nQ×nQ []. Finally, the matrices Mi

(i = , . . . , m) can be easily computed by

M = p̃M
(
pa

)
+ · · · + p̃mM

(
pam

)
,

...

Mm = p̃mM
(
pa

)
+ · · · + p̃mmM

(
pam

)
,

()
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where p̃ij is the (i, j)-th entry of the matrix P–
m :

P–
m =

⎛

⎜
⎜
⎝

p̃ . . . p̃m
...

...
p̃m . . . p̃mm

⎞

⎟
⎟
⎠ . ()

An important property of the computation above is that it is independent of the large di-
mension n (typically several thousands or even higher) in linear system solves. To compute
all Mi (Mi = Ei, Ai, Bi, Ci, Di, i = , . . . , m) in () for any large-scale matrices in (), we need
only to invert a small-scale m × m matrix Pm once (m is typically below ten and equals
 or  in our numerical examples) and conduct scalar-matrix multiplication and matrix
addition with the dimension n, all of which are computationally much more efficient than
solving () with its order mn. Note that the full inverse for such a small matrix can readily
be computed, and multiplication with it is somewhat faster than working with the trian-
gular factor and backward/forward solves due to the memory access pattern.

Simulating the system in () may still take a lot of time when the dimension n is large,
especially when it has to be simulated at many samples of p (like in optimization). In the
next section, we propose to use PMOR to construct a parametric reduced-order model,
which will replace the original large-scale system in () in simulations for speedup. Since
the size of the reduced-order model is usually much smaller than n, simulation can be
conducted within a much shorter and more reasonable time period.

3 PMOR based on multi-moment-matching
Various PMOR methods have been proposed in the literature, among which the meth-
ods based on multi-moment-matching are probably the easiest to implement and the
most computationally efficient for many applications, especially for linear systems []. The
multi-moment-matching PMOR method computes a basis matrix V based on the series
expansion of the state vector x in the frequency domain. Under the zero initial condition,
the frequency domain description for system () is

(
sE(p) – A(p)

)
x(s, p) = B(p)u(s),

y(s, p) = C(p)x(s, p) + D(p)u(s), ()

where we assume that the matrix pencil (A(p), E(p)) is regular for any p value, i.e., there ex-
ists λp, such that λp,E(p) – A(p) is nonsingular. Given expansion points p = [p

 , . . . , p
m],

and s, x(s, p) in () can be expanded as

x(s, p) =
[
I – (σG + · · · + σmGm + σm+Gm+ + · · · + σmGm)

]–BMu(s)

=
∞∑

i=

(σG + · · · + σmGm)iBMu(s), ()

where σi = spi – sp
i , σm+i = pi – p

i , Gi = –[sE(p) – A(p)]–Ei, Gm+i = [sE(p) –
A(p)]–Ai, i = , , . . . , m, and BM = [sE(p) – A(p)]–B(p), under the condition that all
matrices in [·]– are nonsingular and

‖σG + · · · + σmGm‖ < . ()
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Because of condition (), the resulting ROM is normally accurate only around the expan-
sion point p. To obtain a parametric ROM valid on a wider range, multiple expansion
points are often employed as we will show below.

Defining

Rj = [G, . . . , Gp]Rj–, j = , . . . , q,

and

R =
[
sE

(
p) – A

(
p)]–[B, . . . , Bm],

we can compute the matrix Vs,p,q, whose columns form an orthonormal basis of the
subspace spanned by the first q of Ri’s:

range{Vs,p,q} = span{R, R, . . . , Rq}s,p . ()

Using V := Vs,p,q, which is assumed to be an n × nr matrix, we obtain the parametric
reduced-order model via Galerkin projection,

(
V T E(p)V

)dxr(t, p)
dt

=
(
V T A(p)V

)
xr(t, p) +

(
V T B(p)

)
u(t),

yr(t, p) =
(
C(p)V

)
xr(t, p) + D(p)u(t),

()

where the state vector xr(t, p) is of order nr . When A(p), B(p), C(p), E(p) all take the affine
form (), the reduced parametric matrices can be computed by the formula

V T E(p)V = pV T EV + · · · + pmV T EmV ,

V T A(p)V = pV T AV + · · · + pmV T AmV ,

V T B(p) = pV T B + · · · + pmV T Bm,

C(p)V = pCV + · · · + pmCmV ,

where all constant matrices on the right-hand side can be pre-computed.
Note that the number of columns in Rj increases exponentially with j. When the number

of the parameters in p is larger than , or when there are many inputs, multiple expansion
points should be used to keep the size of the reduced-order model reasonable. The idea
is straightforward. Given a set of expansion points si, pi, i = , . . . , k (the superscript i for p
is not a power: it only indicates the i-th expansion point), a matrix Vsi ,pi can be computed
for each pair (si, pi) as

range{Vsi ,pi ,qr } = span{R, R, . . . , Rqr }si ,pi . ()

The final projection matrix V is obtained from the orthogonalization of all matrices
Vsi ,pi ,qr ,

V = orth{Vs,p,qr , . . . , Vsk ,pk ,qr }. ()
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For similar accuracy, the number qr in () can usually be taken much smaller than q in ()
and normally, only a few well-chosen expansion points suffice. For example,  or  com-
monly suffices for qr , while q must be taken a much larger value depending on the problem.
The reason is that, using multiple expansion points, the difficulty of the parametric depen-
dence can be tackled by adding new interpolation points, each of which adds only a few
columns due to the small qr , which is much more economical than using a single expansion
point, where this difficulty must be treated with the increase of q, each step of which be-
comes increasingly more expensive. Consequently, the reduced-order model is normally
smaller and more accurate on a broader parameter range when multiple expansion points
are used.

The choice of the number and locations of the expansion points (si, pi) has an important
influence on the efficiency of multi-moment-matching PMOR methods. Actually, good
accuracy and compactness of the reduced-order model can only be achieved when the
expansion points are selected judiciously.

In the next section, we introduce a technique for adaptively selecting the expansion
points according to an a posteriori error bound �(s, p) for the ROM. By using the error
bound to access the reliability of the reduced-order model, we develop an automatic pro-
cedure for constructing the ROM.

4 Adaptively selecting the expansion points
For the general system () with lI inputs and lO outputs, the error bound �(s, p) is defined
as

�(s, p) = max
≤i≤lI ,
≤j≤lO

�ij(s, p),

where �ij(s, p) is the error bound for the (i, j)-th entry of the transfer function matrix of
the ROM, i.e.,

∣∣Hij(s, p) – Ĥij(s, p)
∣∣ ≤ �ij(s, p),

where H(s, p) and Ĥ(s, p) represent the transfer functions of the full-order model and the
reduced-order model, respectively. In this paper, we define the �ij(s, p) as in [], which is
inspired by the a posteriori error bounds proposed for the reduced basis method []:

�ij(s, p) =
‖rdu

i (s, p)‖‖rpr
j (s, p)‖

β(s, p)
+

∣
∣(x̂du)∗rpr

j (s, p)
∣
∣,

where

rpr
j (s, p) = B(:, j) – [sE – A]x̂pr

j ,

x̂pr
j = V

(
sV T EV – V T AV

)–V T B(:, j),

rdu
i (s, p) = –C(i, :)T –

[
s̄ET – AT]

x̂du
i ,

s̄ is the conjugate of s, and the state xdu
i of the dual system is approximated by

x̂du
i = –V du(s̄

(
V du)T ET V du –

(
V du)T AT V du)–(V du)T C(i, :)T .
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Here, for ease of notation, p is dropped from the matrices E(p), A(p), B(p) and C(p), and
the j-th column of B(p) and the i-th row of C(p) are denoted by B(:, j) and C(i, :), respec-
tively. The variable β(s, p) is the smallest singular value of the matrix sE(p) – A(p). The
matrix V du can be computed, for example, using () and (), but replacing R, . . . , Rqr

with Rdu
 , Rdu

 , . . . , Rdu
qr , where the matrices siE(pi) – A(pi) in R, . . . , Rqr are substituted by

s̄iET (pi) – AT (pi), and Ej by ET
j , Aj by AT

j , Bj by C(j, :)T , j = , . . . , m. The derivation of �(s, p)
is detailed in [].

Algorithm  Adaptively selecting expansion points ŝ, p̂, and computing V automatically
: V = []; V du = [];
: Choose some εtol <  and a small positive integer qr ; set ε = ;
: Choose 
train: a large set of samples of s and p, taken over the domain of interest;
: Choose the initial expansion point: (ŝ, p̂);
: while ε > εtol do
: range(Vŝ,p̂,qr ) = span{R, R, . . . , Rqr }ŝ,p̂;
: range(V du

ŝ,p̂,qr
) = span{Rdu

 , Rdu
 , . . . , Rdu

qr }ŝ,p̂;
: V = orth{V , Vŝ,p̂,qr };
: V du = orth{V du, V du

ŝ,p̂,qr
};

: (ŝ, p̂) = arg maxs,p∈
train �(s, p);
: ε = �(ŝ, p̂) ;
: end while.

Thanks to the error bound �(s, p) for the ROM, the expansion points (si, pi) can be se-
lected adaptively, and the projection matrix V can be computed automatically as is shown
in Algorithm . It is worth pointing out that although the error bound is parameter-
dependent, many p-independent terms constituting the error bound need to be pre-
computed only once, which can be repeatedly used in the algorithm for all samples of
p in 
train, e.g., the terms V T MV , . . . , V T MmV , etc.

5 Test models
To test the techniques proposed, we will use two applications arising from thermal and
electro-thermal simulations: a package shown in Figure (a), whose purpose is to allow
easy handling and assembly onto printed circuit boards and to protect the devices from
damage [], and a Power-MOS device shown in Figure (b), which is commonly used in
energy harvesting, where energy from external sources like light and environmental heat
is collected in order to power small devices such as implanted biosensors [, ]. With
the scaling down of integrated circuits, thermal issues have attracted increasingly more
attentions and become a major consideration in the design of integrated circuits.

The dynamics of both applications can be described by the same governing equations.
The electrical sub-system can be described by

∇ · J +
∂ρ

∂t
= ,

J = σ · E, E = –∇U ,

ρ = –∇ · (ε∇U),
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(a) A package (b) A Power-MOS device
(stretched in the vertical direction)

Figure 1 Physical models considered in the numerical tests.

where J is the current density, E is the electrical field, U is the electrical potential, σ is the
electrical conductivity, ε is the permittivity, and ρ is the charge density. In this paper, we
ignore both the local charging, i.e., ε =  and ρ = , and the dependence of the electrical
conductivity σ on temperature, i.e., the electrical sub-system is independent of the thermal
sub-system, and obtain the following simplified governing differential equation, which is
time-independent:

∇ · (σ · ∇U) = .

The thermal sub-system is governed by similar equations:

∇ · φq +
∂w(T)

∂t
= Q,

φq = –κ∇T ,

w(T) = CT (T – Tref ),

where φq is the heat flux, w is the local energy storage, CT is the thermal capacitance,
and Q represents heat sources or sinks. For the thermal sub-system, we also ignore the
dependence of the thermal capacitance on the temperature. For Q, we use two options in
this paper.

• The thermal-only option takes Q as an independent input. Under this option, the elec-
trical sub-system and the thermal sub-system are completely decoupled. The thermal-
only option is especially interesting to the package model, since it can be used to study
the thermal dynamics stimulated by heat-injecting or extracting properties on the bound-
ary of the simulation domain, Joule self-heating, etc. Finite element discretization of the
thermal-only option leads to a linear dynamical system exactly the form ().

• The electro-thermal option takes Q as a coupling term from the electrical sub-system:
the Joule self-heating that is of great importance in power-aware design of integrated cir-
cuits:

Q = QSH = E · J .
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In this case, the whole system is one-way coupled: the thermal sub-system depends on
the electrical sub-system, while the electrical sub-system is independent of the thermal
system. The state space representation of the electro-thermal option is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

AE(p)xE(t, p) = –BE(p)u(t), (a)

ET(p)ẋT(t, p) = AT(p)xT(t, p) + BT(p)u(t) + F(p) × xE(p) × xE(p), (b)

xT(, p) = x
T, xE(, p) = x

E, (c)

y(t, p) = CE(p)xE(t, p) + CT(p)xT(t, p) + D(p)u(t), (d)

where the input vector u ∈ R
lI represents the input voltages and temperatures at the

contacts, the output vector y ∈ R
lO represents the output voltages, currents, tempera-

ture, and thermal fluxes at the contacts, AE(p) ∈ R
nE×nE , BE(p) ∈ R

nE×lI , ET(p) ∈ R
nT×nT ,

AT(p) ∈ R
nT×nT , BT(p) ∈ R

nT×lI , CE(p) ∈ R
lO×nE , CT(p) ∈ R

lO×nT , DT(p) ∈ R
lO×lI , and

the tensor F(p) ∈ R
nT×nE×nE , which can be considered as nT slices of nE by nE matri-

ces Fi(p) ∈ R
nE×nE , i = , . . . , nT, represents the nonlinear coupling of the electrical part

with the thermal part. Denoting the i-mode tensor-matrix product by ×i [], the prod-
uct F(p) × xE(p) × xE(p) is a vector of length nT, whose i-th component is the standard
vector-matrix-vector product xE(p)T Fi(p)xE(p). In this formulation, the algebraic equa-
tion (a) describes the electrical part, the ordinary differential equation (b) describes
the thermal part, in which the tensor F(p) describes Joule self-heating, (c) specifies the
initial conditions, and (d) computes the output obtained from the electrical and thermal
state vectors. Theoretically, Joule self-heating should be modeled by two tensor products:
F(p) × xE(p) × xE(p) and G(p) × xE(p) × u(t). However, the influence of the second
part is rather limited, and is therefore ignored in this paper. Instead of a single coupled
system, we write out the electrical and thermal sub-systems explicitly to show the one-
way coupling. Furthermore, our numerical results proved that PMOR is computationally
much more efficient if we apply it to the algebraic equations and the ordinary differential
equations separately rather than apply it to a single set of differential algebraic equations.

6 Parametric modeling and PMOR for the test models
For the package model shown in Figure (a), the parameter p is chosen to be the top
layer thickness of the package, namely h. The finite-integration technique (FIT) for the
modeling of the package leads to thermal fluxes that are proportional to the dual areas
of the mesh cells and inversely proportional to the lengths of the edges in the mesh cells.
Therefore, when considering meshes that are topologically equivalent for different pack-
age thicknesses, the parametric dependence of the matrices will take the form

M(h) = M + hM +

h

M (M = AE, BE, ET, AT, BT, F , CE, CT, D).

The second term originates from the linear dependence of dual areas corresponding to the
cell edges perpendicular to the thickness orientation, whereas the third term originates
from dual areas associated to cell edges tangential to the thickness orientation []. It is
clear that the above formulation is a special case of () with p = , p = h, and p = 

h .
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Note that the method developed in Section  also applies to the tensor F due to the
following reasoning. Every slice of F , say Fi(p) ∈R

nE×nE , can be extracted using the proce-
dure from () to (), and under the same set of samples pa , pa , . . . , pam in (), the obtained
coefficients p̃, p̃, . . . , p̃mm in () are the same. Therefore, the computation for all slices
can be conducted together in the tensor form, i.e., assuming that M, M, . . . , Mm in () are
tensors, they can be extracted by (), using the coefficient computed by ().

Therefore, to extract all matrices and tensors for the package model, we need first only
to invert a single  ×  matrix, and then, for each matrix or tensor function, we need to
calculate () once.

For the Power-MOS circuit model shown in Figure (b), the conductivity of the third
metal layer, which we denote by σ , is chosen to be the parameter. The finite-integration
technique (FIT) assembles fluxes that are proportional to the conductivity of each mesh
cell material, and therefore, the parametric dependence of the matrices will take the form

M(σ ) = M + σM (M = AE, BE, ET, AT, BT, F , CE, CT, D).

It is clearly in the form () by assigning p =  and p = σ , and the proposed procedure for
extracting the matrices/tensors can readily be used.

The remaining problem is how to reduce system (b), which has a quadratic one-way
coupling term. To simplify the presentation, we use the Power-MOS circuit with the pa-
rameter dependence M(σ ) = M + σM as an example. Following the idea presented in
[], we first ignore the nonlinear part F(p) × xE(p) × xE(p) in system (b) and use the
adaptive PMOR algorithm proposed to reduce the resulting system in the form () [, ].
To approximate the one-way coupling term, we need to reduce the electrical sub-system
before the thermal sub-system.

• The electrical sub-system (a) is already in the form () if we assign E(p) = , A(p) =
–AE(p), B(p) = –BE(p), s = t, by noting that for the validity of the proposed PMOR method,
system () is actually not necessarily a frequency-domain system. Denote the basis built
for the electrical sub-system (a) by VE. For MOR for algebraic equations, it is worth
mentioning the exact reduction method proposed in [] for non-parametric systems,
which does not require an error bound. However, the method we propose in this paper
can not only reduce parametric systems, but also normally build a reduced-order model
of a much lower dimension.

• If we ignore the nonlinear coupling term in the thermal sub-system (b), it is already
in the form (). To use the methods developed, we first conduct the Laplace transform to
obtain its frequency domain representation

(
AT + σAT – sET – (σ s)ET

)
X =

[
BTBTATx

TATx
T
]

⎡

⎢⎢
⎢
⎣

–U
–σU

–
s

–σ
s

⎤

⎥⎥
⎥
⎦

. ()

Then, we apply Algorithm  to system () to obtain the basis for the thermal sub-system,
which we denote by VT.

• To obtain a ROM for (b), we approximate xE by VÊxE and xT by VT̂xT, and then force
the approximation error to be orthogonal to the range of VT. The resulting parametric
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ROM is

ÊT(p) ˙̂xT(t, p) = ÂT(p)̂xT(t, p) + B̂T(p)u + F̂(p) × x̂E(p) × x̂E(p), ()

where ÊT(p) = V T
T ET(p)VT, ÂT(p) = V T

T AT(p)VT, B̂T(p) = V T
T BT(p), F̂(p) = F(p) × VT ×

VE × VE. To obtain the reduced tensor F̂(p), we first approximate xE(p) in the range of
VE, and then project the approximation onto the test subspace VT, i.e., the tensor product
F̂(p) × x̂E(p) × x̂E(p) equals V T

T [F(p) × (VÊxE(p)) × (VÊxE(p))]. The advantage of the
tensor formulation for the ROM is that using the reduced tensor, evaluating the ROM
does not require computations with quantities of the order of the FOM. In our actual
computations, the parametric matrices in the ROM are computed by

Ŷ (p) = Ŷc + pŶv, Ŷ ∈ {ÂT, B̂T, ĈT, ÊT, F̂}, ()

where Ŷc and Ŷv are pre-computed during the construction of the ROM. This precompu-
tation is also applied to the electrical sub-system (a) and the output computation (d).

7 Numerical results
In this section, we first show the numerical results of the thermal analysis of the package
model. Then, we present the numerical results of the electro-thermal analysis of both the
package model and the Power-MOS device model.

7.1 Numerical results for the thermal analysis
The package model is a multi-input multi-output system, with  inputs and  out-
puts. Algorithm  is employed to compute the parametric reduced-order model automat-
ically. We used  samples of the package thickness h ∈ ( μm,  μm], and one sample of
s = π f j , f ∈ [ Hz,  Hz]: s = πj , j =

√
–, to constitute the training set 
train in

Algorithm . The algorithm essentially selects the expansion points for p, since we fix s
to the single expansion point s. Only two iterations and two expansion points selected
are required for convergence. The reduced-order model is of size r = . For each selected
expansion point, we construct Vsi ,pi with only two terms R and R (qr =  in Steps -, Al-
gorithm ) in order to avoid the exponential increase in Rj, j > . Table  lists the iterations
and the error bounds at each iteration step.

Figure (a) and (b) plot the temperature and the current at two different parts of the
package, respectively. The temperature is of big magnitude, while the current is of very
small magnitude, showing that there is no current at that part of the circuit. The reduced-
order model catches the accuracy of both at  samples of p, and  time steps for each
sample.

7.2 Numerical results for the electro-thermal analysis
First, we apply the matrix extraction algorithm and adaptive PMOR method developed to
the electro-thermal simulation of the package model with  inputs and  outputs.

Table 1 Vsi ,pi = span{R0, R1}si ,pi , i = 1, 2, εtol = 10–3, n = 8, 549, r = 58

Iteration i (s0, hi) �(s0, hi)

1 (200πj , 0.3834) 0.0153
2 (200πj , 0.0677) 5× 10–4
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(a) Left: temperature computed by the ROM. Right: relative error of the temperature computed by the ROM

(b) Left: current computed by the ROM. Right: absolute error of the current computed by the ROM

Figure 2 Comparison between FOM-based and ROM-based simulation results of the package model,
where both the order-8549 FOM and the order-58 ROM have 34 inputs and 68 outputs.

The system is parameterized by the thickness of the top layer and excited by the inputs:

ui =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, i = ,
,  ≤ i ≤ ,
 × t + , i = , t ∈ [, –],
 i = , t > –,
  ≤ i ≤ .

The initial condition for all electrical state variables is  V, and the initial condition
for all thermal state variables is ◦C. For the electrical sub-system, the training set is
{, , , , , , , , , , , , , } (in μm), while for the thermal sub-system,
the training set {(s, h)} contains  samples, in which the frequency (s) and the thick-
ness of the top metal layer (h) are uniformly chosen within the ranges [ rad/s,  rad/s] and
( μm,  μm], respectively. Using the PMOR method proposed, the electrical sub-system
is reduced from order , to order , the thermal system is reduced from order ,
to order , and the speedup factor for the electro-thermal simulation is .. The con-
vergence behavior of the adaptive PMOR method is shown in Table  and the thermal flux
output y and its relative error are shown in Figure .

Then, we apply the proposed methods to the Power-MOS circuit model, which has 
inputs and  outputs. The system is parameterized by the conductivity of the third metal
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Table 2 Convergence behavior of electro-thermal simulation of the package model
(εtol = 10–4)

Iteration Electrical sub-system Thermal sub-system

Selected sample h Error bound Selected sample (s, h) Error bound

1 1 2.1× 103 (8.1339, 7.5910) 7.3× 106

2 100 3.7× 100 (41.065, 29.653) 2.3× 101

3 90 6.6× 10–2 (17.494, 15.121) 1.3× 10–1

4 80 6.4× 10–3 (16.455, 4.6942) 7.8× 10–5

5 70 5.3× 10–3 – –
6 60 4.2× 10–3 – –
7 50 3.1× 10–3 – –
8 40 1.8× 10–3 – –
9 30 8.9× 10–4 – –

(a) The thermal flux output y (b) The relative error of y

Figure 3 The thermal flux output y36 and its relative error for the package model.

layer and excited by the inputs:

ui =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

, i = , ,
t, i = , t ∈ [, –],
, i = , t > –,
., i = , , .

The initial condition for all electrical state variables is  V, and the initial condition for
all thermal state variables is . °C. For the electrical sub-system, the training set is
{ S/m,  ×  S/m,  ×  S/m}, while for the thermal sub-system, the training set {(s,σ )}
contains  samples, in which the frequency (s) and the conductivity of the top metal
layer (σ ) are uniformly chosen within the ranges [ rad/s,  rad/s] and [ S/m,  ×  S/m],
respectively. Using the PMOR methods proposed, the electrical sub-system is reduced
from order , to order , the thermal sub-system is reduced from order , to order
, and the speedup factor for the electro-thermal simulation is .. The convergence
behavior of the adaptive PMOR method is shown in Table  and the thermal flux output
y along with its relative error is shown Figure .

Figure (b) shows that the relative error is large when t is small, e.g., with a value in
the range of [, ] at the time – s. The reason is that the thermal flux is still very
close to zero (the circuit is hardly heated up) and the numerical error arising from the
discretization of the FOM results in numerical noise, which dominates the output of the
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Table 3 Convergence behavior of electro-thermal simulation of the Power-MOS model
(εtol = 10–12)

Iteration Electrical sub-system Thermal sub-system

Selected sample σ Error bound Selected sample (s, σ ) Error bound

1 107 7.165399× 10–24 (0, 2.736× 107) 43.73
2 – – (106, 2.537× 107) 4.225× 10–4

3 – – (2.632× 105, 1.694× 107) 4.345× 10–8

4 – – (5.790× 105, 2.687× 107) 9.774× 10–11

5 – – (5.263× 104, 2.836× 107) 4.041× 10–13

(a) The thermal flux output y (b) The relative error of y

Figure 4 The thermal flux output y7 and its relative error for the Power-MOS model.

FOM when the true physical dynamics is small. As Figure (b) shows, the ROM approx-
imates the thermal flux accurately after the thermal flux dominates the numerical error
(t > ×–). Therefore, the ROM can not only approximate the true dynamics accurately,
but is also robust to the numerical error present in the FOM due to discretization. Fur-
thermore, although the samples are selected within the range [,  × ], Figure (b)
shows that the parametric ROM is valid in a much wider range.

8 Conclusions and further discussion
We have proposed a simple automatic matrix extracting technique for a class of parametric
dynamical systems, and shown that automatic parametric model order reduction can be
realized with the guidance of an a posteriori error bound. The above techniques have been
successfully applied to the thermal simulation of a package model, and the electro-thermal
simulation of a package model and a Power-MOS device model. Compact and reliable
reduced-order models have been automatically obtained, which offers the possibility of
being integrated into dedicated electro-thermal simulation software to accelerate design
automation.

It is worth pointing out that although the adaptive Algorithm  for multi-moment-
matching PMOR methods resembles the greedy algorithm that is often used in the re-
duced basis method [], the size of the training sets we used in numerical tests, which is
 in all three examples, is much smaller than that typically used in reduced basis methods,
which can easily reach , or even ,. Numerical simulations show that this small
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number of training points leads to accurate ROMs within a large parameter range. An-
other phenomenon we observed in numerical tests for electro-thermal analysis is that the
resulting parametric ROMs are robust to numerical error introduced by PDE discretiza-
tion.
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