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Automated assembly of oligosaccharides
containing multiple cis-glycosidic linkages
Heung Sik Hahm1,2, Mattan Hurevich1,w & Peter H. Seeberger1,2

Automated glycan assembly (AGA) has advanced from a concept to a commercial

technology that rapidly provides access to diverse oligosaccharide chains as long as 30-mers.

To date, AGA was mainly employed to incorporate trans-glycosidic linkages, where C2

participating protecting groups ensure stereoselective couplings. Stereocontrol during the

installation of cis-glycosidic linkages cannot rely on C2-participation and anomeric mixtures

are typically formed. Here, we demonstrate that oligosaccharides containing multiple

cis-glycosidic linkages can be prepared efficiently by AGA using monosaccharide building

blocks equipped with remote participating protecting groups. The concept is illustrated by the

automated syntheses of biologically relevant oligosaccharides bearing various cis-galactosidic

and cis-glucosidic linkages. This work provides further proof that AGA facilitates the synthesis

of complex oligosaccharides with multiple cis-linkages and other biologically important

oligosaccharides.
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C
arbohydrates are the most abundant biomolecules on
earth and serve many functions, including structure,
nutrition and information transfer1. The structural

diversity and complexity of natural glycans, combined with the
lack of amplification and expression methods, renders their
isolation difficult and often impossible. The synthesis of complex
glycans is time consuming and is performed by specialists.
Automated glycan assembly (AGA) on solid support2,3 has
accelerated the procurement of defined oligosaccharides for use as
molecular tools on glycan arrays4 and as part of vaccines5. Using
automated synthesis, oligosaccharides as large as 30-mers6 that
represent different subclasses of glycans, including glycolipids7

and glycosaminoglycans8, are now accessible. AGA utilizes
monomeric building blocks that are combined on a synthesizer
executing a set of preprogrammed commands that are combined
into modules9. To date, a set of monosaccharide building blocks
has been identified for the efficient and reliable incorporation of
trans-glycosidic linkages during AGA. These monomeric building
blocks commonly take advantage of a C2 neighbouring group
participation to ensure exclusive trans-glycosylations. Most
oligosaccharides assembled by AGA to date contained either
exclusively or predominantly trans-glycosidic linkages aside from
few exceptions10,11. The selective formation of a 1,2-cis-glycosylic
linkage during AGA of the tumour-associated hexasaccharide
antigen Globo-H10, as well as a b-(1,4)-mannuronic acid
alginate 12-mer containing 1,2-cis-mannosides11 relied on C2

non-participating protecting groups and benefited from leaving
group effects10 and conformational influences11.

Stereoselective formation of 1,2-cis-glycosidic linkages still
remains challenging12–16, because non-participating C2 prote-
cting groups generally lead to mixtures of stereoisomers that have
to be separated at the end of the synthesis (Fig. 1a). Various
strategies for the stereoselective synthesis of 1,2-cis-glycosides
have been described (Fig. 1). Intramolecular aglycon delivery
(IAD)12, where the nucleophile is transferred from the adjacent
C2 carbon to the anomeric position, is technically challenging
when more than one cis-linkage is to be created. Hydrogen-
bond-mediated aglycan delivery (HAD) method showed that
installing picolinyl and picoloyl protecting groups on the C6
position is powerful for the synthesis of cis-glucosidic linkage, but
fails for cis-galactosidic linkages13, as none of the hydroxyl groups
at C3, C4 or C6 faces towards the bottom of the ring. Chiral
auxiliaries at C2 provide selectivity14, but require two additional
steps to be removed. Cleavage of the chiral auxiliary may result in
a loss of benzyl ethers during solid-phase synthesis15. Additives
can improve stereoselectivity by forming a less reactive
intermediate in situ 16 but are hard to use during automated
syntheses. Remote participation by protecting groups placed at
the C3, C4 and/or C6 positions of glucose (Glc) and galactose
(Gal) building blocks can control the stereoselectivity of
glycosylations17–19. Building blocks containing common remote
participating groups are attractive for automated synthesis as they
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Figure 1 | Various methods used for the formation of 1,2-cis-glycosides. (a) A non-participating protecting group at C2 results in a mixture of anomers.

(b) Intramolecular aglycon delivery with a C2 2-naphthylmethyl (NAP)-ether produces predominantly the b-anomer. (c) Hydrogen-bond-mediated aglycan

delivery using picolinyl and picoloyl protecting groups at the C6 position of glucose provide high selectivity. (d) Chiral auxiliaries ensure complete

selectivity. (e) Additive (or solvent)-modulation results in predominant to exclusive formation of 1,2-cis-glycosides. (f) Remote participating groups result

in good selectivities. Ac, acetate; Bn, benzyl; DMF, dimethylformamide; LG, leaving group; Nap, naphthyl; [O], oxidation; PG, protecting group; Pico, picoloyl;

ROH, acceptor; Ph, phenyl.
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fit the coupling–deprotection scheme and require no additional
manipulations.

Here, we demonstrate that AGA of oligosaccharides containing
1,2-cis-glycosidic linkages is feasible when monosaccharide
building blocks containing common remote participating groups
are used. This work proves that identification and incorporation
of reliable building blocks into AGA protocols provides
accessibility to biologically relevant oligosaccharides containing
cis-linkages.

Results
Selection of oligosaccharides bearing 1,2-cis glycosidic lin-
kages. To expand the scope of AGA to the stereoselective
installation of cis-glycosidic linkages, we focused on cis-glucosides
and cis-galactosides as the most prevalent 1,2-cis-linkages in
mammalian and bacterial glycomes20,21. Oligosaccharides (1–4)
bearing a-galactosidic linkages and a-glucans examples (5–9)
were selected as targets to develop automated methods for
stereoselective cis-glycosidic bond formation (Fig. 2).
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Figure 2 | Oligosaccharides containing different cis-glycosidic linkages were assembled by automated synthesis. Oligosaccharides 1–4 contacting

1,2-cis-galactosidic linkages and oligosaccharides 5–9 containing either single or multiple 1,2-cis-glucosidic linkages. OR¼O(CH2)5NH2.

Table 1 | Identification of building blocks for installation of a-galactosidic linkages by automated synthesis.

Entry

a

b

Building Block
Product Ratio (α:β) Yield*

R1 R2 R3

1 13a Bn Bn Bn 15a 13.8:1 41%

2 13b Bn Bn Ac 6.4:1 29%

3 13c Bn Bn Bz 5.8:1 28%

4 13d Bn Ac Bn 26.5:1 44%

5 13e Bn Bz Bn 26.2:1 30%

6 13f Ac Ac Bn 39.5:1 41%

7 13g Bn Ac Ac α only† 24%

15b
15c
15d
15e
15f
15g

Ac, acetate; Bn, benzyl; Bz, benzoyl; Cbz, carboxybenzyl; Et, ethyl; Fmoc, Fluorenylmethyloxycarbonyl; NP-HPLC, normal-phase high-performance liquid chromatography; SAr, 2-Methyl-5-tert-butyl-
phenyl thio.
Conditions: Disaccharide 14 was prepared using polystyrene resin equipped with photolabile linker (10) and building blocks 11 and 12. Coupling with differentially protected building blocks 13a–13g was
followed by ultraviolet cleavage to furnish trisaccharides 15a–15g that were analysed by NP-HPLC. All couplings were performed using an automated synthesizer executing protocols delivering twice five
equivalents of the building blocks.
*Yield by preparative HPLC.
wHPLC indicated cis-linked trisaccharide 15g in addition to the disaccharide 14 deletion sequence. For details, see Supplementary Tables 1 and 2.
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AGA of oligosaccharides containing 1,2-cis-glactosidic linkage.
Since the stereo- and regiochemical information for glycosidic
bond formation mainly resides in the building blocks9, the
synthetic considerations focused initially on the identification of
monomers containing remote participating groups. a-Gal
trisaccharide epitope 1 (ref. 22) served as a model system to
optimize the formation of a-(1,3) galactosides. The influence of
remote participation on the stereochemical outcome of AGA
couplings was explored using seven thiogalactoside building
blocks (13a–13g) containing acetyl or benzoyl esters (Ac, Bz).
Solid-support-bound disaccharide 14 was assembled using
building blocks 11 and 12 on a polystyrene resin equipped with
a photocleavable linker 10 (ref. 8). Disaccharide 14 served as the
acceptor in glycosylations employing monomers 13a–13g.
Incorporation of each building block was achieved by the
addition of twice five equivalents monomer that was activated
at activation temperature Ta (� 40 �C) for 5 min (t1) by the
addition of a N-iodosuccinimide (NIS)/Trifluoromethanesulfonic
acid (TfOH) activator solution, followed by incubation at the
incubation temperature Ti (� 20 �C) for 25 min (t2). Following
ultraviolet cleavage from the polystyrene resin, trisaccharides
(15a–15g) were analysed by normal-phase high-performance
liquid chromatography (NP-HPLC) (Table 1) to determine
conversion and stereoselectivity of the glycosylation reaction.

Galactose building block 13a (ref. 23), protected only with
non-participating benzyl ether groups, relies exclusively on the
anomeric effect to drive a-galactoside formation23 and produced
mainly the desired anomer 15a (ref. 24) (a:b¼ 13.8:1) (entry 1).

Thiogalactosides 13b (ref. 25) and 13c bearing C6 acetyl or
benzoyl esters resulted in lower selectivity (a:b¼ 6.4� 5.8:1)
(entries 2 and 3). These results are consistent with reports that C6
esters decrease the a-selectivity of galactose18. The presence of a
C4-acetyl or benzoyl ester in thiogalactosides 13d and 13e
drastically improved the a-selectivity (26.5� 26.2:1). Expanding
on the C4-ester effect, a second ester was placed on thiogalactose
building blocks. Glycosylation of 14 with C3-, C4-bis-acetylated
thiogalactose 13f proceeded with drastically improved selectivity
(39.5:1) (Table 1, entry 6). Building block 13g, carrying C4 and
C6 esters proceeded with complete stereoselectivity but significant
amounts of the disaccharide deletion sequence remained after the
coupling (entry 7). This study proved that the 1,2-cis-galactosidic
linkage can be installed by using building blocks that take
advantage of remote participation groups but require no additives
or chiral auxiliaries.

With optimized building blocks in hand (Fig. 3a), the a-Gal
epitope pentasaccharide 2 was prepared by AGA (Fig. 3b). All
synthetic manipulations were executed on an automated
oligosaccharide synthesizer working through preprogrammed
steps that were combined into modules for each synthetic
transformation. An initial acidic trimethylsilyl trifluoromethane-
sulfonate (TMSOTf) wash neutralizes basic residues that
accumulate during dimethylformamide (DMF) washes and
removes any water present in the synthesizer. Glycosylation with
twice five equivalents monomer was followed by fluorenylmethy-
loxycarbonyl (Fmoc) removal by treatment with a solution of
triethylamine (TEA) in DMF (v/v, 1/4). The glycosylation
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Figure 3 | AGA of oligosaccharides containing 1,2-cis-glactosidic linkage. (a) Resin functionalized with the photolabile linker (10) and monosaccharide
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Tables 3–5.
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efficiency was estimated by quantitating the ultraviolet absorption
of the released dibenzofulvene. Following automated assembly of
the fully protected oligosaccharide targets, cleavage from the resin
by ultraviolet irradiation was carried out using a continuous-flow
photoreactor8. Purification by preparative NP-HPLC provided
pentasaccharide 15f (41% based on the resin loading over ten
steps on resin) and 23 (33% over ten steps on resin). The
conjugation-ready a-Gal epitope trisaccharide 1 (48% over two
steps) and pentasaccharide 2 (48%) were purified by reverse-
phase HPLC following deprotection of 15f and 23 by
methanolysis and hydrogenolysis.

Building blocks carrying remote participation groups were
employed in AGA of Globo-series oligosaccharides that contain
a Gal-a-(1,4)-Gal-b-(1,4)-Glc common trisaccharide core (3)
(refs 26,27). Globo-H (4), a hexasaccharide vaccine candidate
currently in advanced clinical trials28,29 contains the core
trisaccharide 3. Thiogalactoside building block 19 was designed
based on thiogalactoside 13f to allow for C3 elongation en route
to Globo-H and to benefit from remote participation. The
influence of a remote C4 participation group present in monomer
19 was studied in the context of the AGA of trisaccharides 24
(ref. 24) and 25. Trisaccharide 25 using optimized building block
19 was obtained in 41% yield, and with excellent selectivity
(a:b¼ 19:1), while 24 using perbenzylated thiogalactoside donor
13a was isolated in 35% yield and moderate selectivity
(a:b¼ 4.3:1). This drastic improvement of stereoselective 1,2-
cis-galactosidic bond formation emphasizes the importance of the
remote participating group on the C4 for the efficient synthesis of

complex oligosaccharides containing cis-galactoside(s) linkage
using AGA. Similarly Globo-H hexasaccharide 4 was prepared by
AGA using building blocks 17–22. Fully protected oligosac-
charides 25 and 26 were deprotected to furnish 3 (51% yield) and
4 (42%) respectively. The stereoselectivity of a-galactoside
formation can dramatically benefit from the use of ‘approved’
building blocks with remote participation.

AGA of a-glucans bearing multiple 1,2-cis-glucosidic linkages.
The use of remote participation is not limited to the formation of
cis-galactosidic linkages but can be generally employed as
illustrated for 1,2-cis-glucosidic linkages19. Eight thioglucoside
building blocks (29a–29h) exhibiting various protecting
group patterns were synthesized to explore the influence of
remote participation. AGA of disaccharides 30a–30j was achieved
using thioglycosides 17, 27 and 28, and building blocks 29a–29h
before photocleavage from the polystyrene resin yielded
disaccharides 30a–30j that were analysed by HPLC (Table 2).
Glucose building block 29h with remote participating acetyl
groups in the C3 and C6 positions in analogy to the galactose
series, resulted in the best selectivity and further benefited from
the addition of diethyl ether to promote the desired a-glucoside
formation (Table 2).

With reliable glucose building blocks and AGA protocols for
the incorporation of a-glucosides in place, a series of a-glucans
were prepared. The initial target, pentasaccharide 5 containing
four consecutive a-(1-6)-glycosidic linkages15 was selected as

Table 2 | Identification of building blocks for a-glucoside installation by automated synthesis.

Entry

a

b

1st BB
2nd BB Product

Ratio (α:β)* Yield†

R1 R2 R3 R4

1

27

29a Bn Bn 30a Bn Bn 2.0 : 1 25%

2 29b Bn Ac 30b Bn Ac 8.1 : 1 31%

3 29c Bn Bz 30c Bn Bz 6.7 : 1 31%

4 29d Bn Fmoc 30d Bn OH 3.5 : 1 30%

5 29e Ac Bn 30e Ac Bn 4.4 : 1 27%

6 29f Bz Bn 30f Bz Bn 3.4 : 1 27%

7 29g Fmoc Bn 30g OH Bn 3.5 : 1 26%

8 29h Ac Ac 30h Ac Ac 11.4 : 1 34%

9 17 29h Ac Ac 30i Ac Ac 10.6 : 1 34%
10 28 29h Ac Ac 30j Ac Ac 9.5 : 1 34%

11 27 29h Ac Ac 30h Ac Ac 15.1 : 1‡ 35%
Conditions: Using resin equipped with photolabile linker (10) and glucose monomer 28 for the first coupling, differentially protected building blocks 29a–29h were added to produce disaccharides
30a–30j after cleavage from the solid support.
*Building blocks were dissolved in DCM.
wYield by preparative HPLC.
zBuilding blocks were dissolved in DCM and ethyl ether (v/v, 1:3). For details, see Supplementary Tables 6 and 7.
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proof-of-principle, since it had been prepared previously via
the chiral auxiliary approach. AGA of pentasaccharide 5 was
achieved by addition of the thioglycoside 27 to the support-
bound linker 10 to form the initial b-glucoside linkage. Four
successive glycosylation cycles using thioglycoside 31 introduced
four consecutive a-1,2-cis-glucosidic linkages. Ultraviolet-induced
cleavage of the fully protected oligosaccharide from the resin
yielded protected pentasaccharide 34 in 23% over 11 steps on
resin using NP-HPLC (Fig. 4b).

Pentasaccharide 6, containing multiple a-(1-4) linkages, and
7 with multiple a-(1-3) glucosides were assembled using the
corresponding building blocks (Fig. 4). The lower reactivity of the
C4-hydroxyl group as glycosyl acceptor was compensated by
prolonged glycosylation times (t2¼ 50 min) during AGA of 35
using building blocks 27 and 32 (see Supplementary Table 8).
Cleavage from the resin and preparative NP-HPLC yielded 9% of
35 over 11 steps. Using a similar AGA process, pentasaccharide
36 was obtained in 12% yield over 11 steps. The syntheses of 35
and 36 illustrated that glycosylations of secondary C3 or C4
hydroxyl groups are less efficient and less stereoselective than
those involving primary C6 hydroxyl groups as nucleophiles.
Such differences in glycosylation efficiency are well known for
solution phase strategies. It is anticipated that the glycosylation
modules (for example, number of glycosylation, reaction time or
temperature) upon AGA will improve glycosylation efficiency

and seteroselectivity. Removal of the protective groups from
pentasaccharides 34–36 yielded conjugation-ready pentasacchar-
ides 5 (47% yield), 6 (33%) and 7 (31%) following reverse-phase
HPLC.

Two naturally occurring oligosaccharide fragments bearing
multiple 1,2-cis-glucosidic linkages were assembled using the
building blocks and protocols established above. The immune-
modulatory pentasaccharide 8 (ref. 30), containing a-(1-3) and
a-(1-6) glucosidic linkages, and tetrasaccharides 9 (ref. 31),
known for activating toll-like receptor containing a-(1-4) and
a-(1-6) glucosides, were synthesized. Deprotection of
oligosaccharide 37 that was assembled in 17% yield over 10
steps and 38 yielding 20% over eight steps, furnished
oligosaccharides 8 (47% yield) and 9 (33%).

In conclusion, we demonstrate that building blocks bearing
remote participating groups are effective in assembling oligosac-
charides containing cis-glucosidic and cis-galactosidic linkages.
Nine oligosaccharides (1–9) were assembled to illustrate the
power of the AGA approach. Standardized synthesis as well as
deprotection and purification protocols enabled us to procure
conjugation-ready molecules. The reliable incorporation of
cis-gluco- and cis-galactosides into oligosaccharides by auto-
mated synthesis complements earlier successes in installing
trans-glycosides, to render AGA the method of choice for the
procurement of complex glycans.
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Methods
General. The synthesis of characterization of monomer building blocks
(11, 12, 13a–13g, 16–22, 27, 28, 29a–29h and 31–33) and the synthetic protocols
including liquid chromatography (LC)–mass spectrometry (MS) chromatograms
for AGA of oligosaccharides (1–9, 15a–15g, 23–26, 30a–30j and 34–38) are
provided in Supplementary Methods. For 1H, 13C and two-dimensional (2D) NMR
spectra of the compounds in the article, see Supplementary Figs 1–118. For the
reaction conditions on AGA, see Supplementary Tables 1,3,6 and 8. For yields for
oligosaccharides, see Supplementary Tables 2,4,5,7,9 and 10.

Pre-automation steps. Synthesis of building blocks and the linker-bound resin
are described in Supplementary Methods. For preparation of building block
solutions, reagent solutions and programs for AGA, see Supplementary Methods.

AGA. The automated synthesizer8 executes a series of commands that are
combined into modules to achieve specific transformations (see Supplementary
Methods and Supplementary Tables).

Module 1: acid wash. The resin was washed with DMF, tetrahydrofuran (THF)
and dichloromethane (DCM) (three times each with 2 ml for 15 s). The resin was
swollen in 2 ml DCM, and the temperature of the reaction vessel was adjusted to
� 20 �C. For an acidic wash, 0.500 ml of the TMSOTf in DCM was delivered to the
reaction vessel. After 1 min, the solution was drained. The resin was swollen in 2 ml
DCM and the temperature of the reaction vessel was adjusted to the activation
temperature (Ta).

Module 2: glycosylation using thioglycosides. During temperature adjustment,
the DCM in the reaction vessel was drained and a solution of building block
(5.0 equiv. in 1.0 ml DCM) was delivered to the reaction vessel. After the activation
temperature (Ta) was reached, the reaction was started by addition of 1.0 ml of NIS
solution (5.5 equiv. in 1.0 ml) and TfOH (0.2 equiv. in 1.0 ml) in DCM and
dioxane (v/v, 9/1). The glycosylation mixture was activated for an activation time
(t1¼ 5 min) at Ta, linearly ramped to incubation temperature (Ti), and finally
incubated for an additional incubation time (t2) minutes at Ti. Then, the reaction
solution was drained and the resin was washed with DCM (six times with 2 ml for
15 s). This procedure was repeated twice. The values of Ta, t1, Ti and t2 are shown in
Supplementary Tables.

Module 3: fmoc deprotection. The resin was washed with DMF (six times with
2 ml for 15 s), swollen in 2 ml DMF and the temperature of the reaction vessel was
adjusted to 25 �C. The DMF was drained and 3.5 ml of a solution of TEA in DMF
was delivered to the reaction vessel. After 5 min, the reaction solution was collected
in the fraction collector of the oligosaccharide synthesizer. This procedure was
repeated twice.

Cleavage and purification. Resin cleavage. The FEP tubing of the photoreactor8

was washed with 20 ml DCM at a flow rate of 5 ml min� 1 to prepare the reactor.
For cleavage, the resin was slowly injected into the reactor using a disposable
syringe (20 ml) and pushed through the tubing with 18 ml DCM (flow rate:
600ml min� 1). The tubing is washed with 20 ml DCM (flow rate: 2 ml min� 1) to
remove any remaining resin. The suspension leaving the reactor was passed
through a filter to remove the resin. The system was re-equilibrated by washing the
tubes with 20 ml DCM at a flow rate of 5 ml min� 1. The cleavage procedure was
performed twice and the resulting solution was evaporated before the crude
material was analysed by matrix-assisted laser desorption/ionization–time of
flight–MS (MALDI–TOF–MS), NMR and HPLC.

Analytical HPLC. The crude material was analysed by HPLC (column: Luna 5m
Sil 100A, (260� 4.60 mm); flow rate: 1 ml min� 1; eluents: hexane/ethyl acetate;
gradient: 20% (5 min), 60% (in 40 min), 100% (in 5 min); and detection:
evaporative light scattering detector (ELSD)).

Preparative HPLC. The crude mixture was dissolved in a minimum volume of
DCM and 0.9 ml of 20% hexane in ethyl acetate and injected for purification using
semi-preparative HPLC (column: Luna 5m Sil (260� 10 mm); flow rate:
5 ml min� 1; eluents: 5% DCM in hexane/5% DCM in ethyl acetate; gradient: 20%
(5 min), 60% (in 40 min), 100% (in 5 min); and detection: ELSD) to afford the fully
protected target oligosaccharides.

Deprotection conditions. To a solution of the fully protected oligosaccharide in
MeOH (5 ml) was added 58ml of a 0.5 M NaOMe solution (0.25 equiv. per acetyl of
benzoyl group) at 40 �C. The mixture was stirred until thin-layer chromatography
(TLC) analysis indicated complete deprotection, then neutralized with 200 mg
Amberite (400 mg per 100 ml of NaOMe solution). The amberlite was filtered off
and the crude filtrate was evaporated and re-dissolved in MeOH, EtOAc and
AcOH (v/v/v¼ 5:0.5:0.2) before 5% Pd/C (W/V) was added, purged first with
argon and then with hydrogen gas (H2), and was left to stir overnight at room
temperature. The reaction mixture was filtered through a syringe filter with 20 ml
of a water/methanol mixture (9:1) and the combined solution was evaporated to
provide the crude product.

Analysis of oligosaccharide products. Analytical HPLC. The crude material was
analysed by HPLC (column: Hypercarb, (150� 4.60 mm); flow rate: 0.8 ml min� 1;
eluents: 0.1% FA in acetonitrile/0.1% FA in water; gradient: 0% (10 min), 30%
(in 30 min), 100% (in 5 min); and detection: ELSD).

Preparative HPLC. The crude product was purified by preparative HPLC
(column: Hypercarb, (150� 10.00 mm); flow rate: 3.6 ml min� 1; eluents: 0.1% FA
in acetonitrile/0.1% FA in water; gradient: 0% (10 min), 30% (in 30 min), 100% (in
5 min); and detection: ELSD) to afford the oligosaccharide product.

Data availability. The raw data used to generate the figures and tables in this
manuscript are available from the corresponding author on request.
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