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S1. Emissions Datasets  
 
S1.1 U.N. Food and Agriculture Organization 2015 Forest Resource Assessment 
 
The FAO-FRA 2015 defines natural forests as non-managed land with tree heights 
greater than 5 m, and a minimum canopy cover of 10 percent. Notably, this 
definition differs from those of MODIS-and-MERIS based remote-sensing studies, 
that require a minimum 60% canopy cover for the International Geosphere 
Biosphere program or 15% for the UN Land Cover Classification System (Poulter et 
al. 2011 GMD). Estimates of carbon stock-change in live biomass for different forest 
cover types are obtained through Tier 1 country-level reporting (IPPC Guidelines for 
National GHG Inventories 2006) and presented in the 2015 Forest Resource 
Assessment. Annual estimates of carbon stocks are obtained through linear 
interpolation from data in five-year reporting intervals. Land use emissions from 
deforestation, degradation or regrowth, are estimated by multiplying the carbon 
stock changes and the net area change in forest cover, whereas soil carbon flux and 
gross changes in land cover are not included for forested lands. The FAO-FRA also 
includes other land cover classes as a subset of agricultural lands, such as fallow 
land, permanent cropland, arable land, and temporary cropland. On agricultural 
lands, delayed or legacy, carbon emissions from the degradation of organic soils are 
included in the carbon emission estimates, but carbon emissions from product pools 
are not included. The soil carbon emissions are estimated as the area of managed 
land multiplied by climate-specific emissions factors reported in IPCC, 2006: Vol. 4, 
Ch. 5, Tab. 5.6. Data was downloaded via the FAO Statistics Division (FAOSTAT) 
website (http://faostat.fao.org/). 
 
S1.2 Emission Database for Global Atmospheric Research 
 
EDGAR v4.3 (Petrescu et al. 2012) defines forest cover based on land cover 
delineations from the Global Land Cover (GLC 2000) map and the FAO Global 
Ecological Zone (GEZ) map to determine vegetation classes, and ultimately, the 
forest area. In EDGAR v4.3, the change in forest area was estimated by multiplying 
the fractional change in area from FAO-FRA reports, at the country level, and the 
forest area estimated by EDGAR v4.3 methodology at the country level. Emissions 
from deforestation were obtained by multiplying carbon stock emission factors per 
unit of area at the country-level, obtained from Tier 1 reporting (IPCC 2006), and 
the deforested area. Similar to the FAO-FRA approach, only emissions from net 
deforestation are estimated. However, EDGAR v4.3 also includes carbon emissions 
from fires (including fires from deforestation and forest degradation; natural fires in 
grasslands, savannas and forests; agricultural waste burning; and peat fires) using 
the Global Fire Emissions Database v3.1 (GFED) (van der Werf et al. 2010), which 
also includes carbon emissions from peat fires. A unique feature of the EDGAR v4.3 
data is its inclusion of emissions from harvested wood products, obtained from FAO 
statistics on forest products production, import and export statistics. Emissions 
from wood harvest are instantaneous emissions and they reported as a separately in 
this study in order to make adequate comparison to estimates from other methods 

http://faostat.fao.org/
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that did not include this component emission. Forest regrowth was estimated using 
growth and yield equations summarized by dominant vegetation types with 
parameterization by eco-climate zones specific to each continent (Tier 1, IPCC 
2006). For extended review of EDGAR v4.3, see Petrescu et al. (2012). 
 
S1.3 Houghton et al. (2012) 
 
A bookkeeping model refined with more accurate data (Houghton 2010), which uses 
FAO-FRA statistics for present-day estimates of forest area and carbon stocks; 
annual statistics were obtained by interpolation between the 5-year FRA reporting 
schedule. The model estimates immediate carbon emissions from wood harvest and 
deforestation and long-term, legacy, carbon fluxes by tracking the per hectare 
carbon density in vegetation, soil and litter carbon pools. Average carbon stock per 
hectare was assigned based on ecosystem type (Houghton 2010). Forest regrowth 
was modeled, but it does not include the feedback of changes in climate or 
atmospheric CO2 on biomass stocks. Carbon emissions from peat fires were not 
included in these estimates. Carbon emissions from wood harvest and shifting 
cultivation (gross land use changes), both of which increased the net LULCC 
emissions by 28% in the tropics compared to studies that did not include wood 
harvest or shifting cultivation (Houghton 2010). 
 
S1.4 Pan et al. (2011) 
 
The LULCC emission estimates for Pan et al. (2011) were taken from the published 
article. In their study, separate methods were applied for calculating forest area, 
land use change, and carbon stock in regions corresponding to East Asia and 
Southeast Asia in this study. For China (East Asia, this study), Pan et al. determined 
forest area from country-level forest inventories using a forest definition of >20% 
canopy coverage. Carbon stock was determined using biomass expansion factors for 
each forest type in the inventory. Soil carbon to 1 m depth was estimated using a 
ratio of soil carbon to vegetated biomass. For Japan and Korea (East Asia, this 
study), forest area was estimated from systematic national forest inventories. 
Carbon stock was estimated from allometric relationships between above- and 
below-ground biomass and stem volume (biomass expansion factor), developed 
from the inventory data. For tropical Asia (Southeast Asia, this study), forest area 
was determined for intact forests, based on FAO-FRA reports and FRA forest 
definitions, whereas area of secondary forests were determined based on data from 
the Houghton et al. (2010) and Houghton (2012) bookkeeping model, which also 
incorporated FRA 2015 statistics. Carbon stock for tropical Asia was determined 
from the average carbon density estimate for tropical Africa and America because 
carbon stock data in tropical Asia were lacking at the time of their publication. Loss 
of soil carbon due to soil respiration (legacy flux) was not included. Changes in soil 
carbon stocks are not included in their emission estimates. Carbon emissions from 
wood harvest were included. 
 
S1.5 Dynamic Global Vegetation Models 



Supplementary Material 4 

 

 
Dynamic global vegetation models, or DGVMs, are ecosystem models that estimate 
growth and allocation of carbon using physiological representations. The DGVMs 
only required that land cover be distinguished to natural and managed fractions, 
with sub-tiles in each category corresponding to plant functional types, crop 
functional types or pasture. Above and belowground carbon stocks are thus a 
feature predicted by the model rather than prescribed parameters.  The DGVM 
ensemble used prescribed land cover data directly or derived from the HYDE 
dataset (Goldewijk 2001) to simulate land cover change. The DGVM ensemble 
included 8 models from the ‘Trends in net land carbon exchange’ (TRENDY2) 
project, which varied in terms of PFTs, physiology, and demographic processes. 
Most models simulated net land use change, whereas CLMv4.5, LPX and VISIT 
models simulated gross changes in land use, i.e., the simultaneous clearing of forest 
for agriculture and abandonment of cropland in equal amounts. This means that 
models that simulated only net land use changes likely underestimate processes like 
shifting cultivation, which may result in no net loss of forest cover, but be associated 
with high land use emission fluxes (Houghton et al. 2012, Wilkenskjeld et al. 2014). 
Factorial model simulations were used to separate the effects of a time-varying 
climate and atmospheric CO2 from emissions originating from LULCC. This DGVM 
simulation setup is equivalent to the “D3” uncoupled DGVM simulation detailed in 
Pongratz et al. (2014) and includes LULCC fluxes from net transitions, legacy fluxes, 
and loss of additional carbon sink capacity. The DGVM models simulated LULCC for 
years between 1901 and 2012; a detailed protocol of the simulation setup is 
provided by the Global Carbon Project TRENDY2 protocol (Sitch et al. 2015).  
 
S1.6 Tao et al. (2013) 
 
The LULCC emission estimates for Tao et al. (2013), taken from the published 
article, are provided as a comparison to the DGVM estimates analyzed in this study. 
In Tao et al. (2013), LULCC was defined by HYDE v3.1 (Goldewijk et al. 2011); only 
net land use changes were modeled. Carbon densities were estimated by a unique 
DGVM, the Dynamic Land Ecosystem Model (DLEM). DLEM also included effects on 
the carbon cycle from cropping system (e.g. non-wood harvest, rotation, fertilization 
and irrigation). Emissions from LULCC were estimated as the difference between 
simulations with- and without- land use change; the “D3” simulation setup in 
Pongratz et al. (2014). 
 
S1.7 Achard et al. (2014) 
 
The LULCC emission estimates for Achard et al. (2014) were taken from the 
published article. Tropical natural and managed forest cover were mapped at 3 ha 
spatial resolution using remote sensing surveys and automatic object-oriented 
classification on a combination of satellite imagery from TM Landsat 4,5 (1990) and 
ETM+ Landsat 7 (2000), as well as RapidEye, AVNIR-2, Kompsat, and Deimos-1 
sensors imagery in 2010. Forest cover was defined as the summation between areas 
where canopy cover was greater than 70%, and one-half of the area where canopy 
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cover is 30-70%. Forest area change was determined as the difference in forest area 
delineations between satellite imagery in the reference year (1990, 2000) and 2010. 
Any deforestation or forest degradation occurring between 1990 and 2010, which 
may not have been captured in the imagery, would have been missed by the 
analysis. Carbon stock was determined using three independent data sources; these 
were Baccini et al. (2012), Saatchi et al. (2012), and the FAO Global Ecological Zone 
(GEZ) map combined with Tier 1 (IPCC 2006) carbon stock factors. Forest regrowth 
was determined as in EDGAR v4.3 (section 2.1.2, above). 
 
S1.8 Harris et al. (2012) 
 
The LULCC emission estimates for Harris et al. (2012) were taken from the 
published article. Forest cover was mapped at 30 m resolution based on remote 
sensing surveys that applied stratified sampling of MODIS and Landsat ETM+ data. 
Carbon stock estimates were based on Saatchi et al. (2012) spatially-explicit 
biomass maps, which are based on GLAS lidar-derived tree heights combined with 
height-biomass allometric equations. Although Harris et al. (2012) describe their 
estimates as gross emissions they do not explicitly estimate emissions from shifting 
cultivation. Instead, the authors define their gross emissions as estimates that 
include committed (i.e. immediate) carbon emissions, while excluding forest 
regrowth and long-term carbon storage from wood products. Harris et al. (2012) do 
not include soil carbon fluxes (legacy flux). 
 
S2. DGVM models, forcing datasets, and simulation protocols 
 
S2.1 Land Use and Land Cover Change (LULCC) Dataset 
 
LULCC was prescribed using the history database of the global environment (HYDE) 
dataset (Goldewijk 2001), which provides land use for both cropland and pasture as 
a fraction of a gridcell (0.5°) at an annual timestep from 1860 to 2012. The HYDE 
dataset is based on a statistical downscaling method that uses population as a proxy 
for agricultural activity, which was calibrated with modern data sources and 
hindcast for the historical period. Given the change in managed lands, DGVM 
modeling groups were responsible for determining rules for the land cover 
transitions (e.g. primary forest -> agriculture, or secondary forest -> agriculture, or 
grassland -> agriculture). One approach for estimating areal changes in forest is 
demonstrated in this study (Section SM4.1); this approach assumes an area-
equivalent loss of forest for an increase in cropland or pasture. A few of the models 
(CLM4.5, LPX, VISIT) simulated gross land use transitions (i.e., from shifting 
cultivation), using wood harvest mass prescribed by the HYDE dataset. Additionally, 
CLMv4.5 and VISIT also included carbon fluxes from crop and wood harvesting, as 
well as irrigation and nitrogen fertilization of crops. 

 
S2.2 Climate and CO2 Datasets 
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We used CRU or CRUNCEP reanalysis climate data (1901-2012) at a spatial 
resolution of 0.5 degrees. Global atmospheric CO2 concentrations were prescribed 
at 287.14 ppm during the spin-up phase of the simulations (prior to year 1860), 
whereas annual (1860-2012) time-varying CO2 data were obtained from ice core 
datasets and from the National Oceanic Atmospheric Administration and were used 
in transient simulations. 
 
S2.3 Dynamic Global Vegetation Models and Simulation Setup 
 
LULCC emissions were estimated from an ensemble of Dynamic Global Vegetation 
Models (DGVM) that participated in the TRENDY2 model inter-comparison (Table 
S1). DGVMs were run for two land use change scenarios: a changing climate without 
LULCC (S2) and with LULCC (S3). The simulation setup is equivalent to the “D3” 
uncoupled DGVM simulation detailed in Pongratz et al. (2014). The factorial 
simulation allowed us to isolate emissions occurring from LULCC, independent of 
climate feedbacks. The carbon fluxes were obtained as Network Common Data Form 
(netcdf; Rew and Davis 1990) files and processed with the ncdf (Pierce 2011) and 
raster (Hijmans and van Etten 2012) package in R. The carbon emissions from 
LULCC were determined as the difference in Net Biome Production (NBP; defined as 
GPP – Rh – Fire Emissions, sensu Chapin III et al. 2006) between scenarios S3 and S2. 
Regional summaries in Asia were assessed using a regional mask provided by the 
Asia Pacific Network for Global Change Research. Graphical plots of the data were 
produced with the ggplot2 (Wickham 2009) package in R. 
 
The TRENDY2 Protocol required three simulation phases, (i) spin-up, (ii) transient 
1860-1900, and (iii) transient 1901-2012. During spin-up, DGVMs were run to 
equilibrium using a constant CO2 concentration of 287.14 ppm, a recycled 20-yr 
climate (preserving the mean and inter-annual variability) from the early decades of 
the 20th century (1901-1920), and a constant crop and pasture fractional 
distribution from the year 1860. The second phase (ii) of the simulation, transient 
1860-1900, required that DGVMs continue to use the 20-yr recycled climate as in 
phase (i), and use time-varying CO2 concentrations as prescribed by the data, and 
either a constant land use for scenario S2 or a time-varying LULCC for scenario S3, 
as prescribed by HYDE. In the final phase (iii) of the simulations, all DGVMs used 
time-varying CO2 concentrations, time-varying climate data, and either a constant 
land use for scenario S2 or time-varying LULCC for scenario S3. 
 
S3.1 Methods for Evaluating Biases in DGVM-modeled Carbon in Biomass 
 
Baccini et al. (2012) estimated aboveground biomass of tropical forests using lidar 
returns of tree height from the GLAS sensor aboard the ICESAT satellite and relating 
the heights to allometric equations derived from ground-based measurements. The 
DGVMs simulated carbon stocks at the full extent of all regions in this study, 
whereas the Baccini et al. (2012) dataset only provided data in the tropics. 
Therefore, we clipped the geographic extent of the DGVM datasets to match the 
extent of the Baccini et al. (2012) data. For comparison between DGVM total carbon 
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in biomass and Baccini et al. (2012) aboveground biomass, we made a simplifying 
assumption for a ratio of 0.70 for aboveground biomass to total biomass, and also 
assumed that carbon was 50% of biomass; the JULES model assumed that carbon 
was 40% of biomass.  
 
S3.2 Methods for Cluster Analysis of Land Use Flux (LU flux) Estimates 
 
A cluster analysis was performed on LU flux estimates that were available for both 
the 1990s and 2000s (i.e., as a vector of estimates for 1990s and 2000s); all DGVM 
estimates were analyzed as separate estimates. A distance matrix was calculated on 
the LU flux vectors (Pg C), and the Euclidean distance between vectors was then 
used to determine unique clusters, regardless of the method (e.g., bookkeeping or 
DGVM).  
 
S4. Results for Trends in Forest Asia and Carbon in Biomass 
 
S4.1 Changes in Forest Area 
 
In Southeast Asia during the 1990’s, the FAO reported a decline in the forest area (-
2.55 Mha yr-1), which was higher than estimates by Achard et al. (2014) (-1.78 Mha 
yr-1), Stibig et al. (2014) (-1.75 Mha yr-1 ± 0.26 S.E.), Kim et al. (2015) using Landsat 
data (-1.22 Mha yr-1), and the HYDE data model (-0.73 Mha yr-1). During the 2000s, 
the FAO-FRA reported a decline in forest area (-1.16 Mha yr-1), which was of slightly 
lower magnitude than the their estimates in the 1990’s. A decreasing trend in forest 
loss, compared with individual estimates from 1990’s, was also present in estimates 
by Achard et al. (2014) (-1.44 Mha yr-1), and Stibig et al. (2014) remote sensing 
studies (-1.45 Mha yr-1 ± 0.25 S.E.). In contrast, Kim et al. (2015) reported increasing 
forest loss in the 2000s (-1.99 Mha yr-1) compared to their 1990’s estimate. The 
HYDE data model also suggested an increasing trend in forest loss during the 2000’s 
(-1.28 Mha yr-1). Even though the trend estimates differ among methods the 
magnitude of the estimates of forest loss are similar in the 2000’s. 
 
Published estimates, independent of FAO-FRA, on the magnitude of change in forest 
area for East and South Asia are scarce. In East Asia during the 1990’s, the FAO-FRA 
reported an increase in forest area during the 1990’s (+1.76 Mha yr-1), whereas the 
HYDE data model suggested a decline in forest area during the 1990’s (-0.45 Mha yr-

1). In the 2000’s the FAO-FRA reported an increase in forest area (+2.70 Mha yr-1), as 
did the HYDE data model (+0.91 Mha yr-1). In South Asia during the 1990’s, both the 
FAO-FRA (-0.0065 Mha yr-1) and HYDE (-0.22 Mha yr-1) reported a decrease in 
forest area. However, in South Asia during the 2000’s, the FAO-FRA reported an 
increasing forest area (+0.21 Mha yr-1) compared to their estimates from the 1990’s, 
as did the HYDE data model (+0.24 Mha yr-1).   
 
S4.2 Carbon in Biomass 
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For all regions in this study, the total carbon in above and belowground live 
biomass, excluding litter and soil mineral carbon, reported by the FAO-FRA was 
34.67 Pg C, whereas all DGVMs simulated higher total carbon in biomass, but 
individual DGVM estimates varied widely ([44.35, 121.63] Pg C). The wide range in 
estimates was driven largely by differences in simulated carbon in the Southeast 
Asia region (aboveground biomass in Figure S2). The standard deviation in total 
carbon in biomass across regions was largest in Southeast Asia (± 38.51 Pg C), 
followed by East Asia (± 14.31 Pg C), and lowest in South Asia (± 4.38 Pg C). The 
DGVMs were in moderate agreement and suggested that 43-72% of total carbon in 
biomass from all regions came from Southeast Asia. Although the FAO-FRA reported 
much lower total carbon in biomass across all regions (Figure S2), the contribution 
of carbon in biomass from Southeast Asia (70% of total carbon in biomass) was 
consistent with the DGVMs.  
 
The discrepancies among estimates from FAO-FRA statistics and individual DGVM 
models become more apparent when compared with the Baccini et al. (2012) and 
Liu et al. (2015) remote sensing estimates of carbon in aboveground live biomass 
(Figure S3). Baccini et al. (2012) and the Liu et al. (2015) estimates were in general 
agreement among the countries for which estimates were available in both studies. 
The FAO-FRA statistics were consistently below Baccini et al. (2012) and the 
difference ranged from 0.31 to 9.43 Pg C below Baccini et al. (2012) estimates, with 
the highest difference occurring in Indonesia (Figure S3). The CLMv4.5 and OCN 
models simulated carbon in aboveground live biomass that was consistently higher 
than the Baccini et al. (2012) benchmark (Figure S3).  The CLMv4.5 model allocates 
an increasing fraction of NPP to woody biomass with increasing NPP in order to 
positively correlate the turnover of carbon in vegetation with productivity, but this 
results in a overestimated biomass in tropical forests (see Figure 4 in Negron-Juarez 
et al. 2015); the reason for the bias of OCN is unclear. The ORCHIDEE model lacked 
full coverage in insular Southeast Asia, and its estimates are therefore lowest among 
all the DGVMs. For Southeast Asia, when these three DGVMs were removed from the 
DGVM ensemble, the range in decadal mean land use flux (i.e., uncertainty in DGVM 
ensemble) is reduced by 38%, or 0.26 Pg C yr-1 in the 1990’s, and by 27%, or 0.14 Pg 
C yr-1, in the 2000’s (Table S3). We thus exclude estimates made by CLMv4.5, OCN, 
and ORCHIDEE DGVMs in our reported emission estimates for the Southeast Asia 
region below.  
 
Benchmark data for the other regions are lacking, and it is clear that FAO-FRA are an 
inadequate benchmark for determining DGVM bias (Figure S2). We made inferences 
from the country-level comparisons between Baccini et al. (2012) and Liu et al. 
(2015), which suggested good agreement among these independent studies (Figure 
S3). Therefore, the estimates for carbon in aboveground biomass from Liu et al. 
(2015) were used as a benchmark reference for the East and South Asia regions to 
justify omitting DGVM models that might be biased too high in their carbon stock 
estimates. We support the omission of the CLMv4.5, JULES, and OCN models from 
DGVM estimates in East Asia, because they corresponded to a difference of 14.2, 
18.8, and 11.4 Pg C from the Liu et al. (2015) estimates, respectively. All DGVM 
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models were retained in the estimates for South Asia.  Although the carbon 
emissions from the DGVMs vary widely, both within and among models (Figures S4-
6), we feel that we successfully reduce and constrain our uncertainty in the emission 
estimate through the omission of biased models. 
 
S4.3 Cluster Analysis for LU flux estimates in 1990s and 2000s 
 
In Southeast Asia, most estimates suggested a general decline in emissions between 
decades, except for FAO-FRA. The FAO-FRA lacked a response in the regrowth sink 
to climate, which was present in the DGVMs, and it also utilized country-level carbon 
stock estimates, which together, resulted in higher LU fluxes than many DGVMs (Fig. 
S7). In Southeast Asia, higher LU fluxes from CLMv4.5 and OCN are due to a higher 
simulated biomass, whereas VISIT simulated biomass within range of the 
benchmark data, but it was singular in that it included fluxes from land management 
(Fig. S7). In East Asia, the Inventory and Bookkeeping methods lacked a response to 
climate and do not include legacy emissions; the latter is probably driving the larger 
LU flux estimate from the DGVMs (Fig. S8). In South Asia, the ORCHIDEE model, 
exhibited high inter-annual variability, suggesting a high-sensitivity to climate, 
which resulted in a higher overall LU flux estimate (Fig. S9). When comparing the 
OCN model to benchmark biomass data, it simulated higher biomass than other 
models, which probably drove the higher LU flux estimates in South Asia, as its 
estimate in other regions was also higher than other DGVMs. As in East Asia, VISIT 
was within range of the benchmark data for biomass, but it was unique in that it 
simulated carbon fluxes from wood harvest and land management.  
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S6. Tables  
 
Table S1. Dynamic Global Vegetation Models (DGVM). 

DGVM Abbreviation Reference 
Community Land Model CLM 4.5  Lawrence et al. 2011 
Joint UK Land Environment Simulator JULES   Clark et al. 2011 
Lund-Potsdam-Jena LPJ  Sitch et al. 2003 
Lund-Potsdam-Jena General Ecosystem 
Simulator 

LPJ-GUESS  Smith et al. 2001 
Land surface Processes and eXchanges LPX  Prentice et al. 2011 
Organising Carbon and Hydrology In Dynamic 
Ecosystems (ORCHIDEE) 

ORCHIDEE  Krinner et al. 2005 
Modified ORCHIDEE incld. a coupled carbon-
nitrogen cycle 

OCN  Zaehle, Friend 2010 
Vegetation Integrative SImulator for Trace gases 
Trace gases 
 

VISIT  Ito et al. 2007 
 

Table S2. Countries by Regions used in this study. 

Region Country 

Southeast Asia 

Brunei 

Cambodia 

Indonesia 

Laos 

Malaysia 

Myanmar 

Papua New Guinea 

Phillipines 

Singapore 

Thailand 

Timor-Leste 

Vietnam 

 

  

East Asia 

China 
Democratic People's Republic of 
Korea 

Japan 

Mongolia 

Republic of Korea 

Taiwan 

  

South Asia 

Bangladesh 

Bhutan 

India 

Nepal 

Pakistan 
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Sri Lanka 
Table S3. Decadal emission estimates from Land Use and Land Cover Change 
in Southeast Asia, obtained from an ensemble Dynamic Global Vegetation 
Models (DGVMs). The complete set in the DGVM ensemble is {CLM4.5, JULES, 
LPJ, LPX, OCN, ORCHIDEE, VISIT}. The ORCHIDEE model is omitted in both 
ensemble groupings below due to lack of coverage in insular Asia. An 
alternate ensemble grouping omits the CLM4.5 and OCN models from the 
estimates due to unreasonably high modeled biomass, as determined by 
evaluation against a remote-sensing-based biomass dataset (Baccini et al. 
(2012). 

DGVM ensemble Decade N Mean S.D. Max. Min. 

no ORCHIDEE 
1980-
1989 

7 0.269 0.171 0.573 0.107 
no ORCHIDEE, CLM4.5, 

OCN 5 0.194 0.112 0.390 0.107 

       no ORCHIDEE 
1990-
1999 

7 0.376 0.218 0.734 0.127 
no ORCHIDEE, CLM4.5, 

OCN 5 0.286 0.164 0.538 0.127 

       no ORCHIDEE 
2000-
2009 

7 0.348 0.167 0.562 0.165 
no ORCHIDEE, CLM4.5, 

OCN 5 0.283 0.149 0.532 0.165 
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S7. Figures 
 

 

  

Southeast Asia

East Asia

South Asia

−2

0

2

4

−10

0

10

−2

−1

0

1

2

1980 1985 1990 1995 2000 2005 2010 2012

1980 1985 1990 1995 2000 2005 2010 2012

1980 1985 1990 1995 2000 2005 2010 2012

C
h

a
n
g

e
 i
n

 A
re

a
 f

ro
m

 P
re

v
io

u
s
 Y

e
a
r 

( 
M

 h
a
 )

HYDE: Agriculture
   FRA: Agriculture
   FRA: Forest

Figure S1. Change in forest area and agricultural land as compared with 
the preceding year. The Forest Resource Assessment (FRA) 2015 reports 
{1990,1995,2000,2000} provide country-level statistics; annual 
estimates were obtained through linear interpolation between reporting 
years. The HYDE (Goldewijk 2001) database is used to prescribe land use 
change in the DGVM model simulations. The DGVM simulations assume 
that increases in agricultural land result in equivalent losses in forest 
area. 
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Figure S2. Carbon in aboveground biomass estimated by the DGVMs (black 
text) for each geographic region in this study. The Forest Resource 
Assessment report in 2010 (FRA2010, green text) provides country-level 
biomass statistics using Tier 1 methods, but lack spatial heterogeneity. 
Regional estimates also presented from Liu et al. (2015) (red text), an 
independent remote-sensing study using microwave radiation from 
satellite observations. 
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Figure S3. Carbon in aboveground biomass for each country in the Baccini et al (2012) biomass dataset (blue text) 
that was within the geographic extent of this study; estimates from the DGVMs used in this study (black text), circa 
2008 to match year of Baccini data; Tier 1 statistics from the Forest Resource Assessment 2010 report (FRA2010, 
green text); estimates also presented from Liu et al. (2015) (red text), an independent remote-sensing study using 
microwave radiation from satellite observations. DGVM datasets were clipped to match the extent of Baccini et al. 
(2012) data. FRA2010 data for Singapore are unavailable. 
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Figure S4. Carbon emissions from LULCC (Land Use Flux) in Southeast Asia obtained the 
DGVM ensemble (boxplots are the interquartile range (inter-annual variability) with the 
median line, whiskers extend 1.5 times the IQ range). CLM is version 4.5. ORCHIDEE 
generally lacks of coverage over insular Asia. Individual DGVMs show the general increase 
in carbon emissions to the atmosphere after the 1980’s, but few of the models show a 
decrease in LU fluxes from the 1990’s to the 2000’s. 
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Figure S5. Carbon emissions from LULCC (Land Use Flux) in East Asia obtained the DGVM 
ensemble (boxplots are the interquartile range (inter-annual variability) with the median 
line, whiskers extend 1.5 times the IQ range). CLM is version 4.5. The DGVMs show the 
general decline in carbon fluxes from the 1980’s through the 2000’s, which is mainly the 
result of extensive forest regrowth and afforestation efforts in the region. This decline in 
LU fluxes is also present in FAO statistics and EDGARv4.3 emissions statistics.  
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 11 
 12 

Figure S6. Carbon emissions from LULCC (Land Use Flux) in South Asia 13 

obtained the DGVM ensemble (boxplots are the interquartile range (inter-14 

annual variability) with the median line, whiskers extend 1.5 times the IQ 15 

range). CLM is version 4.5. The OCN, ORCHIDEE, and VISIT DGVMs estimate 16 

high fluxes In South Asia, but the driving mechanisms are unclear. 17 
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 21 
Figure S7. Land use fluxes (LU flux) in 1990s versus 2000s for Southeast Asia, 22 

for all 8 DGVMs (CLM is version 4.5), FAO-FRA (2015), the bookkeeping model  23 

(Houghton2012), Achard et al. 2014 (Achard2014) and Pan et al. 2011 24 

(Pan2011). The symbol and color groups represent distinct groupings from a 25 

clustering algorithm based on the average Euclidean distance of the LU fluxes 26 

in each estimate for both decades. The diagonal (1:1) line represents LU fluxes 27 

that are similar between decades.  28 
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 30 
Figure S8. Land use fluxes (LU flux) in 1990s versus 2000s for East Asia, for all 31 

8 DGVMs (CLM is version 4.5.), FAO-FRA (2015), the bookkeeping model  32 

(Houghton2012), and Pan et al. 2011 (Pan2011). See Figure S7 legend for 33 

additional details.  34 
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 36 
Figure S9. Land use fluxes (LU flux) in 1990s versus 2000s for South Asia, for 37 

all 8 DGVMs (CLM is version 4.5), FAO-FRA (2015), the bookkeeping model  38 

(Houghton2012). See Figure S7 legend for additional details.  39 

 40 

South Asia

−0.05 0.00 0.05 0.10 0.15 0.20 0.25

−
0

.0
5

0
.0

0
0
.0

5
0
.1

0
0
.1

5

1990s LU flux  (Pg C yr
-1)

2
0
0

0
s
 L

U
 f
lu

x
  
(P

g
 C

 y
r-

1
)

Increased LU flux

 1990s to 2000s

Decreased LU flux

 1990s to 2000s

JULES
LPJ

LPJG
LPX

OCNORCHIDEE

VISIT

CLM

Houghton2012FAO−FRA


