Preferential Binding of a stable G3BP Ribonucleoprotein Complex to Intron-retaining Transcripts in Mouse Brain and Modulation of their Expression in the Cerebellum

Sophie Martin, Nicolas Bellora, Juan González-Vallinas, Manuel Irimia, Karim Chebli, Marion DeToledo, Monika Raabe, Eduardo Eyras, Henning Urlaub, Ben J. Blencowe and Jamal Tazi

Supplemental Figures Legends

Figure S1.

(A) G3BP1 IP was performed with a different G3BP1 antibody, which also revealed additional proteins immunoprecipitated under CLIP conditions, as seen in a silver staining of the SDS-PAGE gel. (B) G3BP1 and G3BP2 colocalize in primary hippocampal neurons (i), as well as in stress granules formed under arsenite treatment (ii). DNA is counterstained with Hoechst staining. *Scale bar represents 5* μm . (C) Different highly stringent washes did not permit to eliminate the presence of the G3BP partners and the separation of three ribonucleoproteic complexes under high RNase treatment (a). The numbers 1 to 4 are indicative of the four complexes detailed in Figure 2A and B. In (b), different RNAse concentrations in normal CLIP washes conditions show G3BP-complex gradually shifting to high molecular weight as RNAse treatment decreases.

Figure S2.

(A) Long motif over-represented in G3BP-complex clusters, part of a SINE-Alu-B1 transposable element. (B) Around 8 % of the clusters possess this sequence with an

occurrence >0, with a peak in the center of the clusters. When looking for motifs overrepresented in G3BP-complex clusters compared to background which are not part of repeated sequences, several sequences are found, less enriched compared to the logo in Figure S2A, and less centered. (C) (1) Consensus from two 7mers: CACTCTG + GACTCTG. This motif is still part of Alu repeat elements, and may be missed by the RepeatMasker tool. (2) Consensus from two 7-mers: CCCTCCC + CCCACCC. (3) Consensus binding motif identified for G3BP2 by RNAcompete. (4) Center of consensus binding motif identified for G3BP1 by SELEX.

Figure S3. HITS-CLIP of G3BP2 in G3BP1 KO mouse brain.

G3BP CLIP in G3BP1 KO brain, leading to G3BP2a immunoprecipitation, revealed RBP: RNAs complexes on the autoradiogram, like in WT (A) Three complexes are also revealed with high (+++) RNAse treatment, with the complex around 72kDa corresponding to G3BP2a:RNAs as revealed in Figure 1. (B) Repartition of the clusters identified after sequencing of RNAs extracted from the low RNAse treated-G3BP2a complex ((a) in 2.a). Again, a majority of clusters were mapped into intronic regions. Overall, the distribution of clusters into the coding and non-coding transcripts reflects the distribution of G3BP clusters in WT.

Figure S4.

(A) Distribution of G3BP HITS-CLIP clusters within introns along the RNA, from 5' to 3', for G3BP1 and G3BP2, or G3BP1 only. The position is 5' biased (although not at

2

the most 5' decil, presumably because the first intron of a transcript is often very long). (B) Expression levels of genes with G3BPs clusters compared to expression levels of the genes in neural or non-neural tissues determined from RNA-Seq experiments ("Neural": 6 RNAseq samples: 2 of whole brain, one of cerebellum, one retina, and isolated neurons (cerebellar granular neurons, neurons from Dorsal root ganglia), and non-neural tissues: "Rest": 14 samples: 2 of Liver, 2 kidney, 2 Heart, Muscle, Myoblast 168h of differentiation, T cells, Testis, Lung fibroblasts, 3T3 cell line and 2x embryonic fibroblasts). 5 groups of expression were made from these RNA-Seq data, based on average corrected cRPKMs (RPKMs with some extra corrections): (i) (nearly) no expression (av. cRPKM<2), (ii) low expression (2-10), (iii) moderate expression (10-25), (iv) high expression (25-50), (v) very high expression (>50).

Figure S5.

Consensus sequences analysis in introns. A CTG-containing 8-mer motif was identified in at least 20 % of the intronic clusters (A), and a C-rich motif in at least 10 % of the clusters (B). Top graphs represent the relative abundance of the motif in the clusters according to the genomic position in the cluster, and the logo (obtained with MEME) is represented at the bottom. The clusters were also scanned for enriched heptamer motifs (C and D) as well as for the consensus of SFPQ, partner in the complex (E). The latter was not sifgnificantly enriched. On the contrary, by scanning the clusters for other RBP binding sequences, we found an enrichment of PCBP consensus binding motif (F). *Red line: whole HITS-CLIP clusters dataset filtered out*

3

of repeats (RepeatMasker); Black line: intronic clusters only; hashed red line: enrichment of the reverse complement sequence of the motif in the whole dataset; hashed black line: enrichment of the reverse complement sequence of the motif in the intronic clusters dataset.

Figure S6.

Images from UCSC genome browser showing the structure of the gene and the distribution of the clusters for representative genes of G3BP-complex HITS-CLIP. The sequences are represented either from 5' to 3' extremities or from 3' to 5' of the pre-mature transcripts, depending on the sense of transcription (indicated by the arrows from 5' to 3'). The numbers indicate exons numbers as attributed in NCBI database. The horizontal lines represent the introns. Several alternative transcripts are encoded by the genes. (A) Five transcripts that were studied more extensively by PCRs targeting different regions of the transcripts. (B) Structure of the *Grm5* and *Grm1* genes and distribution of clusters.

Figure S7. The G3BP-complex regulates immature transcripts in the cerebellum.

(A) G3BP HITS-CLIP performed in cerebellum. Overall, the distribution of clusters in protein-coding (left), as well as the different non-coding transcripts (right) reflects the distribution in the whole brain. (B) Expression of the different proteins of the G3BP-complex in the cerebrum and the cerebellum from WT and G3BP1 KO mouse. Total

4

homogenates were prepared from cerebrum and cerebellum of each genotype, and equal amounts of each protein lysates (confirmed by loading control actin) were analyzed by SDS-polyacrylamide gel electrophoresis, followed by immunoblotting. The Western blot is representative of three independent experiments with different mice of each genotype, n = 3.

Supplemental Methods

Evaluation of G3BP-complex binding motifs

Motif search was carried out in the reproduced transcripts from WT sample HITS-CLIP, using k-mer and MEME (Multiple Em for Motif Elicitation) approaches. A k-mer enrichment analysis was performed by calculating the ratio of the density of k-mers in GB3P-complex HITS-CLIP clusters versus the density in a background set of clusters (Agirre *et al.* 2015). The analysis was performed with the whole set of G3BP-complex clusters, or the set of intronic clusters only. To define the control background sets, we selected random regions, but of the same size as the clusters and obtained from the same gene regions, adjacent to the clusters (to avoid sequence composition biases from different parts of the genes). Concerning the introns, these random clusters were generated on the same introns. Furthermore, we checked that the G3BPcomplex clusters were randomly distributed along the introns, which avoids any sequence bias due to the position, like polypyrimidine tracks. Ranked by p-values, the top k-mers were retrieved and they were sorted relative to their abundance in G3BP-complex clusters. The clusters were anchored and aligned on the position of kmers in order to obtain sequence logos with MEME. Furthermore, we eliminated the clusters that were overlapping repeated and transposable elements. Those were obtained from the RepeatMasker-recovered annotations in NCBI UCSC browser. Around 32 % of the clusters were thus removed (mostly SINE and LINE sequences), however the RepeatMasker tool may miss some degraded ALU sequences that we were still able to detect. Finally, the clusters were scanned to detect the presence of the motifs which were present in a minimum of 10 or 20 % of the sequences, and plot the graphs of the relative abundance of the motif in the G3BP-complex clusters datasets. We also scanned the clusters for the presence of previously identified consensus sequences for G3BP1 (SELEX motif (Tourrière *et al.* 2001)), G3BP2 (RNAcompete (Ray *et al.* 2013)), and SFPQ (RNAcompete).

Supplemental References

- Agirre E., Bellora N., Alló M., Pagès A., Bertucci P., Kornblihtt A. R., Eyras E. (2015) A chromatin code for alternative splicing involving a putative association between CTCF and HP1α proteins. *BMC Biol.* **13**, 31.
- Ray D., Kazan H., Cook K. B., Weirauch M. T., Najafabadi H. S., Li X., Gueroussov S., et al. (2013) A compendium of RNA-binding motifs for decoding gene regulation. *Nature* **499**, 172–177.
- Tourrière H., Gallouzi I. E., Chebli K., Capony J. P., Mouaikel J., van der Geer P., Tazi J. (2001) RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylation-dependent localization. *Mol. Cell. Biol.* **21**, 7747–7760.

Martin_Suppl_Fig1

В

Martin_Suppl_Fig3

A

% of all HITS-CLIP clusters (within introns) G3BP1&2 G3BP1 Position along the RNA (length decils; $5' \rightarrow 3'$)

Martin_Suppl_Fig6

В

Martin_Suppl_Table1

Corrected p-value	p-value (fisher test)	Enrichment (log2(odd-ratio), fisher test)	Number of sequences with >0 occurrences	Occurrence in dataset	Motif/kmer
1.37030382144553e-09	8.36367078518999e-14	2.03397352301535	79	79	CACTCTG
3.00239823448633e-08	4.28336426633652e-12	1.48277400198375	109	117	ССТСССС
3.00239823448633e-08	7.33007381466388e-12	1.57239156067842	97	103	CCCCACC
4.91002604846763e-08	1.49842103529896e-11	1.76375964057595	79	79	CTCTGAC
9.43401972917789e-08	3.45484120941573e-11	1.9906496684269	65	65	ACTCTGC
3.70563925536815e-07	1.78107645540684e-10	1.25080000558069	121	132	СССТССС
3.70563925536815e-07	1.80939416766023e-10	1.3851537729765	102	108	CCCACCC
6.51463666627688e-07	3.5785968015437e-10	1.64673248276879	76	84	CACCCCC
7.43997791319052e-07	4.54100214428132e-10	1.67937289666419	73	74	GACTCTG
1.68330282584668e-06	1.23288781189943e-09	1.76384087309488	64	66	ACTCTGT
4.97109336460206e-06	4.24776044338555e-09	1.88481023118141	55	55	AGAACTC
5.15234605412367e-06	4.71711369701264e-09	1.3606822130546	89	95	CCACCCC
1.08632948849575e-05	1.06086864110913e-08	1.39880639281943	81	85	CTCCCCC
1.46165686128293e-05	1.5166117335089e-08	1.37071012536049	82	86	CTCTGTC
1.62451609137217e-05	1.88389927588326e-08	1.92360171644968	49	49	TGGACAC
1.79045030758343e-05	2.22312578786484e-08	1.87459322403525	51	51	CTGGACA
1.79045030758343e-05	2.29488869990552e-08	1.65618385975549	61	62	TCTGACC
2.16032609886908e-05	2.90082850189941e-08	1.45394531501636	72	76	CCCCCAC
2.29151993190941e-05	3.21685537316384e-08	1.28982712574952	86	86	TCTCTGA
2.32361856239159e-05	3.68738297254524e-08	1.97698718113654	45	45	TCTGGAC
2.32361856239159e-05	3.68738297254524e-08	1.97698718113654	45	45	TGCACCC
4.70213920130294e-05	7.74888662324093e-08	1.41277622772998	70	76	CCCCCTC
5.23732081411406e-05	8.95049943818321e-08	1.3581328117457	75	79	CTCTGCA
5.85955595738356e-05	1.03715284890212e-07	1.17948278712954	92	97	
6.51961686594576e-05	1.23357008571972e-07	1.50523224436894	62	62	ACTCTGA
7.33621216873897e-05	1.43285393920683e-07	1.64984542023449	53	53	GAACCIG
8.91341/863622538-05	1.79530511169155e-07	1.69864489531004	50	51	AGACICI
0.000105313579080088	2.236/4619256/926-0/	1.56908938997899	56	57	CALLCCA
0.000105313579080088	2.249740764039966-07	1.19100167809094	86	88	TCCACCC
0.000175322791157168	3.98019904513845e-07	1.72452686801238	46	48	CTCTCCC
0.0001/5322/9115/168	4.066324501936276-07	1.33805768675863	69 57	/3	
0.00019810004463943	4.009751085918858-07	1.4646//1262059/	37	39	TEAGAAC
0.000198190044402945	4.838024132390076-07	1.70500194150225	47	47	GAGGACT
0.000225501004017701	6 7769191997/8970-07	1.55603201384334	47	/19	
0.000240740038132038	7 133966922147996-07	1 32683526692484	47	45	
0.000271984714300095	7.80229588141143e-07	1.27800864229547	71	72	
0.00031280247258176	9.16413493891877e-07	1,25363273029603	71	72	CTCTGAA
0.000319082050841296	9.54285918653778e-07	1.16360324703028	80	81	тссстсс
0.000382697799539491	1.1679009995712e-06	1.45907951963319	56	56	ACTGTAG
0.000414004449691914	1.29079764490828e-06	1.07927595534817	88	90	CCTCTGC
0.000414004449691914	1.31397896630734e-06	1.49972661427621	52	52	CTGCACC
0.00047835663665765	1.60014098280295e-06	1.44183964679332	54	54	AACTCTG
0.000491929836820131	1.68140080944381e-06	1.51110654510082	51	51	TCTGAAC
0.000510535522080743	1.77615507559829e-06	1.53558511562178	49	49	TGAACAC
0.000513258690999091	1.8169558153044e-06	1.65987237976682	44	44	AAACTCT
0.000517743215449196	1.86994021874675e-06	1.744224536358	40	40	CCTGAAC
0.000517743215449196	1.92763282119146e-06	1.56265888916071	47	52	ACCCCCA
0.000529682718736788	2.00441458506353e-06	1.06207399942437	88	90	CTCTGCC
0.00057399067829041	2.20711747633642e-06	1.82404320585349	37	37	AGGACTC
0.00058798319282119	2.33269699300399e-06	1.33734862622936	59	60	CTCTGGA
0.000614691963840426	2.51369394392752e-06	1.10224939663635	82	87	СТСССТС
0.000644764332415411	2.6760238405913e-06	1.33135658816633	60	60	CCACCCT
0.000666396153869033	2.80647794292989e-06	3.50663526061792	17	17	CCGAGAC
0.000714158053901985	3.09316872866103e-06	1.62644368101254	43	45	TCTGCAC
0.000714158053901985	3.11999923482161e-06	1.01231986908541	93	101	ССТСССТ
0.00073177258660876	3.26046135390866e-06	1.4235217206299	52	52	GAACTCT
0.000756862194305637	3.43028829614746e-06	1.12945117780143	76	83	CCCTGCC
0.000811292193201893	3.86235297056565e-06	1.41461057292847	53	54	CTGACCC
0.0009340217394401	4.64202/32126926e-06	1.16213300532597	70	74	CCCICIG
0.000936572008827907	4.744596968549586-06	1.81382679028485	35	35	GAACACT
	5.005194840622126-06	1.50008122439496	44	44	CTCAGAAC
0.000300030040706676	2.1402213036900/0-06	1./0/45/096/1589			

Martin_Suppl_Methods

Oligonucleotides used for RT-PCRs and qRT-PCRs

Transcript	Forward (5'-3')	Reverse (5'-3')
Rbfox1 e6-i6	AGCATGTTGGCGTCGCAAGGA	CTGTCTTTCCTTTGACTACACGAGGGC
Rbfox1 e7-i7	ACACAGACGCACTCGGAGCAG	AGATAAGGATGCCCAATCGCCAAGGA
Rbfox1 3'UTR	CGGAGCAGGGCCAGAGCAAC	CAGGTTGGCAGGTTCACAGCGT
<i>Fgf14</i> e1-i1	AGGGCCTCTTCTTTCTCAGGGTGT	TGCATGTTCCCCGGCCTCCT
<i>Fgf14</i> e4-i4	TGCTTTGCTCCATTTACTGCCTGGT	ACGTGTCAGAACCCATGCACACA
Fgf14 3'UTR	GTGGCGGAAAAGCCCCAGCA	GGGTAGCTGTCAGCAGGCAAGG
Cadm2 e1-i1	CAGTGTCTGCGGGCTCCTGTT	GCGAAAGGTGCCGCGTAAGGA
Cadm2 e8-i8	TGTTTTGTGGACGAAAGATGGTGCCG	TCCGCCACACTTTTCTTCCATTCATGT
Cadm2 3'UTR	TGATAGAGAACCCGTGCCGTGCT	TGGTGCAATGCTTGCAAATGGGAAAA
Btbd9 e6-i6	CCAGCCCGTGTCTGCAGGTG	TCGTCACAGGCTTCACATGTCCAC
Btbd9 e9-i9	TGGTGGCCGACAGAACGAAAGTG	GAGGGAGGACTGCACAGGGAGT
Btbd9 3'UTR	GGCTGGGCTCTCTTCTGGTTTTGT	ACAAACAGGCCCAAGCTGGCA
Ctnnd2 e1-i1	TTCGCCAGGAAGCAGTCGGG	AGACACTGACCCCGGACCCC
Ctnnd2 i2-e3	TCTCCTGAGGCCAGTAACTGCACA	TCGCTCCAGCTGGCTGGCTA
Ctnnd2 3'UTR	GGGTGGTGGGCGTGGTTATCG	AACCATTGATGAGGAAACACAGTGGCA
Gria2 e2-i2	ACACACACACAGGCACACCA	GGGGGCTATTTCCAAGGGGCG
Gria2 i5-e6	CCCCAAGGCACAGCTGGGTT	GGTAGGCAAGAACAGCCTGGACG
Gria2 3'UTR	ACCACAGCAAATGAGATGACTGCACA	AGTGAGGGAGGGCATCAGTTTGTCA
Gria2 e3-e4	TGGCACGCATCCATTTGTCATCCA	TCGCAGTCAAGGATTACACGCCG
Grm1 i2-e3	CTGGCCTTGGGAAGCCGCTC	CCCGTTCCCCGCCCAACAAA
Grm1 i3-e4	CGTGTTGGTGTCCAGCCTCAGC	GGCTGAAGCATGCTGGGGAGT
Grm1 3'UTR	ACAGCGGCACCGCATTGTACT	ACGCACAGGGCCATGAACGAG
Grm1 e4-e5	AGGCTGGACACCAACACGAGGA	AGGCCCACGTAGCCAGGACA
Grm5 i3	GGGCATGTGGGCCCTGTGTC	CTGCCCACACCTGCAGCCTT
Grm5 i4	GGGGAGTGGTGGGGAAGGGT	TCCGACTGCCTCTGCCTCCC
Grm5 3'UTR	TCCCTCACTGGGGTGCATTGTGT	TCCATAGGTGGGACTGGGGGC
Grm5 e3-e4	TTCGGATGCCCAGCAAGCCC	GGCTACCACCCGGGCTTTAGGT
Gas5	AGTCAGGGGCCTAACCGGGC	TCAAGGAAGCCCACCATCAGATAGAGC
Hprt 1i1	GCCTCCACGTGGGTTTGGGG	ACTGCCTGGTTAGGCCTCCGT
Hprt1 e1-e2	CCGGAGCGGTAGCACCTCCT	TCGAGCAAGTCTTTCAGTCCTGTCCA

Oligonucleotides used for RT-PCRs and qRT-PCRs

Transcript	Forward (5'-3')	Reverse (5'-3')
Ghitm	ACTGTTGGCTTCCTCCGTTCCCT	TCCGAGACTCTGCTGAGATGGACTG
Eif3m	AGCTGAGCTCTCAGAAGAAAACTCGGA	GTCTCAGAGATGGGCGTTCGCCTT
Malat1	GGCTGTGGCCTTGTGTTTGGGT	CCAGTGGACCAGACCAACCCCC
Batd2	GCGGTTACAGGATGAGGAACGCC	TGGATGCTGGAACAGGAGCCGA
Hexb	TACCAAGACTCTTTCGGGACTTTCACC	AATTGTCTTCACAGGCAGGAAGTGTCT
Cacng7	CCTTGGTGGTGGGCTTGGTCC	CGGGTACTTGATGGCCGGGG
Dpysl	GGTGTATGGTGAGCCCATCACGG	GACATCCGCTCCTCAGTGCCG
Sae1	GTGCCTGACTTGCTGCTCCAGA	TGCTCTCTTGGCCTCAGGTCCATC
Clk1	AGGGCATCCCTATGGAGAACCTGG	ACTCCTCGATCTTTTCCTTCGGTGACT
Kpna1	ACCGCTTGACCATGACCCGGA	CCATCTGACAGGTATGAGAGAGCCCA
Trpm7	GCAGCACCCCTCAGTTGCGA	CCTGCCTCTTCATAAGGCAAGCCC
Adcy2	TCCCACTGCCCTGGCCATCT	TGCTCCTTGGCCCCTGGTGT
Akap9	CAAGGAGCAACTGCAGCGAGACA	GCATCCCGCTCCACCTGCAA
Bag4	GCACCTCCTCTGAGGGGACAGG	GGCTGAGGGTGCAGCTGAAGG
Cog7	GAAGCCCTGAAGCAGGAGGCG	AGGTCTCCTCAATATCAGCACTCAGCG
Gdi2	TCGAGGGTGTTGATCCTAAGAAGACCT	ACGGGCTTTTACCGTATCTTGCCA
Gria3	ACCUCGUGACCCACAAAGCCC	ACCAGAGUCCAGGGUCCCGU
Kcnq5	GCAGTTGTCTCTGCAAAAACTCAGGGT	CCAGAGAGCATCCGCATATGTCGAAAA
Lars2	AGGGACAGACATTCCGCCTTCCA	TGTCCTTCTCAGGAGGGGCTGC
Lig3	ACCAGGAGAGAAGCTGGCTGTGA	CCAGGTCCCCGTCGAATGCC
Picalm	TGCAGTCTCTTCTTTGGCAAGCACT	TGAGGTGGACACCGGAGAGGC
Rpl13	GCCCAGCCGGAATGGCATGA	AGCCCGGACCTTGGTGTGGT
Ube3a	GGAGTAGATGAGGGAGGCGTTTCCA	GAGTCTCCCAAGTCACGAAAGGTTCC
Vps35	AGCATTAGCTGCTGGAGAAATTGGCT	CACGGCTCGGCCTTGATCTGG
Meg3	TGCAGGGAGAAGAGGGGAAGGG	GCAGCCTTGTTTGGGGGGCCA
Fcgr4	AAGCTGGTCTCCAAAAGGCTGTGG	GGACCTCTAGTTGCACTGGGTCACT
Calm1	GTGACACCCTGGTGGCGAGC	TGTCCCCCTTCCAATCTCAGCTTTACA
Stx1a	AGCAGAGCATCGAGCAGGAGGA	TGCGCCCTTTGCAGCGTTCT
Trpm3	GCCAGCATGTTGGACTCACTCCC	AGTTCTGCAGCCCTCCGTGC
Wsb1	TGAGCAATGGTCTTTGCTGTGCCT	TCTTGGGTGGACATCACTCTTCGGA
Gusb	GCGGGACTGCATCGATCTGTGG	TTGACCCTGGTTCCCTGTCCCA