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1. Introduction

First discovered in 1961 [1], second harmonic generation (SHG) is a well-known
phenomenon of second-order nonlinear optics. It describes the interaction of
two photons with the same energy in a nonlinear, non-centrosymmetric material.
These two photons are combined to form one photon of twice the original energy.
Despite its wide application in the near-infrared and visible spectral range, very
few experiments with SHG have been conducted in the mid- and far-infrared
which is mainly due to the scarcity of suitable light sources. The mid- to far-
infrared wavelength region itself is highly intriguing, especially for molecular
and solid state physics as it includes the so-called molecular fingerprint region
where most molecular excitation energies lie as well as Reststrahlen bands of
solids ranging from the transverse optical (TO) to the longitudinal optical (LO)
phonon frequencies [2]. These Reststrahlen bands exhibit peculiar features as
near-perfect reflectivity due to negative values of the dielectric function ε(ω) [2].
We employ second harmonic phonon spectroscopy in the mid-infrared [3] to

study zone-center optical phonons using crystalline quartz (SiO2) as a model
system. This second-order nonlinear spectroscopy has been shown to be highly
sensitive to phonon resonances for crystals with broken inversion symmetry [3].
The free-electron laser (FEL) at the Fritz Haber Institute in Berlin (FHI) consti-
tutes an excellent tool to study resonances in the mid-infrared wavelength region
of solids. Its wide tuning range (4 µm to 48 µm), narrow linewidth (0.5 % to 5 %)
and high peak fields [4] offer promising opportunities for nonlinear spectroscopic
applications, especially at sharp resonances. Additionally, for certain crystal
symmetries, the second-order nonlinear signal exhibits an azimuthal (rotation
about the surface normal) dependence which can be exploited to distinguish
different signal contributions.
Quartz is particularly suited as a model system for SHG spectroscopy as it is

well studied with vibrational sum frequency generation (SFG) [5, 6], has multiple
phonon resonances in the mid-IR and shows a strong azimuthal dependence due
to its trigonal crystal symmetry. Additionally, at a temperature of 573 ◦C quartz
has a phase transition from α-quartz to β-quartz where the material undergoes
a change in crystal symmetry from a trigonal to a hexagonal structure. Owing
to its nonlinearity, SHG spectroscopy might be sensitive to this phase transition,
a question which amongst others is to be addressed in this thesis.
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1. Introduction

Using SFG, it has been shown that the strong azimuthal dependence of the
bulk signal can be utilized to detect surface contributions [5, 6]. Second har-
monic phonon spectroscopy, as an alternative even-order nonlinear technique
to SFG, offers particularly high peak sensitivity as it involves a doubly reso-
nant excitation process comparable to stimulated resonant anti-Stokes Raman
scattering (see figure 1.1b) while SFG involves a singly resonant process (cf.
stimulated nonresonant Raman scattering, see figure 1.1a). Additionally, com-
pared to SFG, SHG lifts the requirement of phonon resonances to be Raman-
active in order to be detectable due to additional terms entering the nonlinear
susceptibility tensor χ(2) [3].

|0〉

|1〉

|v〉

ωIR

ωvis
ωSFG

(a) SFG

|0〉

|1〉

|2〉

ωFEL

ωFEL

ωSHG

(b) SHG

Figure 1.1. Energy diagrams for (a) sum frequency generation and (b) second
harmonic generation. Energy levels |0〉, |1〉 and |2〉 indicate resonant transitions while
|v〉 is a virtual state.

Apart from non-centrosymmetric materials, second harmonic spectroscopy
can also be applied to materials with inversion symmetry to study surfaces and
interfaces where the inversion symmetry of the crystal is broken.
This thesis is divided into six main parts. The first chapter, this introduction,

is followed by the theoretical basics which cover the physical concepts necessary
to understand the SHG experiment and the calculations done for this work.
The third chapter deals with the SHG setup itself, giving experimental details
including a short overview of the FEL’s main features, a detailed description of
the autocorrelator setup used to measure SHG spectra as well as a characteriza-
tion of the sample. The results of the conducted measurements are presented in
chapter four and discussed in chapter five. Finally, a short prospect for possible
future experiments and measurements is given as well as ideas to improve the
existing setup.
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2. Theoretical Background

This chapter covers the theoretical concepts of this work and introduces mod-
els of nonlinear optics to describe the processes involved in second harmonic
spectroscopy.
The SHG intensity is generally given by:

ISHG ∝
∣∣∣χ(2)(ω)E(ω)2

∣∣∣
2

(2.0.1)

where χ(2)(ω) is the second-order nonlinear susceptibility and E(ω) the local
electric field. According to equation 2.0.1, these two dispersive quantities deter-
mine the generated SH signal. Thus, they need to be characterized in order to
simulate SHG spectra.
Thereto, the first section of this chapter covers the concept of light-matter in-

teraction introducing the linear χ(1)(ω) tensor and describing a material’s linear
response in the form of an electric polarization P(ω). The electric susceptibil-
ity χ(ω) is directly related to the dielectric function ε(ω) which itself depends
on phonon resonances in the material and thus describes their effect on the
optical response. Finally, a derivation of the Fresnel transmission and reflec-
tion coefficients is given which allow for a calculation of the local electric fields
E(ω), depending on the incident fields, the angle of incidence and the material’s
response given by ε(ω).
The second section extends the described linear model by nonlinear suscep-

tibilities which govern higher-order nonlinear optical effects. The anharmonic
oscillator model is introduced which explains the occurrence of higher harmon-
ics, including second harmonic generation. A model for the dispersion of the
second-order nonlinear susceptibility χ(2)(ω) is presented as well as SHG-specific
symmetry considerations.
The third section lays out some general properties of α-quartz including its

crystal structure and symmetry as well as its phase transition to β-quartz. Also,
temperature-dependent phonon mode data is given.
Finally, the fourth section treats the working principle of free-electron lasers

which generate light by injecting relativistically moving electrons into a periodic
array of permanent magnets. These electrons emit synchrotron radiation which
then interacts with the electron beam, resulting in a mechanism that is anal-
ogous to stimulated emission for conventional lasers. Additionally, the effect
of cavity detuning, i.e. adjustment of the cavity length relative to the emitted
wavelength, is discussed.

3



2. Theoretical Background

2.1. Linear Optical Response Near Phonon Resonances

This section covers definitions and fundamental concepts of a medium’s linear
optical response to an external electric field Eext. It discusses the material’s
response due to the applied field which is described by the so-called constitutive
equation as well as the emission of an electric field Eem caused by the induced
polarization which follows Maxwell’s equations. The theoretical groundwork is
mainly taken from Yuen-Ron Shen’s ”The Principles of Nonlinear Optics“ [7]
and also draws from Guang S. He’s and Song H. Liu’s ”Physics of Nonlinear
Optics“ [8].

2.1.1. Concept of Light-Matter Interaction

Since we intend to describe the optical response of a medium, it is essential
to consider Maxwell’s equations which describe the formation of electric and
magnetic fields, E(r, t) and B(r, t), and govern all electromagnetic phenomena
[9]:

∇× E = −1
c

∂B
∂t
,

∇×B = 1
c

∂E
∂t

+ 4π
c

J,

∇ · E = 4πρ,
∇ ·B = 0

(2.1.1)

where J(r, t) and ρ(r, t) denote, respectively, the current and charge densities.
By applying an external electric field Eext(r, t) to the medium, e.g. using lasers,
it is possible to induce current and charge densities, J(r, t) and ρ(r, t), which
itself, following Maxwell’s equations 2.1.1, can cause emission of a secondary
electric field E(r, t). Therefore, J(r, t) and ρ(r, t) are said to act as source
terms.
In nonlinear optics, it is often convenient to relate J(r, t) to ρ(r, t) using the

law of charge conservation,

∇ · J + ∂ρ

∂t
= 0, (2.1.2)

and to define a generalized electric polarization PPP(r, t):

J = Jdc + ∂PPP
∂t

(2.1.3)

where Jdc is the dc current density. Now, by applying equations 2.1.2 and 2.1.3
to the third and second equation of 2.1.1, respectively, Maxwell’s equations can
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2.1. Linear Optical Response Near Phonon Resonances

be written as:

∇× E = −1
c

∂B
∂t
,

∇×B = 1
c

∂

∂t
(E + 4πPPP) + 4π

c
Jdc,

∇ · (E + 4πPPP) = 0,
∇ ·B = 0

(2.1.4)

with PPP(r, t) being the only remaining time-varying source term [7]. The gen-
eralized electric polarization PPP(r, t) appears as a nonlocal function which de-
pends on r. For all practical purposes in this thesis, the position dependency
can be dropped as the wavelengths of the used radiation are much larger than
the atomic radii, thus the electric dipole approximation applies and therefore
PPP(r, t) = P(t) and Eext(r, t) = Eext(t).

In general, P(t) depends on the applied electric field Eext(t) and completely
describes the medium’s response to an external electric field. The relation be-
tween P(t) and Eext(t) is known as the constitutive equation which in the linear
case takes the form [10]:

P(t) =
∫ ∞

−∞
χ(1)(t− t′) · Eext(t′)dt′ (2.1.5)

where χ(1) is the linear susceptibility tensor and integrating over dt′ accounts
for the fact that the medium’s optical response to an external electric field is in
general not instantaneous.
If the external electric field is a monochromatic plane wave,

Eext(t) = Eext(ω) = Eext(ω) e−iωt, (2.1.6)

then Fourier transform of equation 2.1.5 yields [7]:

P(t) = P(ω) = χ(1)(ω) · Eext(ω)

with χ(1)(ω) =
∫ ∞

−∞
χ(1)(t) eiωtdt.

(2.1.7)

2.1.2. Effect of Phonon Resonances on the Linear Response

The dielectric function ε(ω) of a material describes, like the susceptibility χ(ω),
the material’s response to an external electric field. In fact, both quantities are
related via:

ε(ω) = 1 + χ(ω). (2.1.8)
ε(ω) acts as a proportionality constant which connects the external electric field
E(ω) with an electric displacement vector D(ω) = E(ω)+P(ω) = ε(ω)E(ω). For
nonresonant interactions, it is a purely real quantity, while for resonant interac-
tions, an imaginary component arises due to absorption losses [11]. Therefore,

ε(ω) = ε1 + iε2 (2.1.9)

5



2. Theoretical Background

where ε1 is a measure of the material’s response in terms of electronic displace-
ment (and thus polarization) and ε2 is a measure of absorption in the material.
For dielectrics in the wavelength region well below electronic resonances, the

linear response described via ε(ω) originates from two sources: the electronic
and the ionic response of the material which can be expressed as:

ε(ω) = 1 + χ∞ + χion(ω) (2.1.10)

where χ∞ holds the electronic and χion the ionic contributions. Ionic, i.e. phonon
resonances lie well below electronic resonances, thus for the spectral region of
phonon resonances, χ∞ can be considered as the high-frequency limit and there-
fore practically constant, while the ionic contribution χion(ω) can be expressed
as [12]:

χion(ω) = SΩ2
TO

Ω2
TO − ω2 − iγω (2.1.11)

where ΩTO(LO) and γTO(LO) are the frequencies of the TO (LO) phonon, γ the
phonon damping and S = ε∞(Ω2

LO − Ω2
TO)/Ω2

TO the oscillator strength [12].
This, together with equation 2.1.10, results in an expression for the dielectric
function:

ε(ω) = ε∞

(
1 + Ω2

LO − Ω2
TO

Ω2
TO − ω2 − iγω

)
(2.1.12)

with ε∞ = 1 + χ∞. Invoking the Lydanne-Sachs-Teller relation [13] which
connects the TO and LO phonon frequencies with the dielectric constants εst,
i.e. the low-frequency limit of ε(ω), and ε∞ and reads:

εst
ε∞

=
(

ΩLO

ΩTO

)2

, (2.1.13)

gives:

ε(ω) = ε∞

(
Ω2
LO − ω2 + iγLOω

Ω2
TO − ω2 − iγTOω

)
. (2.1.14)

From this form, it is apparent that the LO phonon frequency marks the zero-
crossing of the real part of ε(ω) (numerator becomes zero) and that ε(ω) peaks
at the TO phonon frequency (denominator becomes zero).
It has been shown that for multiple resonances, equation 2.1.14 can be written

in its factorized form [14, 15]:

ε(ω) = ε∞
∏

j

Ω2
j,LO − ω2 + iγj,LOω

Ω2
j,TO − ω2 − iγj,TOω

(2.1.15)

where Ωj,TO(LO) marks the jth TO (LO) phonon frequency and γj,TO(LO) its
respective damping.
The dielectric function around a phonon mode is plotted together with its

refractive index ñ =
√
ε(ω) in figure 2.1a and 2.1b using equation 2.1.15. The

real part of ε(ω) is negative between the TO and its corresponding LO phonon

6



2.1. Linear Optical Response Near Phonon Resonances

(a)

0

ΩTO ΩLO

ε(
ω

)=
ε 1

+
iε

2

ε1(ω)
ε2(ω)

(b)

0

ñ
(ω

)=
n

+
iκ

n(ω)
κ(ω)

(c)

0

1

Frequency ω

R
(ω

)

Figure 2.1. (a): Dielectric function ε(ω) around a phonon resonance. The real part
crosses zero at the LO phonon frequency while the imaginary part peaks at the TO
phonon frequency. The spectral region between corresponding TO and LO frequencies
is known as the Reststrahlen band (gray shade) and exhibits near-perfect reflectivity.
(b): Refractive index ñ = n+ iκ. (c): Reflectivity R according to equation 2.1.16.
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2. Theoretical Background

frequency, resulting in an inversely phased polarization inside the crystal with
respect to the driving field and thus a screening of the radiation. As the radiation
cannot propagate inside the crystal, this spectral region is of particularly high
reflectance and is known as the Reststrahlen (German: residual rays) band.
It can be shown that the imaginary part takes the form of a Lorentzian about

the TO phonon frequency ΩTO [12] and that the real part crosses zero at the
LO frequency ΩLO [11].
For a purely real dielectric function ε(ω) and normal incidence of the incoming

beam, the fraction of the reflected power, i.e. the reflectivity R, is given by [16]:

R =
∣∣∣∣∣∣

√
ε(ω)− 1

√
ε(ω) + 1

∣∣∣∣∣∣

2

. (2.1.16)

and plotted in figure 2.1c. For a non-normal angle of incidence, the Fresnel
coefficients of reflection need to be considered which are covered in the following
section.

2.1.3. Fresnel Tensors

The Fresnel coefficients of transmission and reflection govern the relation be-
tween the external electric field and the local electric field in the material and
the electric field of the reflected beam, respectively. They are of particular im-
portance for this work as they affect SHG spectra as well as reflectivity spectra
and allow for angle-dependent calculations while taking spectral resonances in
the material into account. For an anisotropic material as the studied sample,
those Fresnel coefficients take the form of second rank diagonal tensors [16]
whose non-vanishing elements are to be calculated in this section.
In the following expressions, k denotes the complex wave vectors, E the elec-

tric fields, H the magnetic fields and α the angles of incidence with indices
i, r and t for the incoming, reflected and transmitted beam, respectively. For
simplicity, these calculations are restricted to materials whose optic axis c is per-
pendicular to the sample’s surface as is the case for the studied sample. Without
loss of generality, the surface normal is defined along the z-axis and the plane
of incidence along the x-z-plane as shown in figure 2.2.

Transmission Coefficients

We will carry out this derivation of the Fresnel transmission coefficients for P-
polarized light first (as depicted in figure 2.2). The results for S-polarized light
can be obtained analogously and will be given at the end of this section.
In order to calculate the non-zero components of the Fresnel transmission

tensor, we need to invoke Maxwell’s equations in the following manner:

8



2.1. Linear Optical Response Near Phonon Resonances

air
SiO2

x

z = c

ki kr

kt

αt

Ei Er

Et

αi αr

Figure 2.2. Schematic of wave vectors k for reflection/transmission of light
on/through quartz (SiO2), also indicating electric field vectors E for P-polarization.
For the α-quartz c-cut, the optic axis c is parallel to the z-axis, i.e. perpendicular to
the sample’s surface.

∇×H = ε
∂E
∂t

: kt,zHt,y = 2πωεxEt,x → Et,x = 1
2πωεx

kt,zHt,y,

−kt,xHt,y = 2πωεzEt,z → Et,z = − 1
2πωεz

kt,zHt,y

(2.1.17)

∇× E = −µ∂H
∂t

: ki,xEi,z − ki,zEi,x = −2µπωHi,y

µ=1−−→ Hi,y = − 1
2πω (ki,xEin,z − ki,zEi,x)

(2.1.18)

where E and H are each proportional to ei(kr−ωt) and µ = 1 for non-magnetic
materials. εx and εz denote the x- and z-components of the dielectric function,
respectively.
Next, we can utilize the conservation of tangential components of the electric

field at interfaces as a boundary condition to find an expression for the magnetic
field Ht,y inside the material:

Ei,x + Er,x = Et,x (2.1.19)

as there is no y-component of the electric field for P-polarization. Plugging in
kzHy = ωεxEx (cf. first equation of 2.1.17) and using ki,z = −kr,z as well as the
conservation of tangential magnetic field components, Hi,y + Hr,y = Ht,y, then
yields:

Ht,y = 2εxki,z
εxki,z + ε0kt,z

Hi,y ≡ FHi,y (2.1.20)

9



2. Theoretical Background

where ε0 is the dielectric constant of air which can be set to 1. From trigono-
metrical considerations and Snell’s law of refraction, an expression for kt,z can
be obtained [17]:

kt,z,e = 2πω
√
εx −

εx
εz

sin2 αi (2.1.21)

where the additional subscript e stands for extraordinary (i.e. polarization par-
allel to optic axis) which is a property of P-polarized electromagnetic waves
traveling along the z-direction as opposed to S-polarized electromagnetic waves
traveling along the y-direction which are purely ordinary (i.e. polarization per-
pendicular to optic axis, subscript o). Using expressions 2.1.20 and 2.1.21 and
inserting them into 2.1.17 yields:

Et,x = 1
(2π)2ω2εx

kt,z,eF (ki,zEi,x − ki,xEi,z)

Et,z = − 1
(2π)2ω2εz

kt,xF (ki,zEi,x − ki,xEi,z).
(2.1.22)

Simple trigonometry (ki,x = 2πω sinαi, ki,z = 2πω cosαi, Ei,x = Ei cosαi and
Ei,z = −Ei sinαi, see figure 2.2) and plugging in the definition of F gives:

Et,x = kt,z
2πωεx

FEi = kt,z
2πωεx

2εxki,z
εxkin,z + ε0kt,z

Ei

Et,z = − kt,x
2πωεz

FEi = kt,x
2πωεz

2εxki,z
εxkin,z + ε0kt,z

Ei.

(2.1.23)

With ki,zE0 = 2πωEi,x and kt,xE0 = −2πωEi,z, we finally get [18]:

Et,x = εx
εx

2kt,z,e
εxki,z + ε0kt,z,e

Ei,x ≡ LxxEi,x

Et,z = εx
εz

2ki,z
εxki,z + ε0kt,z,e

Ei,z ≡ LzzEi,z

(2.1.24)

where Lxx and Lzz are the Fresnel transmission coefficients.
In order to get the corresponding expression for Lyy, we must consider S-

polarized light by replacing equation 2.1.21 with [17]:

kt,z,o = 2πω
√
εx − sin2 αi. (2.1.25)

Using tangential H-field conservation (as opposed to E-field conservation for
P-polarization) and applying equation 2.1.18 to S-polarized beams, gives anal-
ogously:

1
2πωki,z(Ei,y − Er,y) = kt,zEt,y. (2.1.26)

Replacing Er,y by 2Ei,y − Et,y (tangential E-field conservation) then yields:

Et,y = 2ki,z
kt,z,o + ki,z

Ei,y ≡ LyyEi,y. (2.1.27)

10



2.2. Nonlinear Optical Response

Reflection Coefficients

In an analog fashion, the Fresnel reflection coefficients can be derived, leading
to the following expressions:

Rxx = −εxki,z − kt,z,e
εxki,z + kt,z,e

Rzz = εxki,z − kt,z,e
εxki,z + kt,z,e

Ryy = ki,z − kt,z,o
ki,z + kt,z,o

(2.1.28)

where kt,z,e and kt,z,o are given by equations 2.1.21 and 2.1.25, respectively.

2.2. Nonlinear Optical Response

In this section, the already established linear model of the optical response (see
section 2.1) is extended to nonlinear responses in the material, introducing the
second-order nonlinear susceptibility χ(2) which governs, among other nonlinear
optical effects, second harmonic generation.

2.2.1. Nonlinear Susceptibilities

Since the polarization P(t), previously described for the linear case (cf. equation
2.1.7), is usually a complicated nonlinear function of E(t), it is customary to
expand the polarization in terms of powers of the electric field, given that the
latter is sufficiently weak:

P(t) =
∫ ∞

−∞
χ(1)(t− t′) · E(t′) dt′

+
∫ ∞

−∞
χ(2)(t− t1, t− t2) : E(t1) E(t2) dt1 dt2

+
∫ ∞

−∞
χ(3)(t− t1, t− t2, t− t3) : E(t1) E(t2) E(t3) dt1 dt2 dt2

+ · · ·

(2.2.1)

where χ(n) is a tensor of order (n + 1) and denotes the nth-order nonlinear
susceptibility tensor and · (:) indicates tensor multiplication with the electric
field(s).
If the electric field E(t) is a group of plane waves with discrete frequencies ωi,

E(t) =
∑

i

E(ωi) =
∑

i

E(ωi)e−iωit, (2.2.2)

then, analogous to the linear case of equation 2.1.7, Fourier transform of equa-
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2. Theoretical Background

tion 2.2.1 yields:

P(ω) =χ(1)(ω) · E(ω)
+ χ(2)(ω1, ω2,±ω1 ± ω2) : E(ω1)E(ω2)
+ χ(3)(ω1, ω2, ω3,±ω1 ± ω2 ± ω3) : E(ω1)E(ω2)E(ω3)
+ · · ·

with χ(n)(ω = ω1 + ω2 + · · ·+ ωn)

=
∫ ∞

−∞
χ(n)(t− t1; · · · ; t− tn)

× ei[ω1(t−t1)+···+ωn(t−tn)]dt1 · · · dtn.

(2.2.3)

If the linear and nonlinear susceptibilities χ(n) are known, it is in principle
possible to predict the medium’s response including all optical effects of order
n using Maxwell’s equations. Typical examples of second-order optical effects
are sum- and difference-frequency generation (SFG, DFG), electro-optic rec-
tification (EOR) as well as second harmonic generation (SHG) whereas third
harmonic generation (THG) and self-focusing are processes in χ(3).

2.2.2. Second Harmonic Generation

Anharmonic Oscillator Model

In order to understand why second-order nonlinear effects like sum- and difference-
frequency generation as well as optical rectification occur, it is highly instructive
to consider the anharmonic oscillator model.
The model comprises N classical anharmonic oscillators per unit volume

which describe electrons bound to the atomic nuclei of the material. In the
presence of a driving force, their equation of motion reads:

d2x

dt2 + Γdx
dt + ω2

0x+ ax2 = F (2.2.4)

where the driving force F is assumed to originate from two applied oscillating
electric fields E1(2) with Fourier components at ±ω1(2) which act on the electrons
(charge e, mass m):

F = e

m

[
E1
(
e−iω1t + eiω1t

)
+ E2

(
e−iω2t + eiω2t

)]
. (2.2.5)

As a result of the applied electric fields, the induced polarization takes the form:

P = Nex. (2.2.6)

The anharmonic term ax2 in equation 2.2.4 is assumed to be small and can
therefore be treated as a perturbation with:

x = x(1) + x(2) + x(3) + · · · . (2.2.7)
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2.2. Nonlinear Optical Response

In this approximation, the first-order solution is obtained by linearizing equation
2.2.4, i.e. setting ax2 = 0, and reads [7]:

x(1) = e

m

[
E1

(ω2
0 − ω2

1 − iω1Γ)e−iω1t + E2

(ω2
0 − ω2

2 − iω2Γ)e−iω2t

]
+ c.c. (2.2.8)

where c.c. is the complex conjugate of prior terms. This first-order solution can
then be used to obtain a second-order solution by approximating ax2 = ax(1)2.
Solving the differential equation 2.2.4 for x(2) then yields [7]:

x(2) =x(2)(ω1 + ω2) + x(2)(ω1 − ω2)
+ x(2)(2ω1) + x(2)(2ω2) + x(2)(0) + c.c. with

x(2)(ω1 ± ω2) = −2a(e/m)2E1E2

(ω2
0 − ω2

1 − iω1Γ)(ω2
0 − ω2

2 ∓ iω2Γ)

1× 1
ω2

0 − (ω1 ± ω2)2 − i(ω1 ± ω2)Γe−i(ω1±ω2)t,

x(2)(2ωi) = −a(e/m)2E2
i

(ω2
0 − ω2

i − iωiΓ)2(ω2
0 − 4ω2

i − 2iωiΓ)e−i2ωit, i = 1, 2 ,

x(2)(0) =− a
(
e

m

)2 1
ω2

0

(
1

ω2
0 − ω2

1 − iω1Γ + 1
ω2

0 − ω2
2 − iω2Γ

)
.

(2.2.9)

Equation 2.2.9 clearly shows that new frequency components of the polariza-
tion, i.e. ω1 ± ω2, 2ω1, 2ω2 and 0, arise from the second-order solution which
appear due to quadratic interaction of the electric fields [7]. This solution al-
ready explains the occurrence of second-order nonlinear effects like sum and
difference frequency generation (ω = ω1 ± ω2), second harmonic generation
(ω = 2ωi) as well as optical rectification (ω = 0). Higher-order solutions can be
obtained iteratively and predict frequency components at ω = n1ω1 +n2ω2 with
n1, n2 ∈ N, giving rise to higher-order nonlinear effects like frequency tripling
[7].

Dispersion of the Second-Order Nonlinear Susceptibility

Flytzanis [19] extended the theory of Faust and Henry [20, 21] to calculate
the dispersion of χ(2) for the case that all frequencies involved in the second-
order process are below or near a phonon resonance by considering higher-order
moments of the polarization and the lattice potential [22]. These calculations
presume a zincblende semiconductor with a single phonon mode. According to
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2. Theoretical Background

Flytzanis, the second-order nonlinear susceptibility is then given by [19]:

χ(2)(ω1 + ω2, ω1, ω2) = χ(2)
∞

[
1 + C1

(
1

D(ω1) + 1
D(ω2) + 1

D(ω1 + ω2)

)

+ C2

(
1

D(ω1)D(ω2) + 2
D(ω1)D(ω1 + ω2) + 1

D(ω2)D(ω1 + ω2)

)

+ C3

(
1

D(ω1)D(ω2)D(ω1 + ω2)

)]
(2.2.10)

where χ(2)
∞ denotes the non-resonant, high frequency second-order electric sus-

ceptibility and D(ω) = 1 − ω2/ω2
TO − iγω/ω2

TO the resonant denominator with
the resonant TO phonon frequency ωTO and its damping γ. The parameters C1,
C2 and C3 denote the Faust-Henry parameter [20], electrical and mechanical
anharmonicity [19, 23], respectively, and are related to microscopic properties
of the medium. These are defined as [23]:

C1 = αTO

2vχ(2)
∞

(
Z∗

Mω2
TO

)
,

C2 = µ(2)

2vχ(2)
∞

(
Z∗

Mω2
TO

)2

,

C3 = − φ(3)

2vχ(2)
∞

(
Z∗

Mω2
TO

)3

(2.2.11)

where v is the volume of the primitive cell,M the reduced mass, Z∗ the effective
charge, αTO the TO Raman polarizability per primitive cell, µ(2) the second-
order dipole moment and φ(3) the third-order lattice potential. From equation
2.2.10 it becomes clear that at phonon resonances the second-order electric sus-
ceptibility χ(2) is drastically enhanced as the denominator D(ω) approaches
zero.
For materials with multiple phonon resonances like quartz, equation 2.2.10 has

to be modified. For a complete description of a multi-resonant χ(2), resonant
denominators D(ω) for all n phonon frequencies have to be taken into account.
This results in n different Faust-Henry terms with coefficients C1,1, . . . , C1,n as
well as C2 and C3 terms describing the electrical and mechanical anharmonicities
including all possible cross-terms, i.e. combinations of different phonon modes.

Symmetry Properties

Generally, there are 27 elements of the second-order nonlinear susceptibility
tensor χ(2). These can be reduced by considering structural symmetries of the
medium which also should emerge in the optical properties in a certain manner.
Assuming a group of certain symmetry operations {S} under which the medium

is invariant and therefore χ(2) remains unchanged, leads to the relation [7]:

(̂i · S†) · χ(2) : (S · ĵ)(S · k̂) = χ
(2)
ijk (2.2.12)
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2.3. Properties of Quartz

for each symmetry operation S where î, ĵ and k̂ refer to the three principle
axes of the crystal. The first subscript of χ(2)

ijk corresponds to the direction of
the emitted electric field and the second and third to each of the two incoming
electric fields of the χ(2) process. Using these relations, the number of inde-
pendently contributing χ(2) elements can oftentimes be reduced considerably as
some become zero and some are related to each other.
An immediate consequence of 2.2.12 is that media with inversion symmetry

do not facilitate second-order nonlinear effects, i.e. χ(2) = 0 as equation 2.2.12
for the inversion operator I, with I · ê = −ê, yields χ(2)

ijk = −χ(2)
ijk = 0 [7].

Furthermore, second harmonic generation shows additional symmetry prop-
erties due to its specific geometry. As the two incoming fields have the same
frequency, the second and third subscripts of χ(2)

ijk are equivalent, resulting in
the general (material-independent) relation χ(2)

ijk = χ
(2)
ikj for SHG.

2.3. Properties of Quartz

Quartz is a very common mineral that naturally occurs in the earth’s continental
crust. It has a chemical formula of SiO2 and undergoes a phase transition
from α-quartz to β-quartz at a temperature of around 846 K [24]. This section
provides some details about its crystal structure and physical properties.

2.3.1. Crystal Structure and Symmetry

Crystalline quartz consists of SiO4 silicon-oxygen tetrahedra where each oxygen
atom is shared between two silicon atoms, giving it a net chemical formula of
SiO2. The crystal structure of α-quartz is depicted in figure 2.3.
At a critical temperature of TC = 846 K, the phase transition from α-quartz

to β-quartz takes place. At this transition, atoms in the crystal lattice get
slightly displaced relative to each other without changing positions within the
lattice. Also, all bonds stay intact. This kind of transition is called a displacive
transition which happens almost instantaneously. During this transition, the
quartz crystal changes from a trigonal crystal structure to a hexagonal one.

2.3.2. Phonon Modes

This section is based on experimental data measured by Gervais et al. [24]. In
their work, infrared reflectivity spectra have been measured for seven different
temperatures ranging from 295 K to 975 K and fitted with the aid of equation
2.1.16 and the factorized form of the dielectric function (equation 2.1.15) which
accounts for multiple phonon resonances in the material. From the fit param-
eters, phonon frequencies and dampings were extracted. Reflectivity data and
fits are shown in figure 2.4. The resulting phonon data for T = 295 K are listed
in table 2.1.
During the α → β phase transition of quartz, the A2 modes labeled j = 1, 3

and the E modes labeled j = 3, 5, 8 become forbidden in the β-phase due to
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2. Theoretical Background

(a) Overview (b) View along c-axis

Figure 2.3. Crystal lattice structure of α-quartz (SiO2) with silicon atoms (green),
oxygen atoms (red) and bonds (grey). The black box marks one unit cell. (a):
Overview of crystal shape. (b): View along c-axis. Rendered using [25] with data
from [26].

Figure 2.4. Experimental reflectivity data for 7 different temperatures and fits
according to equations 2.1.15 and 2.1.16. Taken from reference [24].
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2.3. Properties of Quartz

Table 2.1. A2 (extraordinary ray) and E (ordinary ray) phonon modes of α-quartz
at room temperature. Ωj,TO(LO) denotes the frequency of the jth TO (LO) phonon
and γj,TO(LO) their respective damping. Data taken from reference [24].

A2 modes E modes

j
Ωj,TO Ωj,LO γj,TO γj,LO j

Ωj,TO Ωj,LO γj,TO γj,LO
[cm−1] [cm−1] [cm−1] [cm−1] [cm−1] [cm−1] [cm−1] [cm−1]

1 363.5 386.7 4.8 4.8 3 393.5 402 2.8 2.8
2 495 551.5 5.2 5.8 4 450 510 4.5 4.1
3 777 790 6.7 6.7 5 695 697.6 13 13
4 1071 1229 6.8 12 6 797 810 6.9 6.9

7 1065 1226 7.2 12.5
(T = 295 K) 8 1158 1155 9.3 9.3

structural changes in the crystal [27]. The temperature-dependent phonon data
will be used in chapter 3 to simulate spectra of the dielectric function.
With 9 atoms in the primitive cell, α-quartz has 27 phonon branches [28].

Employing symmetry selection rules, leaves 9 phonon branches along the Γ-A
direction (along optic axis) and 13 branches along the Γ-K-M direction (perpen-
dicular to optic axis). Phonon dispersion curves of α-quartz have been measured
with neutron scattering [28] and are shown in figure 2.5.
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2. Theoretical Background

(a) Along optic axis (b) Perpendicular to optic axis

Figure 2.5. Phonon dispersion of α-quartz at T = 20 K measured with neutron
scattering. (a): Along optic axis and (b): perpendicular to optic axis. Taken from
[28].

2.4. Working Principle of Free-Electron Lasers

Unlike conventional lasers which utilize electronic transitions in the lasing ma-
terial, free-electron lasers generate radiation by transforming the kinetic energy
of relativistic electrons into electromagnetic wave energy. Thereto, a relativistic
electron beam is injected into a periodic array of permanent magnets (a so-called
undulator) which causes emission of synchrotron radiation.
This section sketches the working principle of free-electron lasers, covering a

typical setup, relativistically moving electrons and beam creation using undu-
lators in the laser cavity. This section is largely based on Toshiyuki Shiozawa’s
”Classical Relativistic Electrodynamics“ [29] and Sándor Varró’s ”Free Electron
Lasers“ [30].

2.4.1. Basic Setup

The first theoretical treatment of fast moving electrons in a periodic array of
permanent magnets was carried out by Motz in 1951 [31] until, in 1977, the first
free-electron laser went into operation at Stanford University [32, 33].
The basic setup of a free-electron laser comprises a linear electron accelerator
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2.4. Working Principle of Free-Electron Lasers

(linac) capable of achieving relativistic velocities, an array of permanent magnets
with alternating polarities (also called an undulator), as well as a lasing cavity
confined by a pair of mirrors as shown in figure 2.6.

Electron accelerator

Reflecting mirror

Undulator

Output mirror

Electron beam

Laser beam

Figure 2.6. Basic setup of a free-electron laser: Relativistic electrons are injected
into the undulator using bending magnets where synchrotron radiation is generated.
Taken from reference [29].

As an electron enters the undulator along its center axis, it performs a wiggling
motion due to the Lorentz force induced by the magnetic field of the undula-
tor’s permanent magnets. Every time the electron’s orbit is bent, resulting in
an accelerated motion, the additional kinetic energy is emitted in the form of
synchrotron radiation. This radiation needs to interfere constructively with it-
self at each corner of the electron’s orbit. This condition is further discussed in
the forthcoming section. The emitted radiation is then amplified in the cavity
and finally ejected through the output mirror.

2.4.2. Synchrotron Radiation in an Undulator

According to special relativity, the total energy E of a particle with mass m and
velocity v is given by

E = m0γc
2 with γ = 1√

1− β2 (2.4.1)

where β = v/c is the reduced velocity and γ is called the relativistic factor. m0
and c denote, respectively, the particle’s rest mass and the speed of light.
The total energy E is the sum of the particle’s kinetic energy and its mass

energy which is given by m0c
2. Therefore, γ is a measure of the particle’s total

energy and γ − 1 of its kinetic energy. In the high-energy case (i.e. γ � 1), the
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2. Theoretical Background

reduced velocity can be expressed as β ' 1 − 1
2γ2 (Taylor series up to second

order) and the particle is said to be ultra-relativistic.
For free-electron lasers, we consider a beam of electrons with mass me and

charge e. The electron beam’s power P is:

P = IE (2.4.2)

where I is the current. The power of the electron beam is the free-electron
laser’s analog to a conventional laser’s pump power [30].
A free-electron laser’s undulator is usually made of periodically arranged pairs

of permanent magnets with alternating polarities, creating a magnetic field By

along the y-axis of the form (see figure 2.7) [29]:

By = B0 sin
(2πz
λu

)
. (2.4.3)

Here, λu denotes the spatial period of the permanent magnets (and also of the
magnetic field) and B0 the magnetic field’s peak intensity.

By

λu

S N S N S

N S N S N

z

y

Figure 2.7. Scheme of the center plane of an undulator. The spatial period λu is
the same for both, the undulator and the magnetic field By inside the magnets.

An electron entering the undulator undergoes a Lorentz force-induced wig-
gling motion along the z-direction perpendicular to and with the same spatial
period as the magnetic field. Every time the electron beam is bent at the cor-
ners of its orbit, it radiates synchrotron radiation. In order for electromagnetic
wave pulses emitted from adjacent corners of the electron’s orbit to interfere
constructively, the following condition must be met [29]:

nλ = c
λu
v̄z
− λu cos θ (2.4.4)

where λ denotes the optical wavelength of the electromagnetic wave pulses, v̄z
the average velocity of the electron beam along the z-direction and θ the angle
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2.4. Working Principle of Free-Electron Lasers

between the z-direction and the direction of pulse propagation (see figure 2.8).
n is an integer representing the order of inference, meaning that n = 1 stands
for the fundamental wavelength and n > 1 corresponds to higher harmonics.
This whole process can be considered as a kind of spontaneous emission.

⊙ ⊗ ⊙ ⊗

By

⊙
λu

λu cos θ
θ θ

z

x

Figure 2.8. An electron’s orbit through the center plane of an undulator. For wave
pulses to interfere constructively, the phase advance must be a multiple integer of the
optical wavelength λ.

2.4.3. Microbunching

In order to get temporally coherent radiation from the light source, there must
be a mechanism that corresponds to stimulated emission. In the case of free-
electron lasers, this mechanism is given by an interaction of the electrons with
the radiation in the lasing cavity. The electromagnetic field generated by the
electrons via synchrotron radiation modulates the electron beam spatially such
that some electrons lose energy to the optical field and decelerate while some
electrons gain energy from the electric field and accelerate, depending on the
relative phase of the electrons’ transversal velocity to the optical field. These
processes correspond to absorption and gain, respectively. This effect is of-
tentimes referred to as microbunching. If the electron beam is injected at the
resonant energy, i.e. at an energy at which the electron slips back exactly one
radiation period λ for every undulator period λu (see equation 2.4.4), the rela-
tive phase between the electrons and the optical field is constant and absorption
and gain compensate each other, resulting in zero net gain. To get a positive
net gain, the electron beam needs to have an energy slightly above the resonant
energy, thus getting a phase shift such that more electrons get decelerated by
the optical field, resulting in a positive net gain. This process is illustrated in
figure 2.9 [34].
Practically, by varying the electron energy, the lasing regime shifts within the

spectrum of the synchrotron radiation, i.e. the emitted optical wavelength λ
where lasing takes place, moves such that it reaches the off-resonant case.

21



2. Theoretical Background

At resonant energy:

t1

t2

Slightly above resonant energy:

t1

t2

Phase corresponding to absorption

Phase corresponding to gain

Electrons

Figure 2.9. A spatially homogeneous electron pulse at time t1 gets modulated by the
optical field. Depending on the relative phase of the electrons’ transversal velocity
and the optical field, electrons get either accelerated or decelerated which leads to
microbunching (time t2). The resonant case results in zero net gain while an electron
energy slightly above resonance leads to a positive net gain which is required for
lasing.
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2.4.4. Cavity Detuning

Most free-electron lasers allow for a variation of the cavity length L which is
defined as:

L = L0 − qλ (2.4.5)
where L0 is the nominal cavity length, λ the wavelength of the emitted radi-
ation and q a user-defined value. Keeping q constant over a wavelength scan
increases the accessible spectral range and maintains the relative bandwidth of
the free-electron laser [4]. By varying the cavity detuning ∆L = qλ, the spec-
tral bandwidth can be adjusted and therefore the achievable pulse duration as
bandwidth and pulse duration are related by the time-bandwidth product.
For nonlinear spectroscopy, short pulses are advantageous as they yield higher

peak intensities and thus more generated nonlinear signal. However, this gain
in nonlinear signal comes at the cost of spectral resolution as the spectral band-
width of the emitted pulses increases.
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3. Simulations

3.1. Dispersion of the Dielectric Function

Good knowledge of the dielectric function is necessary to calculate Fresnel coef-
ficients which affect both SHG and reflectivity spectra. Temperature-dependent
phonon data for quartz from Gervais et al. [24] have been used to parametrize
frequency shifts and changes in the dampings as the temperature varies. A
quadratic polynomial fit has been applied to the temperature-dependent data
to interpolate values for Ω(T ) and γ(T ). From these temperature-dependent
phonon data, the dielectric function can be simulated with the aid of equa-
tion 2.1.15. Corresponding spectra are shown in figure 3.1 for four different
temperatures ranging from 300 K to 840 K.
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Figure 3.1. Simulated spectra of the real part of the dielectric function for four
different temperatures. (a): ε⊥(ω) for extraordinary rays was calculated from A2
modes and (b): ε‖(ω) for ordinary rays from E modes.
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3.2. Reflectivity Spectra

Using the Fresnel coefficients of reflectivity (equation 2.1.28) as well as phonon
data from Gervais et al. [24] with their corresponding spectra of the dielectric
function (see section 3.1), it is possible to calculate the reflected field strengths
and thus the intensities of the reflected beam which are given by:

Ir,P = |Er,x|2 + |Er,z|2 = |RxxEi,x|2 + |RzzEi,z|2

and Ir,S = |Er,y|2 = |RyyEi,y|2
(3.2.1)

for P- and S-polarization, respectively. The calculated spectra are shown in
figure 3.2 for four different temperatures (300 K to 840 K) at a constant angle
of incidence αi = 60°. Figures 3.3a and 3.3b show calculated reflectivity spectra
for four different angles (0°, 30°, 60°, 80°) at a constant temperature T = 300 K
for P- and S-polarization, respectively. Additionally, the quantities Im ε(ω) and
Im [−1/ε(ω)] are plotted in figures 3.3c and 3.3d which peak at TO and LO
frequencies, respectively.
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Figure 3.2. Reflectivity spectra for four different temperatures in (a): P- and (b):
S-polarization at a constant angle of incidence αi = 60°. Based on data from [24]
which were interpolated to extract the temperature dependence.
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0

0.5

1
(a)P-pol.

R
efl

ec
tiv

ity
R

αi = 0°
αi = 30°
αi = 60°
αi = 80°

0

0.5

1
(b)S-pol.

R
efl

ec
tiv

ity
R

10−3

10−1

101

103
(c)

Im
ε(
ω

)

Im ε⊥
Im ε‖

0 200 400 600 800 1,000 1,200 1,400
10−5

10−3

10−1

101
(d)

Frequency ω [cm−1]

Im
[−

1/
ε(
ω

)] Im(−1/ε⊥)
Im(−1/ε‖)

Figure 3.3. (a) and (b): Simulated spectra of the Fresnel-corrected reflectivity R
for, respectively, P- and S-polarization at room temperature. (c) and (d): Quanti-
ties Im ε(ω) and Im [−1/ε(ω)] serve as reference for TO and LO phonon frequencies,
respectively (semi-logarithmic scale). Calculations based on data from [24].

3.3. Azimuthal SHG

Quartz’s crystal structure belongs to the trigonal 32 symmetry class (threefold
symmetry D3 about the c-axis, twofold symmetry D2 about the a-axis). This,
according to calculations using equation 2.2.12, results in the following four
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independent non-vanishing elements of the χ(2) tensor [7]:

χ(2)
aaa = −χ(2)

abb = −χ(2)
bba = −χbab,

χ
(2)
abc = −χ(2)

bac,

χ
(2)
acb = −χ(2)

bca,

χ
(2)
cab = −χ(2)

cba

(3.3.1)

where (a, b, c) gives the set of principle axes with c and a parallel to the threefold
and twofold axes, respectively [5].

Additionally, we can invoke specific symmetry considerations for SHG as dis-
cussed in section 2.2.2 to considerably reduce the number of contributing χ(2)

elements as the second and third indices are equivalent, meaning that χabc = χacb
and χcab = χcba = 0, leading to χaaa and χacb being the only independently con-
tributing elements:

χ(2)
aaa = −χ(2)

abb = −χ(2)
bba = −χ(2)

bab,

χ
(2)
abc = −χ(2)

bac = χ
(2)
acb = −χ(2)

bca.
(3.3.2)

The following considerations assume a non-collinear SHG configuration in
reflection as depicted in figure 3.4. The second harmonic beam is generated
at a frequency ωSH = 2ω along the phase-matched direction which is given by
kr
SH = kr

1 + kr
2. This leads to an angle of reflection αr

SH = (αi
1 + αi

2)/2.

Starting from equation 2.2.3, the second-order nonlinear polarization in the
crystal is given by:

PSH(2ω) ∝ χ(2)(ω) :
[
L1(ω)Ei

1(ω)
] [
L2(ω)Ei

2(ω)
]

(3.3.3)

where Ei
1(2)(ω) is the first (second) incoming beam and L1(2)(ω) its respective

Fresnel transmission coefficient which is given by equations 2.1.24 and 2.1.27.
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Figure 3.4. Schematic of the non-collinear second harmonic generation in reflec-
tion. x-z is chosen as the plane of incidence. The reflected fundamental beams are
geometrically separated from the generated second harmonic beam.

The transformation of the χ(2) elements from the crystal coordinates (a, b, c)
to the lab frame (x, y, z) is generally given by [5]:

χ
(2)
ijk =

∑

lmn

χ
(2)
lmn(̂i · l̂)(̂j · m̂)(k̂ · n̂). (3.3.4)

Assuming the sample’s optic axis along the z-direction and its a-axis at an angle
φ away from the xz-plane, the coordinate transformation takes the form:

â = x̂ cosφ+ ŷ sinφ
b̂ = −x̂ sinφ+ ŷ cosφ
ĉ = ẑ.

(3.3.5)

which simply is a rotation about the z-axis. This, together with the contribut-
ing χ(2) elements of equation 3.3.2, results in the following χ(2) elements in
laboratory coordinates:

χ(2)
xxx = −χ(2)

xyy = −χ(2)
yxy = −χ(2)

yyx = χ(2)
aaa cos(3φ)

χ(2)
xxy = χ(2)

xyx = χ(2)
yxx = −χ(2)

yyy = χ(2)
aaa sin(3φ)

χ(2)
xyz = −χ(2)

yxz = χ(2)
xzy = −χ(2)

yzx = χ
(2)
acb.

(3.3.6)

From these expressions, the azimuthal dependence of the SH signal is already
apparent. Furthermore, every possible polarization configuration yields SHG
signal. The intensity of the reflected second harmonic beam arises from project-
ing the second-order nonlinear polarization onto the direction of the reflected
electric field. Summing over all possible χ(2) components for each polarization
configuration gives the following components of the reflected SHG signal:
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ISHGPPP =
∣∣∣(LxxEi

1,x)(LxxEi
2,x)χ(2)

aaa cos(3φ)
∣∣∣
2
/∆k2,

ISHGSPP =
∣∣∣∣
[
(LzzEi

1,z)(LxxEi
2,x) + (LxxEi

1,x)(LzzEi
2,z)

]
χ

(2)
acb · · ·

· · ·+ (LxxEi
1,x)(LxxEi

2,x)χ(2)
aaa sin(3φ)

∣∣∣∣
2
/∆k2,

ISHGPSS =
∣∣∣(LyyEi

1,y)(LyyEi
2,y)χ(2)

aaa cos(3φ)
∣∣∣
2
/∆k2,

ISHGSSS =
∣∣∣(LyyEi

1,y)(LyyEi
2,y)χ(2)

aaa sin(3φ)
∣∣∣
2
/∆k2,

ISHGPSP =
∣∣∣(LyyEi

1,y)(LzzEi
2,z)χ

(2)
acb − (LyyEi

1,y)(LxxEi
2,x)χ(2)

aaa sin(3φ)
∣∣∣
2
/∆k2,

ISHGSSP =
∣∣∣(LyyEi

1,y)(LxxEi
2,x)χ(2)

aaa cos(3φ)
∣∣∣
2
/∆k2

(3.3.7)

where ∆k = |kt
SH − kt

1 − kt
2| is the wave vector mismatch which accounts for

reflective phase matching and can be calculated using equations 2.1.21 and 2.1.25
and ISHGLMN denotes the SHG intensity for M- and N-polarized incoming beams
and L-polarized SH output. As the z component of the reflected SHG signal
is zero for all polarization configurations, the P- and S-polarized output can be
directly read out from the x and y components, respectively. Figure 3.5 gives
plots according to the model described in equation 3.3.7 for three different ratios
χ(2)
aaa/χ

(2)
acb when setting Fresnel coefficients Lkk and electric fields Ek to 1.

3.3.1. Surface Contribution

These symmetry considerations are only valid in the bulk of the crystal and
are broken at the surface. There, the crystal has different symmetry properties
and hence belongs to a different symmetry group with different independent
non-vanishing χ(2) elements which for the surface of an α-quartz c-cut, is the
hexagonal 6mm symmetry class (sixfold symmetry C6v) with elements [7, 6]:

χ
(2)
S,aac = χ

(2)
S,bbc,

χ
(2)
S,aca = χ

(2)
S,bcb ≈ χ

(2)
S,caa = χ

(2)
S,cbb,

χ
(2)
S,ccc

(3.3.8)

where the subscript S denotes the surface contribution. The resulting surface
SHG, if detectable, is expected to yield no azimuthal dependence due to the
hexagonal crystal symmetry at the surface.
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3.3. Azimuthal SHG
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Figure 3.5. Plots of the calculated azimuthal intensity model according to equation
3.3.7 for the three cases χ(2)

aaa = χ
(2)
acb, χ

(2)
aaa > χ

(2)
acb and χ

(2)
aaa < χ

(2)
acb where χ

(2)
acb

only contributes to ISHGSPP and ISHGPSP . Fresnel coefficients and electric field are set to
Lkk = Ek = 1.
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3. Simulations

3.3.2. β-Quartz

At a transition temperature of TC = 573 ◦C, α-quartz undergoes the phase
transition to β-quartz, also known as high quartz. This phase transition comes
with a change in crystal symmetry, namely from the trigonal 32 to the hexagonal
622 symmetry class (D6 Schoenflies) [35, 36]. As a result, the contributing χ(2)

elements change accordingly to the following [7]:

χ
(2)
β,abc = −χ(2)

β,bac = χ
(2)
β,acb,

χ
(2)
β,cab = −χ(2)

β,cba.
(3.3.9)

As before, applying SHG-specific symmetry rules yields a considerable reduction
of the contributing χ(2) tensor elements to just one unique contribution for β-
quartz which is the first line of equation 3.3.9. Carrying out the coordinate
transformation from the crystal frame into the lab frame as described above
yields that solely the following two polarization components yield SHG signal:

ISHGSPP =
∣∣∣∣
[
(LzzEi

1,z)(LxxEi
2,x) + (LxxEi

1,x)(LzzEi
2,z)

]
χ

(2)
β,acb

∣∣∣∣
2
/∆k2,

ISHGPSP =
∣∣∣(LyyEi

1,y)(LzzEi
2,z)χ

(2)
β,acb

∣∣∣
2
/∆k2.

(3.3.10)

These results imply that for β-quartz no azimuthal dependence is expected while
SPP and PSP polarizations still yield a constant contribution proportional to
χ

(2)
β,acb.
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4. Experimental Setup

This chapter lays out the experimental details on the measurements that have
been conducted within the scope of this work. This includes technical informa-
tion on the light source, i.e. the free-electron laser of the Fritz Haber Institute
in Berlin (FHI FEL), the autocorrelation setup used to produce and detect SHG
signals in the sample as well as a beamline width characterization of the whole
setup to estimate spot sizes in the focus.

4.1. The FHI Free-Electron Laser

The FHI FEL was installed in 2011 in a dedicated building at the FHI campus
in Berlin and put into operation in November 2013 [4].

Figure 4.1. Setup of the FHI FEL. Two linear accellerators (Linac 1 and 2) induce
electron energies of 15 MeV to 50 MeV. Afterwards, the electron beam is guided to
one of two undulators where infrared laser radiation is generated. Taken from [4].

The general setup is shown in figure 4.1. It comprises a thermionic gridded
electron gun and two linear accelerators (linacs) of which the first accelerates
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4. Experimental Setup

to a nominal electron energy of 20 MeV and the second accelerates or deceler-
ates to a final electron energy of 15 MeV to 50 MeV. Afterward, the electron
beam is bent by 90° isochronous achromats into the MIR undulator which has
a period length λu = 40 mm with 50 periods and an overall length of 2 m. The
minimal undulator gap is 16.5 mm [4]. The lasing cavity is confined by two
spherical concave gold-plated copper mirrors with radii of curvature of 2.65 m
and 3.51 m, respectively, resulting in a Rayleigh length of the cavity mode of
2 m which corresponds to the undulator length. There are 5 outcoupling mirrors
available with outcoupling holes of diameters 0.75 mm, 1.0 mm, 1.5 mm, 2.5 mm
and 3.5 mm. The most important specifications of the setup are summarized in
table 4.1.
Future plans of extending the setup by a second undulator to reach longer

wavelengths in the far-infrared (FIR) involve a second beam line which would
allow to cover the wavelength region from 40 µm to 500 µm.

Table 4.1. Specifcations of the FHI FEL electron beamline in the mid-infrared
spectral region. Data taken from [4].

Parameter Value
Undulator period 40 mm
Number of periods 50
Undulator length 2.0 m
Cavity length 5.4 m
Electron energy 15 MeV to 50 MeV
Wavelength range 4 µm to 48 µm
Micropulse length 1 ps to 5 ps
Micropulse repetition rate 1 GHz
Macropulse length 1 µs to 15 µs
Macropulse Repetition rate 5 Hz to 10 Hz

4.1.1. Pulse Structure

The time structure of the FHI FEL is composed of macro-pulses of which each
again has a pulsed substructure of a few thousand micro-pulses.
The electron gun is driven at a repetition rate of 1 GHz which corresponds to

the micro-pulse repetition rate. Those micro-pulses then enter a 1 GHz buncher
to reduce the bunch length, resulting in a micro-pulse length of 1 ps to 5 ps. This
is necessary for the linacs to be able to effectively capture and accelerate the
electrons. The linacs then introduce a macro-pulsed structure with macro-pulse
lengths of 1 µs to 15 µs at a repetition rate of 5 Hz to 10 Hz. The pulse strucure
is shown in figure 4.2.
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4.2. The SHG Setup

Figure 4.2. Pulse structure of the FHI FEL. Macro-pulses at a repitition rate of
5 Hz to 10 Hz have a subpulse structure comprising micro-pulses at a repitition rate
of 1 GHz. Taken from [4].

4.2. The SHG Setup

The experimental setup mainly resembles a common non-collinear autocorrela-
tor comprising a beam splitter, two excitation arms and one linear translation
stage to adjust for time zero. The basic setup is shown in figure 4.3.

Translation
stage

Alignment
stage

FEL beam

Reflectivity
detection

SHG
detection

15° off-axis
focusing
mirrors

Beam splitter

Sample on
rotation stage

Figure 4.3. Schematic of the SHG autocorrelator setup. The collimated FEL beam
(black line) is split into the excitation arms (yellow and red lines) and focused onto the
sample. The generated SH signal (green line) is then detected using an MCT/InSb
sandwich detector and the reflected FEL beam (red) with a pyroelectric sensor.
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First, the collimated FEL beam is geometrically split into its upper and lower
half using a rectangular gold mirror with a sharp edge which ensures wavelength-
independent splitting over the entire IR spectral region. One excitation beam
is led over a motorized linear translation stage to shift its beam path relative
to the other excitation beam to achieve temporal overlap of the FEL pulses on
the sample. Both excitation beams are then focused onto the sample using 15°
off-axis focusing gold mirrors (f = 517 mm). Long focal lengths compared to a
previously existing setup were deliberately chosen to achieve large spot sizes in
the focus. Experience in a previous setup showed that the FEL power needed
to be attenuated to approximately 10 % in order to not exceed the damage
threshold of the quartz sample. Larger spot sizes allow for more power of the
exciting laser and therefore more signal while keeping the photon fluence below
a critical value at which sample damage occurs.
The sample is mounted on a motorized 360° rotation stage (Newport) which

facilitates azimuthal scans around the sample’s surface normal.
Generally, only gold-plated reflecting optics have been used in the setup to

guarantee largely wavelength-independent beam control. Also, a variety of IR
windows and edgepass filters have been used to either suppress intrinsic har-
monics of the FEL that would otherwise produce light scatter, or to block the
FEL’s fundamental wavelengths in front of the SHG detection to obtain solely
the generated SH signal. These filtering optics include 7 µm longpass/shortpass
filters, 9 µm and 13.5 µm longpass filters (LOT) as well as magnesium fluoride
(MgF2), calcium fluoride (CaF2), zinc sulphide (ZnS) and zinc selenide (ZnSe)
windows (Korth) serving as 6 µm, 8 µm,13.8 µm and 20.5 µm shortpass filters,
respectively.
For polarization-dependent measurements, wire grid polarizers (Thorlabs)

have been used which absorb IR radiation polarized parallel to the wires’ orien-
tation and transmit the perpendicular component. Initially, the incoming FEL
beam is P-polarized. Using two polarizers sequentially, one at a 45° orienta-
tion, the second in S-transmittance, the incoming polarization of the FEL can
be rotated to S-polarization. The resulting transmitted power is about 10% of
the incoming power. With one additional polarization filter (three in total), all
polarization configurations can be achieved for the two excitation arms and the
detection.

4.2.1. Detection

The sample is mounted at an angle of 45°, resulting in an angle of incidence
αi = 60° for the more gracing reflected beam. The SHG signal emerges be-
tween both reflected beams and gets recollimated using a 90° off-axis focus-
ing gold mirror (f = 191 mm) and finally refocused (f = 102 mm) onto a
nitrogen-cooled MCT/InSb (mercury cadmium telluride/indium antimonide)
semiconductor sandwich detector (InfraRed Associates, Inc.). The non-collinear
setup allows for background-free detection as the reflected beams are spatially
separated from the generated SH signal. The reflected beam is recollimated
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4.3. Beamline Characterization

and focused onto a pyroelectric detector using a concave spherical gold mirror
(f = 100 mm).
In order to compensate for power drifts of the FEL, a small portion (approxi-

mately 5%) of the incoming FEL beam is split onto another pyroelectric detector
using a potassium bromide (KBr) window as a beam splitter for power refer-
ence. All signals are recorded and digitized with a GHz oscilloscope (Teledyne
LeCroy) and processed using a LabVIEW routine.

4.2.2. Samples and Probe Heater

For measurements at room temperature, a crystalline α-quartz window (Korth)
with a diameter of 45 mm and a thickness of 3 mm has been mounted on the
rotation stage. The sample’s surface is cut perpendicularly to the optic crystal
axis (c-cut) and optically polished.
For temperature-dependent measurements, smaller α-quartz windows (diam-

eter: 8 mm, thickness: 1 mm, Crystal GmbH) have been used to facilitate the
use of a probe heater which is depicted in figure 4.4. The heating voltage has
been adjusted by a controller (Eurotherm) to keep the sample constantly at the
set temperature. Feeler gauges inside the heater’s body served as feedback for
the controller.

Figure 4.4 Schematic of the probe
heater. A heating wire inside the cover
(blue) surrounds the heater’s body
(black) which is in contact with the
quartz sample (red).

4.3. Beamline Characterization

Doing calculations according to Gaussian beam optics as discussed in appendix
A allows an estimation of the beamline in the real experiment. Particularly
interesting for the alignment of the sample are the focus position, the beam
width in the focus and the Rayleigh length as well as their behavior as a function
of the wavelength. Knowing the parameters of the used optical elements, the
beamline can be theoretically retraced by applying the ABCD law of Gaussian
beam optics (cf. section A.3). A beam line simulation for the SHG setup was
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done using a LabVIEW application written and provided by courtesy of Frans
Wijnen, Radboud University Nijmegen, Netherlands, and is shown in figure 4.5
for four relevant wavelengths. Spot sizes on the sample and Rayleigh lengths
for these wavelengths are given is table 4.2.
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Figure 4.5. Beamline simulation for the SHG experiment. The FEL beam is fo-
cused onto the optic table (grey shade) with a 90° off-axis focusing mirror (FM) and
collimated using a concave focusing mirror (CM). After being split, both excitation
arms are focused onto the sample with 15° off-axis focusing mirrors (OA). Distance d
is measured with respect to the diagnostic chamber behind the outcoupling mirror of
the FEL.

Table 4.2 Spot sizes w0 on the sam-
ple and Rayleigh lengths zR for the
four plotted wavelengths in figure
4.5.

λ [µm] ω [cm−1] w0 [mm] zR [mm]
25 400 0.6 14.85
12.5 800 0.5 25.91
9 1111 0.42 31.06
7 1429 0.36 33.69

Additionally, using an infrared camera, the beam profiles of the two incoming
beams were measured at ω = 800 cm−1. For that, the camera was placed slightly
behind the position of spatial overlap of the two foci to see both excitation
beams. A picture of the beam profiles is given in figure 4.6. The measured
intensities were integrated along the x- and the z-axes (also shown in figure
4.6). Fitting the z-integrated intensities with Gaussian functions

f(x) = ae−
(z−b)2

2c2 (4.3.1)
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4.3. Beamline Characterization

allows for determination of the respective beam widths. Fit parameters are
given in table 4.3. From these fit parameters, the beam widths (defined as
in section A.2) can be calculated (w =

√
2c) to be w1 = (0.62 ± 0.03) mm

and w2 = (0.59 ± 0.04) mm for left and right beam, respectively, which is in
satisfactory agreement with the simulation (w0 = 0.5 mm).
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Figure 4.6. Beam profile intensity map of both excitation arms slightly out of focus
with integrated intensities along the x- and z-axes. Data has been measured with a
2D array of pyroelectric solid-state detectors (Ophir Spiricon Pyrocam IV).

Beam a b [mm] c [mm]
Left 0.98 2.139 0.436

Right 0.74 4.297 0.416

Table 4.3 Gaussian fit parameters
of the integrated intensities along the
x-direction.
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5. Results

For this thesis a total of five beam times at the FHI FEL have been spent
to acquire experimental data comprising SHG spectra, azimuthal scans and
reflectivity spectra over the frequency range from 350 cm−1 to 1400 cm−1. Table
5.1 gives an overview over the measurements.

Table 5.1. Measurements conducted for this thesis. The electron energy refers to
the free electrons’ kinetic energy in the FEL.

# Date Electron energy Spectral range [cm−1]
1 Sep 23, 2015 31.0 MeV 575 to 1400
2 Oct 08, 2015 31.0 MeV 650 to 1400
3 Nov 27, 2015 23.5 MeV 350 to 850
4 Feb 09, 2016 23.5 MeV 350 to 850
5 Mar 18, 2016 31.0 MeV 350 to 850

This chapter will present the results of the aforementioned experiments. Thereto,
data measured at room temperature are shown first. Afterwards, the temper-
ature dependence is shown by plotting the respective scans at different sample
temperatures in the same graph followed by a description of the observed effects.
All measured intensities have been divided by the reference signal (see section
4.2.1) to ensure that the data is independent of FEL power drifts and jitter.

5.1. Second Harmonic Phonon Spectroscopy

SHG spectra at room temperature and in SPP polarization were measured over
the course of two beam times (#1 and #3). In order to achieve a single spectrum
over the entire frequency range from 350 cm−1 to 1400 cm−1, three separate mea-
surements had to be merged as varying FEL energy settings and spectral filter
configurations were necessary. Although spectral overlap intervals at signal-rich
positions were used to match integrated signals of adjacent spectral regions,
relative magnitudes of resonances might thus not be described entirely correct
in this representation of the measured data. The merged spectrum is shown in
figure 5.1.
Distinct peaks at TO phonon frequencies of the vibrational E-type modes

(ordinary ray) are apparent ranging over multiple orders of magnitude (∼ 10−3

to 100), primarily dominated by the resonance at ΩTO
6 , which is why a semi-

logarithmic scale has been chosen for better visibility of all observable fea-
tures. The spectrum also exhibits features in the longer-wavelength region which
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5.1. Second Harmonic Phonon Spectroscopy

cannot be directly attributed to phonon resonances, i.e. sharp peaks around
498 cm−1 and 550 cm−1 as well as a broad continuum ranging from 570 cm−1 to
660 cm−1. Possible interpretations of those features will be given in section 6.1.

5.1.1. Temperature Dependence of the SHG Spectrum

In order to see the effects of higher sample temperatures on the features caused
by phonon resonances and possible indications of the α→ β phase transition of
quartz at nominally TC = 573 ◦C, the previously described measurements have
been repeated with the sample mounted inside a probe heater as described in
section 4.2.2. The experiment was conducted for five different temperatures, i.e.
28 ◦C, 200 ◦C, 400 ◦C, 575 ◦C and 650 ◦C. The measured data is shown in figure
5.2 (note the semi-logarithmic scale).
While a general decrease in SHG intensity can be observed with increasing

temperature, at phonon resonances a broadening of the peaks as well as shifts of
the spectral positions are apparent. Resonances at ΩTO

4 , ΩTO
5 and ΩTO

6 red-shift
while no clear frequency shift can be observed at ΩTO

3 , ΩTO
7 and ΩTO

8 . Tendencies
of both broadening and the observed shifts of the peak positions concur with
experimental data acquired via linear reflectivity measurements according to
Gervais et al. [24].
Additionally, the transition from 575 ◦C to 650 ◦C seemingly causes a step-

like drop of the SHG signal in some parts of the spectrum. This becomes
particularly apparent when examining the resonance at ΩTO

8 where the reso-
nance peak becomes gradually smaller until it disappears entirely as 573 ◦C are
exceeded. Similar behaviors can be observed at ΩTO

5 which suggests that the
phase transition in fact occurred as those particular phonon modes are expected
to become forbidden in the β-phase of quartz while at ΩTO

3 some intensity re-
mains which might be due to an outgoing resonance of the non-forbidden mode
at ΩTO

6 ≈ 2ΩTO
3 , even though ΩTO

6 shifts to lower frequencies with increasing
temperature, a trend that cannot be observed for the resonance at ΩTO

3 .
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5.2. Probing the Crystal Structure: Azimuthal SHG

In these measurements, the SHG signal for two polarization configurations, i.e.
SPP and PPP, at the fixed spectral positions of four different resonances, i.e.
at ΩTO

3 , ΩTO
6 , ΩTO

7 and ΩTO
8 , in the SHG spectra was detected. The results are

shown in figure 5.3 and exhibit clear azimuthal dependencies in the detected
SHG intensities which fit the theoretical expectations as discussed in section 3.3
nicely. For fitting, effective χ(2) parameters A and B were defined to include
expressions for the electric fields and Fresnel transmission coefficients according
to equation 3.3.7:

A = (LxxEi
1,x)(LxxEi

2,x)χ(2)
aaa

B =
[
(LzzEi

1,z)(LxxEi
2,x) + (LxxEi

1,x)(LzzEi
2,z)

]
χ

(2)
acb.

(5.2.1)

Data were then fitted using the following fit functions:

ISHGSPP (φ) =
∣∣∣A sin(3φ) +BeiΦ

∣∣∣
2

ISHGPPP (φ) = |A cos(3φ)|2
(5.2.2)

where Φ introduces a relative phase between the additive terms.
As expected from theoretical considerations and simulations described in sec-

tion 3.3, the shapes of the azimuthal scans vary depending on the set of param-
eters A and B. For example, A� B will result in a more circular shape while
A� B would generate six rather equally sized lobes.
Simulations are in good agreement with the experimental data, except for

PPP-polarization at ΩTO
6 = 800 cm−1 where a distinct threefold symmetry of

the rotational spectrum is observed while the simulation predicts a sixfold sym-
metry. While the data can be fitted using the model for SPP polarization, the
PPP model does not yield a satisfactory fit. This mismatch will be discussed
more thoroughly in section 6.3.
Table 5.2 gives the fit parameters A and B along with their ratio A/B ex-

tracted from the fits according to equation 5.2.2. No relative phase between
both terms was required in order to fit the data properly. As only χ(2)

aaa enters
ISHGPPP , azimuthal scans in PPP polarization yield no information about relative
magnitudes of χ(2) tensor elements. It is noteworthy that apart from the sym-
metry also the angular positions of smaller and larger lobes are sensitive to
relative χ(2) magnitudes as can be exemplarily seen for the SPP scans at ΩTO

3
and ΩTO

7 where lobe amplitudes are similar but at different angular positions
which results in a differently signed A/B ratio.
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5.2. Probing the Crystal Structure: Azimuthal SHG

Table 5.2. Fit parameters of the measured azimuthal SHG scans in SPP polarization
determined using equation 3.3.7. Errors have been extracted from the applied trust
region fit algorithm (95% confidence bounds).

E-mode A B A/B

ΩTO
3 0.89 ± 0.05 0.105 ± 0.004 8.5 ± 0.6

ΩTO
6 0.120± 0.003 0.8657± 0.0020 0.14± 0.04

ΩTO
7 0.839± 0.007 −0.154 ± 0.006 −5.45± 0.23

ΩTO
8 0.919± 0.009 −0.021 ± 0.008 −44 ± 17

5.2.1. Temperature Dependence of the Azimuthal Scans

Also the azimuthal dependencies were measured for temperatures above room
temperature up to 650 ◦C. Due to technical restrictions azimuthal scans could
only be performed over an angular range of 80° to 100°. Normalized data with
model fits are shown in figure 5.4 and fit parameters of the unnormalized data
are listed in table 5.3.
At ΩTO

3 , a strong decrease of A with increasing temperature can be observed
up to 575 ◦C. Absolute values of (negative) B parameters mainly decrease with
temperature as well although seemingly coming to a halt at 400 ◦C and even
slightly increase at 575 ◦C. The transition from 400 ◦C to 575 ◦C comes with a
abrupt change in the relative phase Φ and also in the A/B ratio which increases
nearly by a factor of 4. At 650 ◦C no SHG signal could be detected.
The vibratonal phonon mode at ΩTO

6 yielded SHG signal up to 650 ◦C and
exhibits a much more gradual behavior of all fit parameters with no clear indi-
cation of a phase transition.
At ΩTO

7 , A gradually decreases, while B approaches zero, resulting in a de-
crescence of the A/B ratio up to 400 ◦C until it suddenly increases and with the
SHG signal the azimuthal dependence ultimately breaks off at 650 ◦C.
Azimuthal scans at ΩTO

8 show similar amplitudes of small and large lobes
which corresponds to a regime where A � B which is less sensitive to relative
changes of the χ(2) contributions. Therefore relative errors are high and no
clear trend with increasing temperature can be determined other than a general
decrease of SHG intensity with rising temperature. At 575 ◦C the SHG signal
down.
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Figure 5.4. Temperature dependent azimuthal SHG scans for four wavelengths in
SPP polarization. Data has been normalized and rotated by multiple integers of 120°
(as per symmetry) for better visibility. Dots mark the experimental data (normalized)
while solid lines mark the model fits.
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5. Results

5.3. Linear Spectroscopy: Reflectivity

Simultaneously and complementary to the nonlinear SHG spectra, linear mea-
surements of the reflectivity in dependence of the FEL frequency have been
conducted at a reflection angle of 60° using a pyroelectric detector. Results for
the P- and S-polarized beams are shown in figure 5.5.
Both spectra are dominated by two pronounced Reststrahlen regions, i.e.

regions of particularly high reflectance, ranging from approximately 450 cm−1

to 510 cm−1 and from 1065 cm−1 to 1300 cm−1 which are due to large TO-LO
phonon splittings of the respective vibrational modes (ΩTO

4 and ΩTO
7 ). Apart

from these prominent features, smaller but distinct features around TO reso-
nance frequencies ΩTO

3 ,ΩTO
5 and ΩTO

6 can be observed. As these phonon modes
have a much smaller TO-LO splitting (see section 2.3.2), their dedicated features
appear much sharper in the spectra. The spectral feature associated with the
phonon mode around ΩTO

8 shows a different behavior as it is located between
ΩTO

7 and ΩLO
7 and thus inside the corresponding Reststrahlen region. Also, it

has a smaller TO-LO splitting and thus a small oscillator strength. As a result
it causes a pronounced dip in the Reststrahlen band between ΩTO

7 and ΩLO
7 .

Generally, the applied model as discussed in section 3.2 describes the experi-
ment satisfactorily well as fit functions are in fair accordance with experimental
data. The measured data have been fitted with fixed phonon frequencies and
dampings according to [24] with the sample temperature as a free fit parameter.
Fitted temperatures were

TP = (67± 24) ◦C
TS = (35± 23) ◦C (5.3.1)

with errors calculated from the trust region fit algorithm (95% confidence bounds).
Nonetheless, a few characteristics of the measured spectra do not seem to be
modeled accurately by the simulation, especially in the pronounced Reststrahlen
regions where reflectance is high. Compared to the model, measured reflectivity
drops towards the red and blue ends of the lower and higher Reststrahlen bands,
respectively. This mismatch might be caused by nonperfect filter transmission
which becomes more noticeable at high reflectivities although unknown physical
reasons cannot be ruled out as well.

5.3.1. Temperature Dependence of the Reflectivity Spectrum

Reflected intensities in P-polarization were also measured in dependence of the
sample temperature. The measured data are shown in figure 5.6. Effects of
the increasing sample temperature on the reflectivity are clearly visible in the
spectra. While the reflected intensities taper off in general, some features in the
spectrum disappear almost entirely like peaks at ΩTO

3 and ΩTO
5 as well the dip

at ΩTO
8 in the upper Reststrahlen region. This is in accordance with the fact

that the E-modes with j = 3, 5, 8 are expected to become forbidden as quartz
enters its β-phase at TC = 573 ◦C. All observable features experience a spectral
broadening due to increasing damping coefficients as expected [24].
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5.3. Linear Spectroscopy: Reflectivity
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5. Results
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5.3. Linear Spectroscopy: Reflectivity

The measured reflectivity spectra have been fitted with temperature-dependent
phonon data taken from reference [24] leaving the sample temperature as the
only free fitting parameter. Results of these fits are listed in table 5.4.

Tset [◦C] Tfit [◦C]
28 49± 24

200 212± 25
400 377± 20
575 496± 15
650 653± 10

Table 5.4 Fit param-
eters of the reflectiv-
ity model as described
in section 3.2 to the
measured temperature-
dependent spectra. Er-
rors have been extracted
from the trust region al-
gorithm (95% confidence
bounds).

All fitted temperatures coincide with their respective nominal set tempera-
tures within or close to single error suggesting that the temperature measured by
the feeler gauges inside the probe heater matches the actual sample temperature
satisfactorily.
While the applied model generally describes the experimental results quite

well, it struggles to fit the behavior of the high reflectivity in the Reststrahlen
bands as already observed for the measurement at room temperature.
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6. Discussion

This chapter refers to the experimental results presented in the preceding chap-
ter and aims to assess and interpret the acquired data as well as to give physical
explanations of the observed effects.
Thereto, interpretations of the measured SHG spectra are given along with

possible improvements of the applied analysis methods. Afterwards, a compar-
ison of SHG spectroscopy with linear reflectivity measurements is given com-
prising an analysis of temperature dependencies for both techniques. This is
followed by a treatment of the unexpected behavior of the phonon mode at
ΩTO

6 . Ultimately, a possible phase transition from α-quartz to β-quartz is dis-
cussed based on the acquired results.

6.1. Interpretation of SHG Spectra

The SHG spectrum at room temperature shows distinct peaks at frequencies
coinciding with the TO phonon resonances for the E-modes (ordinary ray) of
quartz. While all resonances associated with the E-modes could be identified
in the spectrum, there is no indication of A2-type modes in the data, suggesting
that these measurements are solely sensitive to vibrational modes perpendicular
to the optic axis. This is most likely due to the fact that Fresnel transmission
coefficients tend to take very small values at phonon resonances parallel to the
optic axis [3], therefore strongly suppressing SHG signal at those resonance
frequencies.
The reason for the enhancement of the SHG signal at TO phonon resonances

becomes more clear when considering equation 2.2.10. Denominators D(ω) be-
come very small as the excitation wavelength approaches the TO phonon res-
onance causing an enhancement of the respective term and ultimately of the
second-order electric susceptibility χ(2) which itself affects the measured SHG
intensity as described by equation 2.0.1.
Apart from peaks directly attributed to TO phonon resonances, three clear

features of unknown origin could be observed: Two sharp peaks at 498 cm−1 and
550 cm−1 as well as one broad continuum ranging from approximately 570 cm−1

to 660 cm−1. A possible explanation for SHG enhancement aside from direct
phonon resonances in the lower-frequency region could be provided by outgoing
resonances of higher frequency modes which arise from the 1/D(ω1 + ω2) term
in equation 2.2.10. For SHG, we have ω1 = ω2 and thus outgoing resonances are
expected at half the incoming resonances’ frequencies. ΩTO

7 /2 = 533 cm−1 and
ΩTO

8 /2 = 579 cm−1 match those unattributed sharp features by a discrepancy
of 35 cm−1 and 29 cm−1, respectively. Another possibly more likely source for
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6. Discussion

the SHG enhancement at those frequencies are the highly dispersing Fresnel
transmission coefficients which can also be responsible for distinct features in
the spectra. Furthermore, the exact origin of the broad continuum around
620 cm−1 remains unclear. While an association with the phonon mode at ΩTO

5
is possible, it is noteworthy that unlike the adjacent phonon mode, the broad
feature does not wear off at temperatures higher than TC .
For a complete and thorough interpretation of the SHG spectra, it is necessary

to establish the theoretical framework to model the dispersion of the second-
order electric susceptibility χ(2)(ω). Due to the multitude of free parameters
which is owed to the generalization of Flytzanis’ model [19] to multiple phonon
resonances as sketched in section 2.2.2, reasonable approximations might be
necessary to apply the modified equations for fitting. One possible approach
would be to use the generalized χ(2)(ω) dispersion and neglect a majority of the
occurring cross-terms to reduce the model to the mainly contributing terms.
Additionally, a full treatment of Fresnel transmission coefficients is necessary as
those are highly dispersive in the vicinity of phonon resonances.

6.2. Nonlinear vs. Linear Measurements

One reason to measure the reflectivity along with the SHG spectra was to com-
pare the novel nonlinear approach of second harmonic phonon spectroscopy
to already established linear techniques as reflectance spectroscopy, especially
with regard to temperature sensitivity and response to the phase transition. For
better comparison, both SHG and reflectivity signals have been integrated over
selected frequency intervals to determine each of those techniques’ temperature-
dependent behaviors. Temperature kinetics over the whole spectral range are
shown in figure 6.1.

Figure 6.1 Temperature depen-
dence of SHG and reflectivity in-
tensities integrated over the en-
tire spectral range. Data normal-
ized.
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From the data it becomes clear that SHG measurements exhibit a significantly
higher contrast in the temperature dependence as linear reflectance measure-
ments do. Thus, SHG spectroscopy can be considered more sensitive to changes
in the sample temperature. While SHG intensities decrease in a very linear man-
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6.2. Nonlinear vs. Linear Measurements

ner throughout the entire temperature range up to TC , reflectivity exhibits a
clear kink at the 200 ◦C point and continues linearly from there. At TC however,
the SHG curve displays a significant change in its slope while the reflectivity’s
trend remains largely the same implying that nonlinear SHG measurements are
also more sensitive to the phase transition at TC in terms of intensity.
To distinguish different signal contributions from individual spectral features,

integrated intensities over different frequency intervals have been extracted that
can be associated with particular peaks in the spectra like phonon resonances
and also unattributed features like the broad continuum around 620 cm−1. In-
dividual integration intervals are listed in table 6.1 and the respective plots are
shown in figure 6.2.

Feature Integration interval [cm−1]
ΩTO

3 384 to 426
ΩTO

5 688 to 698
ΩTO

6 746 to 856
ΩTO

7 1052 to 1096
1070 to 1074

ΩTO
8 1152 to 1194

1168 to 1174
Continuum 578 to 658

Table 6.1 Integration intervals for
the temperature kinetics of SHG
and reflectivity spectra. For ΩTO

7
and ΩTO

7 additional narrow inter-
vals have been chosen to compare
peak broadness versus peak ampli-
tude.

For all integration intervals, except for the continuum where the reflectivity
is essentially featureless, SHG curves show a much larger contrast than reflec-
tivity curves affirming the previous conclusion that SHG spectroscopy is more
temperature-sensitive than reflectance spectroscopy, also at individual features.
At phonon modes that are expected to become forbidden in quartz’s β-phase,

i.e. ΩTO
3 , ΩTO

5 , ΩTO
7 and ΩTO

8 , SHG curves exhibit a nearly flat curve shape
beyond TC while simultaneously dropping to nearly zero intensity and therefore
leaving a kink around TC . An exception to this constitutes the phonon mode
at ΩTO

3 which, although being flat, retains a significant amount of remaining
intensity. A possible reason for that effect, might be the fact that the mode
at ΩTO

6 , a non-disappearing mode, has an outgoing resonance around ΩTO
3 as

ΩTO
6 ≈ 2ΩTO

3 . In contrast, at ΩTO
6 no observable change except for a continuation

of the gradual decrease in intensity is apparent at TC which concurs with the
fact that this mode is supposed to survive the phase transition.
A peculiar behavior of the SHG intensity can be observed at ΩTO

7 and ΩTO
8

where the SHG intensity at 400 ◦C is higher than at 200 ◦C. Additionally, smaller
integration windows at the respective peak positions have been chosen. The
value at 400 ◦C is clearly smaller for the narrow integration interval (dashed line)
implying that these peaks primarily gain in width rather than in amplitude as
the sample temperature rises.
The continuous feature scales in a very nonlinear fashion with temperature

before TC and exhibits a relatively flat curve shape beyond TC similar to other
features that wear off after the phase transition. It can thus be concluded that

57



6. Discussion

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700

α β

ΩTO
3

α β

ΩTO
5

α β

ΩTO
6In

te
gr
at
ed

I
SH

G
SP

P
(n
or
m
.)

α β

ΩTO
7

α β

ΩTO
8

α β

Cont.

Temperature [◦C]

SHG Reflectivity

Figure 6.2. Temperature dependence of SHG and reflectivity. Signals have been
integrated over frequency intervals that include particular features of the spectra.
For ΩTO

7 and ΩTO
8 additional narrow intervals has been plotted (dashed lines). The

plots suggest that the phase transition occurs between 575 ◦C and 650 ◦C (gray shade).
Data normalized.
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6.3. Anomaly at ΩTO
6

the unattributed continuous feature gets affected by the α→ β phase transition
and might possibly even be associated with the adjacent resonance at ΩTO

5 .

Unlike the SHG intensities, reflectivity displays very little to no change in
curve shape at the phase transition. A seemingly phase change-induced effect
occurs at ΩTO

3 where reflectivity starts to rise beyond TC . In fact, this increase in
reflectivity intensity is due to a broadening of the adjacent Reststrahlen region
associated with ΩTO

4 and the subsequent intensity “leakage” into the neighboring
feature and thus constitutes no real phase transition-induced effect. On the one
hand, this allows for the conclusion that intensity-wise SHG spectroscopy is a
more phase transition-sensitive tool. On the other hand, it has been shown
that reflectivity measurements turned out to be very sensitive to the α → β
phase transition of quartz when tracking spectral positions and dampings of
phonon resonances as the temperature increases [24], an approach that has not
been employed for SHG spectroscopy in the scope of this thesis but might yield
additional insight.

6.3. Anomaly at ΩTO
6

The phonon resonance at ΩTO
6 shows an unexpected behavior in two ways. First,

the azimuthal scan in PPP polarization exhibits a clear threefold symmetry,
while this configuration is expected to yield a sixfold symmetric azimuthal shape.
Secondly, temperature-dependent measurements under SPP polarization condi-
tions revealed that this phonon mode retains a clear azimuthal dependence, even
well above the phase transition temperature. This behavior does not match the
theoretical expectations for β-quartz and adds to the peculiarity of this phonon
mode.

The origin of this mismatch is yet to be investigated. A possible explanation
could be the presence of a surface mode on the sample which, due to the bro-
ken symmetry along the surface normal, exhibit different symmetry relations
in the χ(2) elements and therefore a different azimuthal behavior (see section
3.3.1). The observed threefold symmetric dependence of the SHG signal on the
azimuthal angle in PPP polarization is in accordance with the expected C6v sym-
metry (sixfold about optic axis) at the surface [6] which has been confirmed by
low-energy electron diffraction (LEED) [37] and helium atom scattering (HAS)
[38] studies. Given that the threefold symmetric modulation of the SHG sig-
nal is in fact due to surface vibrational modes, it still remains unclear why
the expectedly weak SHG signal coming from surface modes (compared to bulk
modes) would have such a strong effect on the measured signal as surface contri-
butions involve only a surface-near layer and therefore a much smaller number
of oscillators.
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6. Discussion

6.4. α→ β Phase Transition of Quartz

Results presented in this thesis reveal multiple indications of the α → β phase
transition of quartz. Firstly, temperature-dependent SHG spectra as presented
in section 5.1.1 show step-like changes in their SHG intensities at those spectral
features which belong to β-forbidden phonon modes of quartz. These abrupt
intensity drops occur between the measurement points at 575 ◦C and 650 ◦C, i.e.
shortly after the nominal transition temperature TC = 573 ◦C. These effects
also manifest in the temperature dependence of the integrated intensities shown
in section 6.2 where it becomes clear that SHG curves measured at β-forbidden
features experience an intensity drop to almost zero beyond TC . For reflected
intensities no similar behavior could be observed.
Secondly, temperature-dependent azimuthal scans also suggest that the phase

transition took place between nominal set temperatures between 575 ◦C and
650 ◦C. Scans at ΩTO

3 and ΩTO
8 lost all detectable SHG signals at 650 ◦C and

575 ◦C, respectively, while the SHG signal at ΩTO
7 showed a similar behav-

ior, even though the latter is allowed in the β-phase. Considering the heavy
temperature-induced broadening of the phonon mode at ΩTO

7 which might have
led to the loss of detectable SHG signal, these observations still allow for the
interpretation that quartz’s α → β phase transition actually took place. Fur-
thermore, fit parameters show strong indications of a phase transition as effective
χ(2) terms, A, B, and/or their relative phase Φ change abruptly at TC .
Only the phonon mode at ΩTO

6 , one of the two β-allowed phonon mode
amongst those being studied with azimuthal scans, retained a clear azimuthal
dependence over all measured temperature points although no azimuthal de-
pendence is expected from β-quartz (see section 3.3.2). In that sense, azimuthal
scans carry ambiguous interpretations. Most phonon modes lose their azimuthal
dependencies at the phase transition but since these phonon modes at the same
time also drop down to nearly zero intensity, the significance of azimuthal mea-
surements is compromised. On the other hand, at ΩTO

6 a strong azimuthal
dependence persists even after the phase transition.
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7. Summary & Outlook

In this thesis a novel approach on studying phonon resonances in non-centro-
symmetric materials has been successfully employed. For that, a non-collinear
autocorrelator setup which facilitates simultaneous SHG spectroscopy and re-
flectivity measurements, has been designed and built. Additionally, the use
of a probe heater in combination with a rotation mount has been established
enabling temperature- and azimuthal angle-dependent measurements. The ex-
periment benefited from the FHI FEL as a light source which provides tunable,
narrow-band and intense mid-IR picosecond laser pulses. Quartz served as a
model system to explore the means that this novel spectroscopy technique pro-
vides. Characteristic properties of quartz have been exploited to demonstrate
possible advantages of second harmonic phonon spectroscopy, including very
high sensitivity to phonon resonances, azimuthal dependence of the SHG inten-
sity offering access to the crystal symmetry and thus to contributing χ(2) tensor
elements as well as sensitivity to changes of the material’s crystal phase.
The measured spectra clearly indicate that second harmonic generation in

mid-IR indeed constitutes a viable means of spectroscopically probing phonon
resonances in non-centrosymmetric materials as well as their crystal structure.
Its nonlinear nature advantageously cause particularly sharp peaks at phonon
resonances as well as features that cannot directly be attributed to phonon
modes which remain of unknown origin up to this point but might provide ad-
ditional information in the future. Azimuthal scans were largely in accordance
with theoretical expectations except for the phonon mode at ΩTO

6 which ex-
hibited an unexpected behavior. Scans in PPP polarization revealed a clear
threefold symmetry while a sixfold symmetry was expected. Also temperature-
dependent measurements at ΩTO

6 in SPP polarization unexpectedly showed a
persistence of the azimuthal dependency well above the phase transition tem-
perature. These results suggest that there are still physical effects involved
in this phonon mode which are yet to be investigated. Furthermore, comple-
mentary reflectivity measurements have been employed. These measurements
were in satisfactory agreement with theoretical calculations in such a way as to
enable data fitting to extract actual sample temperatures. Compared to SHG
spectroscopy, linear reflectance measurements turned out to be less temperature-
sensitive in terms of intensity and showed very little sensitivity to the sample’s
phase transition in the integrated intensities, while considerable indications of
a phase transition could be observed with the nonlinear SHG technique.
For a more complete understanding and better interpretation of the data, a

working model describing the second-order nonlinear susceptibility’s dispersion
χ(2)(ω) at multiple phonon resonances needs to be developed. A practicable way
to do this could be to adopt Flytzanis’ theoretical framework [19] and extend it
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to multiple phonon resonances and apply reasonable simplifications like ignoring
scarcely contributing cross-terms. Additionally, to fully model the SHG spectra,
a complete treatment of Fresnel transmission coefficients is required.
In order to better understand the temperature-dependent behavior of the

material, fitting functions could be applied to the reflectivity data such that
instead of sample temperature, phonon frequencies and dampings are fitted.
This would enable studies of the temperature dependence of these quantities
which might yield additional insight and indications of the phase transition.
Also, peak positions and widths in the SHG spectra could be tracked to possibly
see indications of the material’s structural change.
While quartz has proved to be a very suitable candidate to demonstrate the

capabilities of second harmonic phonon spectroscopy, a clear long-term goal
of these experiments is to move away from model systems and apply these
newly introduced techniques to more interesting material systems. In order
to study phase transitions, it would be highly beneficial to approach materials
whose phase transition takes place at much lower temperatures as quartz’s high
transition temperature caused a heavy broadening of phononic features which
made SHG detection at temperatures near TC and above difficult. A lower
transition temperature would allow for investigations of structural changes in
the material while phononic features remain sharp.
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A. Gaussian Beams

A.1. Description

In order to describe the propagation of a laser beam in vacuum, it is highly
advisable to consider Maxwell’s equations which in vacuum, i.e. in the absence
of currents (J = 0) and charges (ρ = 0), take the considerably simplified form
(cf. equation 2.1.1):

∇× E = −1
c

∂B
∂t
,

∇×B = 1
c

∂E
∂t
,

∇ · E = 0,
∇ ·B = 0.

(A.1.1)

With the vector identity ∇ × (∇ ×X) = ∇(∇ ·X) − ∇2X, taking the curl of
the first two equations of A.1.1 yields the wave equations for the electric and
magnetic field [39]:

∇2E = − 1
c2
∂2E
∂t2

and ∇2B = 1
c2
∂2B
∂t2

. (A.1.2)

One possible solution for the wave equation A.1.2 is the spherical wave which
takes the following form for the electric field:

E(r, t) = A(r, t)e−i(ωt−kr)

|kr| . (A.1.3)

For lasers, we can assume a high degree of spatial coherence, meaning that we
can solely consider that part of the spherical wave that is near the longitudi-
nal axis (“paraxial”) and beams that are axially symmetric about the axis of
propagation which we define as the z-axis [40]. With these assumptions, we can
define a single transverse coordinate ρ, set kr = kr and since ρ � z, r, apply
the so-called Fresnel approximation, i.e. a Taylor series about ρ = 0 up to first
order [39]:

r =
√
z2 + ρ2 ' z + ρ2

2z . (A.1.4)

With these approximations, the spatial representation of the wave equation
A.1.2 reads:

E(r) = A(r)
|kr| eikr ' A(z, ρ)

kz
exp

(
ikρ

2

2z

)
eikz (A.1.5)
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w(z)

w0
√

2w0

b

zR

Θ z

Figure A.1. A Gaussian beam’s width profile w(z) near the beam waist. The beam
shape can be completely characterized either by its waist size w0 = w(0) and its
Rayleigh range zR = b/2, or by the real and imaginary parts of q(z).

which has a substantial similarity to a plane wave except for a phase shift
exp(ikp2/2x) called the Fresnel factor. Assuming a constant amplitude A(z, ρ) =
A0 and carrying out the complex substitution z → q(z) = z−izR (with zR being
a real number) yields [39]:

E(z, ρ) ' A0

kq(z) exp
(

i kρ
2

2q(z)

)
eikz (A.1.6)

which is known as the fundamental transverse electromagnetic mode or TEM00
mode. With

1
q(z) = z + izR

z2 + z2
R

= 1
R(z) + i 2

kw(z)2 , (A.1.7)

the Fresnel factor of A.1.6 can be split into its real and imaginary parts in the
following way [39]:

exp
(

i kρ
2

2q(z)

)
→ exp

(
i kρ2

2R(z)

)
exp


−

(
ρ

w(z)

)2

 (A.1.8)

where the complex part is a phase factor describing the wave fronts’ curvature
while the real part characterizes the beam profile. From this form, we can read
out a few characteristic parameters that describe the beam’s properties which
are also shown in figure A.1 where the beam intensity I(z, ρ) ∝ |E(z, ρ)|2 is
plotted.

A.2. Beam Parameters

For practical work with lasers, there are a few important parameters describing
the Gaussian beam. Those are:

Beam width The beam width w(z) corresponds to the spot size (defined as
the radius at which the field amplited fall to 1/e of their axial value) at
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position z along the beam axis. For a beam of wavelength λ, the beam
width is [41]:

w(z) = w0

√
1 +

(
z

zR

)2
(A.2.1)

where w0 = w(0) denotes the beam’s waist size given by w2
0 = λzRπ.

Rayleigh range The Rayleigh range zR is defined as the distance from the origin
where w(±zR) =

√
2w0. The confocal parameter b = 2zR = 2πw2

0/λ
denotes the depth of focus of the beam [41].

Radius of curvature R(z) indicates the radius of curvature of the wave fronts
comprising the beam. Its dependence on the position is given by [41]:

R(z) = z

[
1 +

(
zR
z

)2
]
. (A.2.2)

Divergence For z � zR, the beam width w(z) increases almost linearly with z.
Therefor a beam divergence can be defined as [39]:

Θ
2 = w0

zR
=
√

λ

πzR
. (A.2.3)

A.3. ABCD Law

One particularly useful property of Gaussian beams is that the effect of optical
elements on the beam can be calculated by applying the ABCD law of Gaussian
beam propagation. It states that in the paraxial approximation (small angular
displacements θ), any optical element can be represented by a 2×2 matrix with
entries A, B, C and D.
The beam is fully defined by its width w(z) and its slope dw/dz = tan θ ≈ θ

such that r = (w, θ) [41]. Now the beams r and r′, i.e. before and after passing
the optical element, respectively, are related by the linear transformation [39]:

r′ =
(
A B
C D

)
r. (A.3.1)

Some commonly used ABCD matrices are given in table (A.1). Using the
definition q(z) = z − izR, it can be shown that an ABCD matrix acts on the
parameter q(z) (which also fully describes the beam) in the following way [39]:

q′ =
(
A B
C D

)
⊗ q = Aq +B

Cq +D
(A.3.2)

where q and q′ describe, respectively, the parameter before and after passing the
optical element.
These properties allow for beamline simulations of given experimental setups

(see section 4.3).
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Table A.1. Four particularly important ABCD matrices. These linear transforma-
tions can be applied sequentially in order to model an entire beam path.

Optical element ABCD matrix

Propagation in free space over distance l
(

1 l
0 1

)

Thin lens/spherical mirror with focal length f
(

1 0
−1/f 1

)

Refraction at flat interface between two media
with refraction indices n1 and n2

(
1 0
0 n1/n2

)

Refraction at curved interface between two media
with refraction indices n1 and n2 and radius of curvature R

(
1 0

n1−n2
n2R

n1/n2

)
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