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We examinedwhether assortative mating for educational attainment (“likemarries like”) can be detected in the
genomes of ~1600 UK spouse pairs of European descent. Assortative mating on heritable traits like educational
attainment increases the genetic variance and heritability of the trait in the population,whichmay increase social
inequalities. We test for genetic assortative mating in the UK on educational attainment, a phenotype that is in-
dicative of socio-economic status and has shown substantial levels of assortative mating. We use genome-wide
allelic effect sizes from a large genome-wide association study on educational attainment (N ~ 300 k) to create
polygenic scores that are predictive of educational attainment in our independent sample (r = 0.23,
p b 2 × 10−16). The polygenic scores significantly predict partners' educational outcome (r = 0.14, p =
4 × 10−8 and r = 0.19, p = 2 × 10−14

, for prediction from males to females and vice versa, respectively), and
are themselves significantly correlated between spouses (r= 0.11, p= 7 × 10−6). Our findings provide molec-
ular genetic evidence for genetic assortative mating on education in the UK.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Humans generally do not choose their mates randomly. In search for
a suitablemate, among the highest-ranking qualities people look for in a
potential partner are intelligence and educational attainment (Buss and
Barnes, 1986; Zietsch, Verweij, and Burri, 2012). Previous work consis-
tently shows substantial assortative mating for intelligence and educa-
tional attainment, with spousal correlations for intelligence ranging
between 0.33 and 0.72 (Bouchard and McGue, 1981; Gualtieri, 2013;
Mascie-Taylor and Vandenberg, 1988;Watson et al., 2004) and for edu-
cational attainment between 0.45 and 0.66 (Abdellaoui et al., 2015;
Conley et al., 2016; Watson et al., 2004; Zietsch, Verweij, Heath, and
Martin, 2011). Assortative mating can occur via different mechanisms
(which are not always mutually exclusive). Partners can become more
similar to each other over the course of their relationship (i.e., conver-
gence); however, there is no evidence for convergence for cognitive
abilities and educational attainment (Mascie-Taylor and Vandenberg,
1988;Watson et al., 2004; Zietsch et al., 2011). This suggests that assor-
tative mating for educational attainment is due to initial partner choice.
This can happen because of social homogamy,where similar people find
h-Jones), a.abdellaoui@vu.nl
themselves in similar social environments because of their social back-
ground, and/or because of phenotypic matching, where people select
their partner based on similarity in characteristics.

The consequences of assortative mating on education and cognitive
abilities are relevant for society and for the genetic make-up and there-
fore the evolutionary development of subsequent generations
(Thiessen and Gregg, 1980). Assortative mating increases the variance
of characteristics in the population, and may increase social inequality
with respect to education or income (Schwartz, 2013). Greenwood,
Guner, Kocharkov, and Santos (2014) for instance reported a rise in as-
sortative mating for educational attainment in the United States be-
tween 1960 and 2005 and showed that this clustering of academic
success may have caused an increase in income inequality. It is a priori
very plausible that phenotypic similarity between partners on heritable
traits is reflected in their genomic similarities, and thus in the genetic
composition of their offspring. Assortativemating on a heritable trait in-
creases the additive genetic variance for genetic loci associated with
that trait, as well as for other traits that are genetically correlated with
it (Crow and Felsenstein, 1968; Fisher, 1918; Lande, 1977), as assorta-
tive mating generates phenotypes with more extreme genetic values.
The increase in assortment for educational attainment (Greenwood et
al., 2014; Schwartz, 2013) may explain why heritability estimates for
educational attainment have risen over time (Branigan, McCallum,
and Freese, 2013), although there may also be other explanations for
this increase, such as the recently increased equality in educational
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opportunities (Colodro-Conde, Rijsdijk, Tornero-Gómez, Sánchez-
Romera, and Ordoñana, 2015). Another genetic consequence of assorta-
tive mating on education is the influence on genome-wide ancestral
variation and homozygosity. Abdellaoui et al. (2015) showed that
more educated individuals are more likely to migrate, which increases
their chance of meeting a spouse with a different ancestral background.
Accordingly, assortment on educational attainment can result in greater
ancestral variation and lower levels of genome-wide homozygosity (a
genetic signature used to study effects of inbreeding) in the offspring
of higher educated spouse pairs.

Several studies have tried to detect assortative mating on a molecu-
lar genetic level by estimating spousal resemblance on genome-wide
single nucleotide polymorphisms (SNPs) (Domingue, Fletcher, Conley,
and Boardman, 2014; Guo, Wang, Liu, and Randall, 2014; Sebro,
Hoffman, Lange, Rogus, and Risch, 2010). These studies report spouses
to be more similar on genome-wide SNPs than expected under random
mating. However, these reported spousal resemblances are more likely
to be explained by population stratification, i.e., spouse pairs sharing
more ancestry than random male-female pairs (Abdellaoui, Verweij,
and Zietsch, 2014; Sebro et al., 2010), than by phenotypic assortative
mating. Assortative mating on complex phenotypes, such as education,
intelligence, personality, psychiatry, or height, is expected to lead to ge-
netic spousal resemblance. However, these traits are influenced by
many genetic variants throughout the genomewith very small individ-
ual effects that require exceptionally large sample sizes to detect. The
largest patterns of genome-wide variation, which can be captured
with principal component analyses (PCA) in much smaller datasets, re-
flect ancestry differences (Price et al., 2006), correlate strongly with ge-
ography, and show significant spouse correlations (Abdellaoui et al.,
2013b). Geographic proximity is a strong predictor of shared ancestry
and a major determinant of potential spouse pairs meeting, especially
in the presence of social catalysts that narrowmate choice and correlate
with geography, such as religion (Abdellaoui et al., 2013a; Haber et al.,
2013). We therefore expect spousal resemblance on a genome-wide
level to be dominated by shared ancestry, and indeed the above studies
do not show a significant genetic spousal resemblance once ancestry is
appropriately accounted for. A trait-based approach is more powerful,
less susceptible to population stratification, and thus more informative
in detecting genetic assortative mating than estimating allelic spousal
resemblance in a hypothesis-free manner. With the advent of large-
scale genome-wide association studies (GWASs), we can now quantify
significant portions of a person's genetic predisposition for a wide
range of traits with polygenic scores by summing their individual alleles
weighted by their estimated effect sizes. Polygenic scores can have sig-
nificant predictive power and generally improve for complex traits
when adding SNPs that individually did not reach genome-wide signif-
icance (Dudbridge, 2013).

The highly polygenic trait educational attainment is well suited for a
study on genetic assortativemating because the phenotype itself is sub-
ject to high levels of assortment and genome-wide estimates of allelic
effect sizes are available from large GWASs. Conley et al. (2016) show
that polygenic scores based on results from a GWAS on educational at-
tainment of ~126,000 participants (Rietveld et al., 2013) significantly
correlate between spouse pairs born between 1920 and 1950 in the
US. We use genome-wide effect sizes from a GWAS on educational at-
tainment of ~300,000 participants (Okbay et al., 2016) to create poly-
genic scores for couples born between 1919 and 1994 from the UK
Household Longitudinal Study (UKHLS), a survey that aims to be repre-
sentative of the UK population. Given similar levels of phenotypic assor-
tative mating in the US and the UK, we expect to replicate that there is
genetic assortativemating for educational attainment and to findhigher
levels of genetic assortative mating than Conley et al. (2016) given the
more accurate summary statistics and a novel and more powerful poly-
genic score approach (Vilhjálmsson et al., 2015). We test whether indi-
viduals' polygenic risk scores for educational attainment can predict
their partners' educational attainment, and their partners' polygenic
scores. We control for similarities in ancestral background by taking
into account ancestry-informative principal components (PCs).

2. Materials and methods

2.1. Phenotypes

The sample is derived from the UK Household Longitudinal Study:
Understanding Society (UKHLS) (Buck and McFall, 2011), a representa-
tive sample of the UK population. 9944 individuals were genotyped, in-
cluding 1699 pairs whowere living together either as husband andwife
or as a couple. Individuals under 25 years of agewere removed from the
analyses, because they are likely to not have reached their final educa-
tion level; this resulted in an N of 8989. For the cross-spouse analyses
we also removed all pairs where either partner was under 25, resulting
in a sample of 1616 spouse pairs.

We derived a variable for individuals' educational attainment as fol-
lows: 0 = no educational qualifications; 1 = GCSE (national exams
taken at age 16) or “other qualifications”; 2=A-level or equivalent (na-
tional exams taken at age 18, roughly equivalent to French Baccalaure-
ate or US High School Diploma); 3 = University degree or equivalent.
Educational attainment was standardized to have a mean of 0 and a
standard deviation of 1.

The UKHLS is a stratified probability sample of the UK population.
The dataset for the nurse visit sample (fromwhich the SNP data are de-
rived) includes response weights which are meant to account for ascer-
tainment bias and non-response, including non-participation in the
nurse visit andnot donating blood.Weused the cross-sectionalweights,
i.e., the reciprocal of the probability of blood measures to be present for
a particular individual, predicted from a variety of socio-economic char-
acteristics. Further details are given in Benzeval, Davillas, Kumari, and
Lynn (2014). For analyseswhere each case represents a pair of partners,
such as themain regressions on partner characteristics, we used the ar-
ithmetic mean of male and female partner's weight.

2.2. Genotyping, quality control (QC), and principal component analysis
(PCA)

Genotyping was done on the Illumina HumanCoreExome chip for
White/European participants of Waves 2 and 3 of theUnderstanding So-
ciety study. QC was performed on the entire set of 9944 participants in
PLINK (Purcell et al., 2007), and only autosomal SNPs were included.
SNPs were excluded if they: 1) had a missing rate N5%; 2) showed a
minor allele frequency (MAF) smaller than 5%; 3) deviated from
Hardy–Weinberg equilibrium (HWE) with a p-value smaller than
10−8. The QC resulted in 261,965 SNPswith amean individual genotyp-
ing rate of N99.9% (ranging from 97.2% to 99.99%, with only 15 individ-
uals having N1%missingness). There were no individuals detected with
a non-European or non-British ancestry by projecting principal compo-
nents (PCs) from the 1000 Genomes dataset (procedure described in
more detail in the supplementary material of Abdellaoui et al.
(2013b)). To control for ancestry differences within the UK, we con-
ducted a PCA on the genotype data in EIGENSTRAT (Price et al., 2006).
In order to detect the relatively small ancestry differences within the
UK, we pruned for linkage disequilibrium (LD) (window size = 50,
number of SNPs to shift after each step = 5, based on a variance infla-
tion factor [VIF] of 2) and removed long-range LD regions, since LD
can result in larger patterns of variation than ancestry differences with-
in relatively homogeneous populations (Abdellaoui et al., 2013b). After
minimizing LD, 91,708 autosomal SNPs remained. The PCA was con-
ducted on unrelated individuals (9091 out of 9944 participants) and
projected onto the rest. Unrelated individuals were chosen using
GCTA (Yang, Lee, Goddard, and Visscher, 2011), by excluding one of
each pair of individuals with an estimated genetic relationship of
N0.025 (i.e., closer related than third or fourth cousin).
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2.3. Polygenic scores

Polygenic scores were computed using LDpred (Vilhjálmsson et al.,
2015), a recently developed method that creates an unbiased predictor
with increased accuracy compared to traditional approaches by condi-
tioning on a genetic architecture prior and linkage disequilibrium (LD)
information from a reference sample. Risk scores in our sample were
generated with effect sizes obtained from the latest educational attain-
ment GWAS (Okbay et al., 2016) and the LD information from the Euro-
pean populations in the 1000 Genomes reference set (in our case: Utah
Residents (CEPH)with Northern andWestern EuropeanAncestry, Finn-
ish, British, Iberian, and Toscani individuals, N = 381). Vilhjálmsson et
al. (2015) showed theoretically, with simulations, and empirically that
this method outperforms the traditional pruning/thresholding ap-
proach. We varied the expected fraction of causal markers (0.01%,
0.03%, 0.1%, 0.3%, 1%, 3%, 10%, 30%, 50%, 75%, 100%) in order to optimize
the prediction accuracy (Vilhjálmsson et al., 2015), similar to varying p-
values in order to determine which SNPs are included in traditional
polygenic score approaches. Polygenic scores were standardized to
have mean of 0 and a standard deviation of 1.

3. Results

A PCA was conducted on the 261,965 SNPs that remained after QC.
The top 3 PCs show significant and substantial spouse correlations as
well as significant correlations with geography (Table 1 and Fig. 1), im-
plying that these three PCs capture ancestry differences within the UK
population. The polygenic scores for education analyzed below are
residualized by removing the effects of the first 10 PCs.

Consistentwith previous studies, couples in our sample show signif-
icant assortative mating for educational attainment, with a Spearman's
rank correlation between spouses of 0.45 (p b 2 × 10−16; N = 1604
pairs). Polygenic scores that assume the fraction of causal markers to
be 30% or higher show the strongest correlations with educational at-
tainment (r=0.22, p b 2×10−16, N=8982), consistentwith education
being a highly polygenic trait (Fig. 2 and Fig. 3). We use the fraction of
30% for subsequent analyses. As Fig. 3 shows, this polygenic score is
highly predictive of educational attainment; for instance, participants
with polygenic scores in the highest quintile for instance were more
than twice as likely to go to university as thosewith scores in the lowest
quintile. Polygenic scores for males significantly predict their partners'
educational outcome (r = 0.14, p = 4 × 10−8, N = 1608) and female
polygenic scores significantly predict their partner's education (r =
0.19, p = 2 × 10−14

, N = 1609). Results are barely affected by control-
ling for partner's age (males: r=0.16, p=2×10−12; females: r=0.18,
p = 5 × 10−14). The polygenic scores themselves also show significant
spouse correlations (r = 0.11, p = 7 × 10−6, N = 1616). Without
residualizing polygenic scores for the first 10 PCs, spousal correlations
were practically unchanged (r = 0.11, p = 7 × 10−6, N = 1616).
When dropping the cross-sectional weights (see Materials and
Table 1
Spouse correlations for the top ten genetic principal components (PCs), and correlations
between PCs and latitude, longitude, and the educational attainment (EA) polygenic score
(p-values between brackets).

PC Spouse
correlation

Latitude Longitude EA polygenic
score

1 0.33 (b2×10−16) −0.49 (b2×10−16) 0.41 (b2×10−16) 0.04 (0.02)
2 0.60 (b2×10−16) −0.03 (0.31) 0.14 (4×10−6) −0.01 (0.36)
3 0.30 (b2×10−16) 0.11 (1.4×10−6) 0.23 (b2×10‐16) 0.005 (0.80)
4 0.005 (0.87) −0.12 (6.6×10−8) 0.10 (2×10−6) 0.02 (0.24)
5 0.01 (0.66) −0.01 (0.66) 0.002 (0.92) −0.02 (0.31)
6 0.01 (0.58) −0.06 (0.01) 0.09 (2×10−5) 0.001 (0.94)
7 0.01 (0.57) −0.02 (0.26) 0.06 (0.004) 0.003 (0.87)
8 0.05 (0.05) −0.04 (0.10) 0.03 (0.15) 0.02 (0.15)
9 −0.01 (0.57) −0.05 (0.03) 0.05 (0.03) 0.02 (0.22)
10 0.01 (0.58) −0.02 (0.40) −0.02 (0.40) 0.02 (0.24)
methods), spouse correlations were slightly smaller but remained sig-
nificant (male polygenic score with female education: r = 0.14, p =
3 × 10−8, N = 1668; female polygenic score with male education:
r = 0.18, p = 5 × 10−14, N = 1668; male polygenic score with female
polygenic score: r= 0.09, p= 3 × 10−4, N = 1678). The spouse corre-
lations of the polygenic scores were small and non-significant when as-
suming a lower fraction of causalmarkers (b30%), aswould be expected
when they are less accurate estimates of someone's genetic predisposi-
tion for education (Fig. 2). When only including spouse pairs with off-
spring (N = 621), the spouse correlations became slightly stronger
and remained significant (male polygenic score with female education:
r=0.17, p=4× 10−6, N= 620; female polygenic score withmale ed-
ucation: r = 0.22, p = 1 × 10−8, N = 619; male polygenic score with
female polygenic score: r = 0.15, p = 1 × 10−4, N = 621). Results are
also robust to using alternative coding of educational attainment: 1)
using a 5-level scoring whereby postgraduate degrees are coded as ed-
ucational level 4: male polygenic score with female education r=0.17,
p = 2 × 10−8, N = 1605, female polygenic score with male education:
r=0.22, p=7.3 × 10−14, N=1594; 2) excluding participants with vo-
cational qualifications: male polygenic score with female education r=
0.14, p = 3.5 × 10−8, N = 1368, female polygenic score with male ed-
ucation: r = 0.20, p = 2.1 × 10−14, N = 1369.

To test whether our data can be explained by randommatingwithin
specific subpopulations, we performed permutation tests within the
whole sample, within educational levels, and within birth counties.
We re-matched individuals with random “partners” 1000 times, creat-
ing a distribution of random test statistics (i.e., the coefficient of the
spouse correlation of the polygenic scores) under the null hypothesis.
We then compare the observed test statistic with respect to this distri-
bution. Fig. 4A shows the results within a permuted sample. Fig. 4B
shows the results within a permuted sample conditional on educational
levels, i.e., partners were matched randomly within the same educa-
tional level. Fig. 4C shows results within a permuted sample conditional
on geographical location, i.e., partnerswerematched according to coun-
ty of the UK. In all three cases the observed set of spouse pairs showed
greater similarities in polygenic scores than 97.5% of the randomly gen-
erated sets of spouse pairs. Thus, there was significant genetic assorta-
tive mating for educational attainment irrespective of educational
level and geographic location.

4. Discussion

This study provides empirical evidence for genetic assortative mat-
ing in the UK on a cognitive and behavioral trait. We show that this as-
sortment has consequences on a genetic and thus a biological level. The
polygenic scores significantly predicted partners' educational outcome
(for both sexes), i.e., individuals with a stronger genetic predisposition
for higher educational attainment have partners who are more educat-
ed. Also, the educational attainment polygenic scores themselves are
correlated between spouses, which is strong evidence for the presence
of genetic assortative mating for education in the UK. Within counties
and within educational levels, spouse pairs still resembled each other
with respect to their polygenic score. Polygenic scores for educational
attainment explain 4.8% of the educational outcome in our sample, sim-
ilar to the explained variance reported in the original GWAS (Okbay et
al., 2016). Since the polygenic scores only partly reflect the genetic pre-
disposition for educational attainment, and yet show a relatively strong
spouse correlation compared to the phenotypic spouse correlation, we
can assume that a considerable part of assortativemating on education-
al attainment is genetic. The spouse correlations of the polygenic scores
(~0.11) are in a similar range to what Conley et al. (2016) reported
(~0.13), as were their phenotypic spouse correlations (0.53). Conley
et al. (2016) used summary statistics from a smaller GWAS (Rietveld
et al., 2013) that capture less of the individual differences for education-
al attainment (~2% in the original GWAS from Rietveld et al. (2013),
1.7% in our UK sample, and 3.2% in the Conley et al. (2016) study) and



Fig. 1. The first three principal components (PCs) that show significant correlations with geography and significant spouse correlations. The mean PC value per county was computed,
divided into 10 percentile groups, and plotted.

106 D. Hugh-Jones et al. / Intelligence 59 (2016) 103–108
a more traditional polygenic score approach (i.e., an approach that did
not take LD structure into account). When repeating the analysis in
our UK sample using summary statistics from Rietveld et al. (2013),
the spouse correlation decreases to 0.06 (p = 0.01). It is not certain
whether the differences between the UK sample and the US sample
are due sample fluctuation, other (statistical) artefacts, or actual differ-
ences in the degree of (genetic) assortative mating between the UK and
the US, but our results do provide a solid replication of the presence of
genetic assortative mating in contemporary Western societies.

Assortative mating can result in biased heritability estimates in twin
studies when not accounted for. Twin studies disentangle variance in
traits into genetic, shared environmental, and residual factors by com-
paring similarities within identical and non-identical twins. The as-
sumption of twin models is that identical twins share all their genes
and non-identical twins share 50% of their segregated genes. Assortative
Fig. 2. The correlations between the polygenic score (PRS) and educational attainment on
the x-axis and the spouse correlations for PRS on the y-axis both increase as the fraction of
causalmarkers for the polygenic score increases beyond 0.3. Labels show assumed fraction
of causal markers.
mating increases the genetic similarity of non-identical twins above the
assumed 50%. If assortativemating is not explicitlymodelled in the twin
model (which generally is not the case), the increased resemblance be-
tween non-identical twins due to assortative mating will result in an
over-estimation of the shared environmental component of variance,
and under-estimation of theheritable component. The substantial levels
of assortative mating for educational attainment imply that the genetic
influences may have been underestimated in many twin studies. In a
meta-analysis of virtually all twin studies on educational attainment
in the last 50 years (N=31), Polderman et al. (2015) reported a genetic
and shared environmental estimate for educational attainment of 0.52
and 0.27, respectively. However, assuming a spousal correlation of ap-
proximately 0.5, the shared environmental component can be entirely
attributed to assortative mating. When correcting the variance compo-
nent estimates for educational attainment with a procedure described
Fig. 3. The proportion of each of the four educational levels (Univ = University degree or
equivalent; A level = A-level or equivalent (national exams taken at age 18); GCSE =
General Certificate of Secondary Education (national exams taken at age 16); None =
no educational qualifications) per quintile of the polygenic scores (PRS) for educational
attainment.



Fig. 4. Three permutation procedures. Plots show the density of spousal PRS correlations under the null hypotheses that spouses are chosen randomly (A) within the whole sample, (B)
among people of the same education level, and (C) among people of the same birth county.
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by Martin (1978), the genetic component increases to ~80% while the
shared environmental component drops to zero.2 Interestingly,
Polderman et al. observe the lowest heritability estimates for traits in
the categories ‘environment’ (including education), reproduction, and
social values domains. These include traits for which particularly high
levels of assortative mating have been observed, suggesting that the
lower heritability estimates for these domainsmay in part be explained
by assortative mating that is not accounted for.

Social inequality has been around in many historical and modern
human societies, but is considered, as President Obama (2013) recently
put it, as “the defining challenge of our time”. Assortativemating on her-
itable traits that are indicative of socio-economic status, such as educa-
tional attainment, increases genetic variance in such a way that the
inequality in genetic capital grows. When growing social inequality is
(partly) driven by a growing biological inequality, inequalities in society
may be harder to overcome. Effects of assortative mating may accumu-
late with each generation. The increasing social mobility for females
during the second half of the 20th century possibly also led to an in-
crease in assortative mating as well as an increase in social inequality
2 Martin (1978) used the following formula to correct shared environmental influences
(C) for assortative mating: cadj2 =cR

2−hR
2∗A/(1−A), where hR

2 and cR
2 are the genetic and

shared environmental influences as estimated by the twin model, and A is the correlation
between additive genetic values ofmates, which is a function of the observed value for as-
sortative mating (μ) and hR

2; A ¼ 0:5 � ½1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−4 μh 2

RÞ
q

�.
(Greenwood et al., 2014; Schwartz, 2013). Conley et al. (2016) recently
showed that phenotypic assortative mating for educational attainment
has increased in the US for ~2000 spouse pairs born between 1920
and 1955, but did not observe an increase in genetic assortative mating
based on polygenic scores from a GWAS on ~126,000 individuals, likely
due to a lack of power.

The realization that assortative mating on talents may have genetic
consequences is far beyond a century old (Galton, 1869). Molecular ge-
netics has progressed sufficiently to empirically reveal the presence of
genetic assortativemating on a trait that reflects a collection of cognitive
and behavioral talents. The presence of genetic assortative mating on a
broad socio-economic trait like educational attainment may have con-
sequences for genetic studies as well as for society.
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