LFQProfiler and RNP^{xl} - Open-source tools for label-free quantification and protein-RNA cross-linking integrated into Proteome Discoverer

Supporting Information

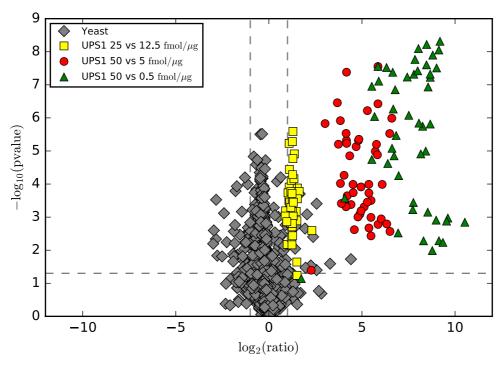

Johannes Veit Timo Sachsenberg Aleksandar Chernev Fabian Aicheler Henning Urlaub Oliver Kohlbacher Center for Bioinformatics, University of Tübingen, Tübingen, Germany Center for Bioinformatics, University of Tübingen, Tübingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Center for Bioinformatics, University of Tübingen, Tübingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Center for Bioinformatics, University of Tübingen, Tübingen, Germany; Quantitative Biology Center, University of Tübingen, Tübingen, Germany; Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany

Table of contents:

- Supplementary Table S1: Parameter settings of PD nodes in the LFQProfiler benchmark (page S-2)
- Supplementary Figure S1: Volcano plot for LFQProfiler benchmarking results. (page S-3)

PD Node	Category	Parameter	Value
Spectrum Selector	Scan Event Filters	MS Order	Any
LFQProfiler FF	Feature Finding	Mass tolerance	6 ppm
LFQProfiler FF	Feature Finding	Charge Low	2
LFQProfiler FF	Feature Finding	Charge High	4
LFQProfiler FF	Feature Finding	Typical RT	40
LFQProfiler FF	Feature Finding	Minimum RT	5
LFQProfiler FF	Feature Finding	Averagine similarity	0.8
Sequest HT	Input Data	Protein Database	yeast_plus_ups.fasta
Sequest HT	Input Data	Enzyme Name	Trypsin/P (full)
Sequest HT	Tolerances	Precursor Mass Tolerance	10 ppm
Sequest HT	Tolerances	Fragment Mass Tolerance	0.6 Da
Sequest HT	Dynamic	1. Dynamic	Oxidation / +15.995
	Modifications	Modification	Da (M)
Sequest HT	Dynamic	1. N-terminal	Acetyl / +42.011 (N-
	Modifications	Modification	Terminus)
	(peptide terminus)		
Sequest HT	Static Modifications	1. Static Modification	Carbamidomethyl / +57.021 (C)
LFQProfiler	Feature Linking	Perform RT	True
		alignment	
LFQProfiler	Feature Linking	Peptide min #runs	5
LFQProfiler	Feature Linking	Max RT difference [min]	1
LFQProfiler	Feature Linking	Max m/z difference	10 ppm
LFQProfiler	ID mapping	Max RT difference [min]	0.2
LFQProfiler	ID mapping	Max m/z difference	10 ppm
LFQProfiler	ID mapping	q-Value threshold	0.01
LFQProfiler	ID mapping	Protein database	Yeast_plus_ups.fasta
LFQProfiler	ID mapping	m/z reference	peptide
LFQProfiler	Intensity	Method	median
	normalization		
LFQProfiler	Protein quantification	Protein-level FDR	0.01
LFQProfiler	Protein quantification	Use peptides	greedy
LFQProfiler	Protein quantification	Fido pre-filtering PEP threshold	0.2
LFQProfiler	Protein quantification	Тор	5
LFQProfiler	Protein quantification	Averaging	sum
LFQProfiler	Protein quantification	Include all	True
LFQProfiler	Protein quantification	Filter charge	False
LFQProfiler	Protein quantification	Fix peptides	False

Supplementary Table S1: Parameter settings of PD nodes in the LFQProfiler benchmark. Parameters not mentioned here were set to default settings.

Supplementary Figure S1: Combined volcano plot for all three comparisons 50 vs 0.5 fmol / μg (green), 50 vs 5 fmol / μg (red), and 25 vs 12.5 fmol / μg (yellow) of spike-in protein standard. Yeast proteins are shown in gray. For each protein, the negative \log_{10} of the p-value from Welsh's t-test for differential abundance between the two conditions is plotted against the corresponding \log_2 fold change.