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Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on
submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown
[A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015)] that such active proteins should
induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive
inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed.
The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that
passive particles tend to become attracted by active rafts and are accumulated inside them.
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I. INTRODUCTION

Formed by lipid bilayers, biological membranes possess
both elastic and fluid properties. With respect to stretching
or bending, they behave as elastic surfaces and are thus
described by the Helfrich model [1]. On the other hand,
they behave as viscous two-dimensional (2D) lipid fluids
within the membrane. Because the viscosity of lipid bilayers
is about 1000 times higher than that of water, tangential
viscous coupling between the bilayer and the solvent on both
sides of it is not effective on the scales shorter than the
Saffmann-Delbrück length of about a micrometer [2]. On such
relatively short length scales, flows in biological membranes
are described by the Navier-Stokes equations of classical 2D
hydrodynamics (see, e.g., Ref. [3]). The 2D hydrodynamic ef-
fects in biomembranes could be demonstrated by measurement
of diffusion coefficients for small membrane inclusions [4]. In
hybrid numerical simulations, combining simplified molecular
dynamics (MD) for lipids with the multiparticle collision
dynamics for the solvent, the characteristic 2D dependencies of
transverse and longitudinal lipid velocity-velocity correlation
functions could be seen [5]. Remarkably, there is no linear
coupling between shape deformations and lipid flows in
biomembranes [6] and, therefore, lipid hydrodynamic and
elastic effects can be separately considered.

Typically, membranes are multicomponent; i.e., they repre-
sent mixtures of different lipid molecules. Due to potential
interactions between the lipids, phase separation can take
place in biomembranes, leading to the formation of domains
enriched with one of the components. According to the
classical theory of phase separation, macroscopic phase
domains should then be established at long times. Such large
domains could indeed be observed in the experiments with
artificially created membranes [7]. However, macroscopic
phase separation is not seen in biological membranes under
physiological conditions, and there is much indirect evidence
suggesting that small domains, known as lipid rafts, are instead
present inside them [8,9]. In vivo experiments using stimulated
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emission depletion (STED) microscopy have narrowed the size
range of the rafts to 10–20 nm [10]. It has been suggested
that equilibrium nanoscale rafts can result from microphase
separation effects that are observed when interactions between
the two layers in a membrane are taken into account (see, e.g.,
Refs. [11–14]).

Biological membranes also contain many protein inclu-
sions, with proteins making up to 40% of the total mem-
brane mass. Because of the interactions between them and
surrounding lipids, proteins often tend to accumulate within
the rafts. Most membrane inclusions, such as ion channels,
pumps, and receptors, are active and cyclically operate as
nonequilibrium protein machines. In each turnover cycle, the
protein shape is changed and ligand-induced mechanochemi-
cal conformational motions are observed. Since local coupling
between the inclusion and the membrane depends on the
protein conformation, active conformational changes induce
nonequilibrium fluctuations of the membrane shape [15,16]
that could be experimentally observed [17]. Moreover, inter-
actions between active proteins, mediated by the membrane,
become also modified and, as a result, nonequilibrium periodic
Turing-like stationary or traveling structures can develop on
nanoscales [18].

Not only membrane shape perturbations but also hydro-
dynamic flows can be induced by conformational changes.
Because the size of a protein inclusion is larger than the bilayer
thickness, parts of a protein protrude into the surrounding
solvent. Hence, when active conformational changes occur,
hydrodynamic flows in the solvent become generated. The
effects of such solvent flows have been taken into account
in the previous analysis by treating each active protein
inclusion as a hydrodynamic force dipole [16,18]. They
contribute to nonequilibrium membrane shape fluctuations
and modify membrane-mediated interactions between active
proteins themselves.

Recently, it has been noted that lipid membrane flows
are also generally induced when conformational changes in
inclusions take place [19]. They can be taken into account
by considering an active protein as a force dipole, but with
respect to the 2D lipid fluid. Persistent stochastic oscillations
of 2D force dipoles corresponding to active membrane proteins
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give rise to nonequilibrium hydrodynamic fluctuations in
the membrane. Advection of passive membrane inclusions
in such fluctuating lipid flows leads to substantial diffusion
enhancement of such particles and, when the distribution of
active proteins in the membrane is not uniform, also to the
chemotaxislike drift [19]. However, only general expressions
for the diffusion enhancement and the drift velocity in
biological membranes, as well as simple numerical estimates
for the magnitudes of the involved effects, have been reported
so far.

Here, we perform further analysis of collective lipid hydro-
dynamic effects of active proteins in biological membranes.
Numerical simulations for the evolution of the distribution of
passive inclusions when active proteins are spatially localized
within small rafts are also performed.

Several simplifying assumptions are employed by us. The
membrane is modeled as a 2D fluid and three-dimensional
(3D) effects of coupling to the solvent are not taken into
account. This limits the applicability of our analysis to the
submicrometer length range. Since our attention is focused on
hydrodynamic membrane effects, effects of active inclusions
on the membrane shape are not included in the present
analysis; they have been extensively investigated elsewhere
before. Moreover, we consider the spatial distribution of active
protein inclusions as given and do not discuss how it could
have become formed. While actual biomembranes are usually
multicomponent and this is important for the development
of rafts, possible multicomponent hydrodynamic effects are
also not yet discussed. Moreover, planar orientations of force
dipoles corresponding to active proteins are assumed to be
random and statistically independent, neglecting a possibility
that nematic orientational in-plane order of active protein
inclusions takes place.

In the next section, we show how analytical expressions for
diffusion enhancement and drift velocity, induced by active
membrane proteins, can be cast into a simpler form. We also
write down the evolution equations for passive particles in
the membrane and pay special attention to the drift effects.
Then we discuss the possibility of the diffusion enhancement
in the actual biological membranes. In Sec. III, analytical
expressions for diffusion enhancement and drift of particles
in hydrodynamic fluctuating fields of active proteins confined
to a flat circular raft are derived. In Sec. IV, stationary-
state distribution of the small passive particles is discussed
considering the diffusion enhancement induced by the active
proteins. Results of numerical simulations for the evolution of
small particles are reported in Sec. V. The paper ends with
conclusions and a brief discussion of further perspectives in
this research.

II. EVOLUTION EQUATION FOR PASSIVE PARTICLES

As shown in Ref. [19], conformational activity of mem-
brane proteins leads to the development of lipid flows in
the biological membrane. Advection in such nonequilibrium
fluctuating flows at low Reynolds numbers results in diffusion
enhancement and drift of passive particles. The Fokker-Planck
equation for the probability density p(r,t) of passive particles

[20] is

∂p(r,t)
∂t

=− ∂

∂rα

[Vα(r)p(r,t)] + ∂2

∂rα∂rα′
[Dαα′(r)p(r,t)],

(1)

with α = 1,2 and r = (r1,r2) and summation over the re-
peated indices is assumed. δαα′ is the Kronecker delta,
which is 1 for α = α′, and zero for α �= α′. The matrix of
diffusion coefficients Dαα′ (r) = DT (r)δαα′ + DA

αα′ (r) where
DT (r) is the equilibrium diffusion coefficient that may vary
within the membrane. The diffusion enhancement is given
by [19]

DA
αα′ (r) = �ββ ′γ γ ′

∫
d r ′ ∂Gαβ

∂r ′
γ

∂Gα′β ′

∂r ′
γ ′

SA(r + r ′)c(r + r ′).

(2)

The velocity is [19]

Vα(r) =−�ββ ′γ γ ′

∫
d r ′ ∂

2Gαβ

∂r ′
γ ∂r ′

δ

∂Gδβ ′

∂r ′
γ ′

SA(r + r ′)c(r + r ′).

(3)

In Eqs. (2) and (3), Gαβ is the mobility tensor; we have
�ββ ′γ γ ′ = (1/8)(δββ ′δγ γ ′ + δβγ δβ ′γ ′ + δβγ ′δβ ′γ ).

In the Oseen approximation, the 2D mobility tensor is [3]

Gαβ(r) = 1

4πη

[
−(1 + ln(κr))δαβ + rαrβ

r2

]
, (4)

where r = |r|, η is the 2D viscosity of the membrane, and
κ−1 is the characteristic Saffman-Delbrück length, κ−1 =
ηh/(2ηs), where h is the thickness of the membrane and ηs is
the viscosity of the solvent. The local concentration of active
proteins is c(r) and the degree of their activity is characterized
by the intensity of force dipoles SA(r). Note that the activity
SA depends on the local concentration of ATP or other
substrates needed by active proteins to cycle. The integration is
performed over the entire membrane. Equations (2) and (3) are
derived assuming that the 2D force dipoles corresponding to
different proteins are statistically noncorrelated and that they
are randomly oriented in the membrane plane [19]. Coupling
to the solvent is neglected in these equations, limiting the
description to membrane regions with size shorter than the
Saffman-Delbrück length.

Because of the four summations, previously derived [19]
general expressions (2) and (3) are complicated. Now, we could
show (the derivations are given in Appendix A) that, under the
2D Oseen approximation, these results can be cast in a more
simple and transparent, but equivalent, form, i.e.,

DA
αα′(r) = 1

32π2η2

∫
d r ′ r

′
αr ′

α′

r ′4 Q(r + r ′), (5)

Vα(r) = 1

32π2η2

∫
d r ′ r ′

α

r ′4 Q(r + r ′), (6)

where the combination Q(r) = SA(r)c(r) has been introduced.
The evolution equation for the concentration n(r,t) of

passive particles can also be obtained. Generally, this equation
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includes both the drift and the diffusion terms

∂n(r,t)
∂t

= − ∂

∂rα

[Uα(r)n(r,t)] + ∂

∂rα

[
Dαα′(r)

∂n(r,t)
∂rα′

]
,

(7)

where

Uα(r) = Vα(r) − ∂Dαα′(r)

∂rα′
. (8)

Substituting Eqs. (5) and (6) into Eq. (8) and performing
several transformations of the integrals, a simple approximate
expression for the drift velocity has been derived (see Ap-
pendix A):

Uα(r) � 1

32πη2

∂Q(r)

∂rα

. (9)

Using newly derived expressions [Eqs. (5), (6), and (9)],
effects of diffusion enhancement and drift of passive particles
in biological membranes can be further analyzed.

It can be readily noticed that diffusion enhancement
[Eq. (5)] is nonlocal; i.e., the diffusion is determined not
only by the local concentration of active proteins, but also
by their distribution in the neighborhood of it. According to
Eq. (5), the contributions from active proteins are inversely
proportional to the square of the distance, leading to the
logarithmic divergence of the integral (5) at large length scales.
It should be, however, recalled that our 2D theory is limited
to the membranes of size shorter than the Saffman-Delbrück
length, about a micrometer. For larger membranes, the results
hold only assuming that active proteins are localized within a
submicrometer-size membrane area and absent outside of it. It
can be, moreover, noted that the diffusion integral (5) diverges
logarithmically at short distances and therefore a cutoff needs
to be introduced. Generally, diffusion enhancement [Eq. (5)] is
anisotropic and the anisotropy is controlled by the asymmetry
in the distribution of active proteins near the observation point.

The nonlocality and the logarithmic divergence at short
distances are also characteristic for the velocity (6) that enters
into the Fokker-Planck equation (1). However, such effects
become canceled when the chemotaxislike drift velocity is
calculated according to Eq. (8). Remarkably, the drift of
passive particles in the membranes is always determined by
the local gradient of Q(r).

If the activity of proteins is uniform over the membrane
(e.g., if ATP or other substrates are uniformly supplied), the
drift velocity is proportional to the gradient of protein concen-
tration and passive particles tend to drift to the regions where
active proteins are concentrated. If proteins are uniformly
distributed, but their activity level described by variable SA

varies over the membrane, drift of passive particles into the
higher-activity areas should take place.

While this effect looks similar to chemotaxis, there are
important differences as well. Passive particles drift not
because there are physical forces acting on them, and the
mobility of passive particles or their size does not enter into
Eq. (9).

Suppose that active proteins are concentrated within some
area (a “raft”) and the distribution of proteins is approximately

uniform within such an area and outside it. Moreover, let us
assume that the activity of all proteins is the same, SA(r) =
const, so that Q(r) = SAc(r). Since protein concentration
c is varying only at the boundary of the raft and the drift
velocity of passive particles in Eq. (9) is proportional to the
concentration gradient, the drift will be present only in the
interface area. Moreover, the direction of the drift velocity
coincides, according to Eq. (9), with the direction of the drift,
implying that, within the interface, the particles will tend to
move inside the raft. Outside of the raft and also inside it, only
diffusive motion takes place. Thus, passive particles will be
effectively adsorbed by the raft of active proteins. Whenever
a particle enters the raft boundary, it is dragged inside the
raft. The same behavior should be found if the proteins are
uniformly distributed, but their activity SA is enhanced in some
area. Then, the region with the enhanced activity will tend to
accumulate passive particles inside it. The activity of proteins
depends on the local concentration of ATP or other substrates
and it can be also chemically regulated, enhanced, or inhibited.

Will the effects depend on the size of passive particles? As
already mentioned, the drift velocity (9) is independent of their
size. There is, however, a weak size dependence in the diffusion
enhancement given by Eq. (5). At short distances r , the integral
in this equation is logarithmically diverging and therefore a
cutoff needs to be introduced. As the cutoff length �c, the sum
of the radii of the active protein (�p) and of the passive particle
(�0) can be chosen in the simplest approximation, so that �c =
�p + �0. With such a cutoff, diffusion enhancement has the
logarithmic size dependence DA ∝ ln[κ(�p + �0)]. Hence, for
passive particles with sizes smaller than or comparable with
that of a protein, the size dependence is practically absent.
Note that, because the far-field Oseen approximation has been
employed, effects for big passive particles, with sizes much
larger than that of the proteins, cannot be considered here.

So far, we have assumed that only one kind of active
protein is present in the membrane. The extension to the
multicomponent case is, however, straightforward. If different
kinds i of active proteins are present, each with its own
concentration ci and activity SA,i , Eqs. (5), (6), and (9) still
hold, but we should use Q(r) = ∑

i SA,i(r)ci(r) instead.

III. DIFFUSION EFFECTS OF ACTIVE RAFTS

Suppose that the concentration of active proteins is con-
stant, c = c0, within a circular region (“raft”) of radius R

whose center is located at the origin of coordinates, and
that active proteins are absent, c = 0, outside of such a
region. Moreover, the activity of proteins is uniform over
the membrane, SA(r) = const = SA, so that Q(r) = SAc0 for
r � R and Q(r) = 0 for r > R.

Substituting this expression into Eq. (5) and taking the
integral, we find that inside the raft, i.e., for r < R − �c,
diffusion enhancement is isotropic and given by

DA(r) = πξ ln

(√
R2 − r2

�c

)
, (10)

where ξ = SAc0/(32π2η2). It reaches its maximal value, DA =
πξ ln(R/�c), at the center of the raft. Note that this value
depends logarithmically on the cutoff length �c.
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Outside of the raft (for r > R + �c), diffusion enhancement
is anisotropic; it is different along the radial and transverse
directions with respect to the raft. The radial component DA

‖
is given by

DA
‖ = πξ

[
ln

(
r√

r2 − R2

)
+ R2

2r2

]
, (11)

and the transverse component DA
⊥ is

DA
⊥ = πξ

[
ln

(
r√

r2 − R2

)
− R2

2r2

]
. (12)

Note that these expressions do not involve the cutoff length
(see Appendix B).

Finally, inside a narrow ring with R − �c < r < R + �c,
the integral (5) cannot be analytically determined, but it can
still be numerically evaluated (see Fig. 1). Cross-diffusion is
absent due to the symmetry implications.

The asymptotic behavior far from the raft, i.e., at r 	 R,
can be further considered. In the leading orders of magnitude,
we find that

DA
‖ � πξ

R2

r2
, (13)

DA
⊥ � πξ

4

R4

r4
. (14)
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FIG. 1. Diffusion enhancement by a circular raft of radius R =
20�c with the boundary width (a) δ = 0 and (b) δ = 2�c. The profiles
of diffusion enhancement in the radial, DA

‖ /ξ (red, dark gray), and
in the transverse, DA

⊥/ξ (cyan, light gray), directions as a function of
the distance from the raft center are shown.

Hence, the radial component of diffusion falls as the inverse
square of the distance to (the center of) the raft, whereas the
transverse component depends on the inverse fourth power
of this variable and hence it falls much faster than the radial
component.

Figure 1 shows the dependencies of the radial and transverse
diffusion enhancement on the distance from the center of the
raft for sharp [δ = 0, Fig. 1(a)] and smooth [δ = 10, Fig. 1(b)]
interfaces. In numerical simulations, the distribution of protein
concentration within the raft is given by

c(r) = 1

2
c0

[
1 + tanh

(
− r − R

δ

)]
, (15)

where δ is the raft boundary width.
The drift velocity U is given by Eq. (9) and can be

analytically determined for the distribution in Eq. (15). It is
always radially directed and pointed towards the center of the
raft. The velocity magnitude is given by

|U(r)| � πξ

2δ
cosh−2

(
− r − R

δ

)
. (16)

The velocity vanishes outside of the interface; it diverges in
the limit δ → 0 of a sharp interface.

Thus, hydrodynamic collective effects of active proteins
lead to diffusion enhancement not only inside the raft, but also
around it. Outside of the raft, diffusion enhancement is stronger
in the radial direction. In contrast to diffusion enhancement,
the chemotaxislike drift velocity [Eq. (9)] is determined by the
local concentration gradient of active proteins. Therefore, the
drift is present only at the boundary of the raft and it is directed
inwards.

We also numerically calculated the profile of the diffusion
enhancement in the case of an elliptic raft as shown in Fig. 2.
Note that, in contrast to the case with a circular raft, the

)b()a(

)d()c(

9.0

0.0

9.0

0.0

3.5

-3.5

1.5

-1.5

FIG. 2. Diffusion enhancement for an elliptic raft with the
semiaxes 20�c and 10�c and the sharp boundary. The diffusion
enhancement components (a) DA

11/ξ , (b) DA
22/ξ , and (c) DA

12/ξ are
displayed. (d) The diffusion anisotropy (DA

11 − DA
22)/ξ is additionally

shown.
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anisotropy of the diffusion enhancement, i.e., (DA
11 − DA

22)/ξ ,
is present also inside the raft.

The orders of magnitude of diffusion enhancement for a
typical active raft can be numerically estimated (cf. Ref. [19]).
The 2D lipid viscosity η is expressed as η = η3Dh, in terms
of the membrane thickness h and the 3D lipid viscosity η3D.
We can take η3D = 1 Pa s and h = 1 nm. The force dipole
activity of typical proteins has been previously estimated [19]
to be about SA = 1 × 10−43 N2 m2 s. We assume that the raft
has a radius of R = 100 nm and it contains about ten active
proteins, so that their membrane concentration is of the order
of 1 × 1015 m−2. Assuming that passive particles are not larger
than proteins, the cutoff length is chosen as �c = 5 nm. With
these numerical values, the maximal diffusion enhancement in
the center of the raft is of the order of DA = 1 × 10−8 cm2/s.

This numerical estimate should be compared with the equi-
librium diffusion constants in a biomembrane. Typically, for
proteins in lipid bilayers DT = 1 × 10−10 cm2/s and for lipids
DT = 1 × 10−8 cm2/s. Hence, according to our estimates,
diffusion enhancement inside a raft and in its vicinity should
be comparable with the thermal diffusion for small molecules
of a nanometer size and should dominate over it for particles
with the size of a protein. We should, however, stress that the
above estimate is very rough, particularly because the value of
SA is not experimentally determined.

IV. DISTRIBUTION OF PASSIVE PARTICLES

Evolution of the distribution of passive particles in the
membrane under the hydrodynamic effects of active proteins
is described by Eq. (7) with the matrix of diffusion coefficients
(5) and the drift velocity (9). This equation can be numerically
integrated and, moreover, analytical solutions for stationary
distributions can also be constructed.

First, we consider the case when active proteins are local-
ized within a circular raft. In the axially symmetric system,
the time evolution of the distribution of passive particles, n(r),
can be described as

∂n

∂t
= −1

r

∂

∂r
(rU‖n) + 1

r

∂

∂r

(
rD‖

∂n

∂r

)
, (17)

and the stationary distribution of n(r) should satisfy

−U‖(r)n(r) + (DT (r) + DA
‖ (r))

∂n

∂r
= 0, (18)

whose solution is

n(r) = nin exp

(∫ r

0

U‖(r ′)
DT (r ′) + DA

‖ (r ′)
dr ′

)
, (19)

where nin is the concentration in the center of the raft.
If active proteins are uniformly distributed within a raft

of radius R, so that c(r) = c0 for r < R and c(r) = 0 for
r > R, and their activity level is constant, SA(r) = SA, the
drift velocity is

U‖(r) = −πξδ(r − R). (20)

Therefore, in this case, passive particles are uniformly dis-
tributed inside and outside of the raft in the stationary state,
i.e., n(r) = nin for r < R and n(r) = nout for r > R, and we

have

nin

nout
= exp

(
πξ

DT (R) + DA
‖ (R)

)
, (21)

where DT (R) is the value of the equilibrium diffusion
coefficient at the boundary of the raft. As an approximation for
diffusion enhancement at the boundary of the raft, we can take
DA

‖ (R) � (D‖(R − �c) + D‖(R + �c))/2 and use Eqs. (10)
and (12) to obtain

DA
‖ (R) � πξ

2

(
ln

R

�c

+ 1

2

)
, (22)

provided R 	 �c. Substituting this into Eq. (21), we find

nin

nout
= exp

(
2

ln(R/�c) + (1/2) + (2DT /(πξ ))

)
. (23)

If the diffusion enhancement due to active proteins dominates
over equilibrium diffusion, i.e., ξ 	 DT (R), and therefore

nin

nout
= exp

(
2

ln(R/�c) + (1/2)

)
, (24)

if, for example, R/�c = 20, this ratio is nin/nout � 1.77.
Because their equilibrium diffusion constants are smaller,

the large particles like passive proteins are strongly attracted to
the circular raft, while small particles such as small molecules
are less affected by the active protein raft.

V. NUMERICAL SIMULATIONS

We have performed numerical simulations of Eq. (1) that
govern evolution of the concentration distribution n(r) of
passive particles. In the simulations, active proteins were
present only within the rafts of circular or elliptic shapes.
The initial distribution of passive particles was uniform. The
model parameters were chosen in such a way that diffusion
enhancement was of the same order as thermal diffusion, i.e.,
ξ/DT = 1. No-flux boundary conditions were used; the linear
size of the system was L = 102.4�c. First we present the results
for the situation when the equilibrium diffusion coefficient
DT (r) is the same inside and outside of the raft. After that
we show what is changed if the equilibrium diffusion is slow
within the raft.

Figure 3 shows several consequent snapshots of the con-
centration distribution and radial profiles of this distribution
when active proteins occupy a raft of radius R = 20�c and
width δ = 2�c, so that their distribution is given by Eq. (15). It
can be seen that passive particles gradually accumulate inside
the raft until a stationary distribution is formed. Note that
the last profile (t = ∞) in Fig. 3(b) is drawn by using the
analytical solution (21). The particles that reach by diffusion
the boundary of the raft become dragged inside it and, on the
other hand, the particles can also leave the raft. As a result,
their concentration is depleted in the vicinity of the raft and
enhanced near the boundary inside it. The depletion disappears
when the final steady state is reached.
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FIG. 3. Accumulation of passive particles by a raft occupied
with active proteins. (a) Consequent snapshots of the concentration
distribution and (b) radial profiles at different time moments are
displayed. The final profile (t = ∞) is determined using the ana-
lytical solution (19). The parameters are R = 20�c, δ = 2�c, and
ξ/DT = 1. The corresponding movie is available in the Supplemental
Material [21].

In Fig. 4, a similar simulation for an elliptic raft is displayed.
The distribution of active proteins in this case is

c(r) = c0

2

[
1 + tanh

(
−λ(μ − μ0)

δ

)]
. (25)

Here, elliptic coordinates μ and ν are employed and λ is a
positive value depending on ν (see Appendix C). Because the
raft is elongated, the accumulation of passive particles begins
in the focal points, at the two ends of the ellipse. Later, however,
the particles become uniformly distributed inside the raft.

Figure 5 displays the results of a simulation with two rafts of
different sizes. Both of them accumulate passive particles, but
the accumulation proceeds faster for the smaller raft. The final
concentrations of the particles in the two rafts are not much

t = 50 t = 500 t = 10000 n
2.0

0.8

FIG. 4. Accumulation of passive particles by an elliptic raft.
Consequent snapshots of the concentration distribution at three time
moments are displayed. The major and minor semiaxes of the ellipse
are 20�c and 10�c. Other parameters are δ = 2�c and ξ/DT = 1. The
corresponding movie is available in the Supplemental Material [21].

t = 50 t = 100 t = 200

t = 500 t = 1000 t = 10000

n
2.0

0.8

FIG. 5. Accumulation of passive particles by two rafts of different
sizes. Consequent snapshots of the concentration distribution are
displayed. The parameters are R1 = 10�c, R2 = 6�c, δ = 2�c, and
ξ/DT = 1. The corresponding movie is available in the Supplemental
Material [21].

different. This could be indeed expected because of the weak
logarithmic size dependence in Eq. (24). Moreover, we can
see that the processes in the two rafts are roughly independent,
even though the separation between the rafts is not large.

In the above simulations, the equilibrium diffusion coeffi-
cient was assumed to be constant across the membrane. It may
be, however, that equilibrium diffusion is slower inside the
rafts. Therefore, we consider also the case when, for a single
circular raft, the equilibrium diffusion coefficient depends as

DT (r) = D∞ + D0 − D∞
2

[
1 + tanh

(
− r − R

δ

)]
(26)

on the radial coordinate r . Thus, it changes from D0 in the
center of the raft to D∞ far from the raft. We assume that
D0 < D∞.

Equation (19) which determines the asymptotic stationary
distribution of passive particles is general and it holds also if
the equilibrium diffusion coefficient is coordinate dependent.
Therefore, it can be used to obtain the distributions of passive
particles within a raft occupied by active proteins if the
equilibrium diffusion coefficient obeys the dependence (26).
By numerically taking the integrals in Eq. (19), we obtain
a family of the distributions for different values of D0. The
results are displayed in Fig. 6.

50250

2.0

1.0

n(
x,

0)

-25-50
0.8

x / ℓc

1.2
1.4
1.6
1.8

d = 1
d = 0.5
d = 0.2
d = 0.1
d = 0

FIG. 6. Asymptotic stationary concentration distributions of pas-
sive particles for different equilibrium diffusion coefficients inside
the raft. The ratios d = D0/D∞ are indicated next to each curve.
Other parameters are R = 20�c, δ = 2�c, and ξ/D∞ = 1.
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It can be seen that the effect of protein activity becomes
enhanced when the equilibrium diffusion is slower inside the
raft. Comparing the profiles for D0/D∞ = 0.1 and 1, we see
that the concentration of passive particles inside the raft is
larger by about 20% when equilibrium diffusion in the raft is
suppressed.

It should be stressed that, when proteins inside the rafts
are not active (because, for instance, ATP is not supplied), the
distribution of passive particles remains uniform even if the
equilibrium diffusion coefficient is decreased within the raft.
Thus, the accumulation of passive particles inside is entirely
due to the activity of proteins within it.

VI. DISCUSSION

Based on high-precision in vitro experiments [22], Weitz
and co-workers have recently come to the conclusion that
random motion, so ubiquitous in cells, is not a result of
thermally induced fluctuations but is instead the result of the
random forces due to the aggregate motor activity in cells.
Similar conclusions could be also made in other experiments
[23]. Theoretical estimates [19,24] have revealed that non-
thermal random forces can be the effect of nonequilibrium
hydrodynamic fluctuations that are collectively induced by the
activity of protein machines, including molecular motors, in
the cytoplasm.

Our present analysis (see also Ref. [19]) suggests that
a similar situation should be characteristic for biological
membranes within the cells. We have shown that diffusion en-
hancement due to nonequilibrium hydrodynamic fluctuations
in lipid bilayers can be of the same order or even stronger
than diffusion due to thermal fluctuations. This means that
nonthermal effects have to be taken into account when kinetic
and transport phenomena within biological membranes under
in vivo conditions are discussed. The intramembrane transport
should strongly depend on supply of ATP (or other substrates),
so that diffusion in lipid bilayers in biological cells becomes
much more slow in the absence of ATP.

Because lipid bilayers behave as 2D fluids on submicrom-
eter scales, there is, however, also an important difference for
biomembranes as compared to the cytoplasm. Hydrodynamic
2D interactions are ultralong ranged, depending logarithmi-
cally on the distance, and this leads to pronounced nonlocal
effects. Thus, we have found that diffusion is enhanced not
only within a raft occupied by active proteins, but also in the
area around it. According to Eq. (13), diffusion enhancement
is proportional to the inverse square of the distance from the
raft. In addition to diffusion effects, chemotaxislike drift also
takes place. However, the drift is determined only by the local
distribution of active proteins.

Our analytical investigations and numerical simulations
have shown that rafts occupied by active proteins tend to attract
passive inclusions (such as, e.g., other membrane proteins) and
accumulate them. As a result, concentration of passive particles
inside the raft becomes increased. Importantly, this increase
persists only as long as the proteins are active, i.e., while ATP is
supplied. Thus, by varying the ATP supply to biomembranes,
spatial distribution of protein inclusions can be controlled.
This effect holds also if the equilibrium diffusion coefficient
of passive particles inside the raft is decreased.

The focus in this study was on hydrodynamic effects and,
to more clearly see contributions coming from them, we
neglected other aspects. Thus, potential energetic interactions
between proteins were not taken into account, even though
they should be essential at high concentrations characteristic
for the rafts. We assumed that the considered membrane is flat
and limited our analysis to submicrometer length scales where
coupling to the solvent is negligible. Random planar orienta-
tions of active proteins were assumed, therefore excluding the
possibility of a nematic order. The most strong simplification
was that fluctuations in the concentration of active proteins
were not taken into account. Such fluctuations should be, how-
ever, relatively strong because a raft would typically include
only tens of protein molecules. Therefore, the reported results
should be viewed as referring to an idealized model. They are
intended to demonstrate the principal hydrodynamic collective
effects of active proteins in biomembranes and have to be
complemented by further analytical and numerical studies.

It should be stressed that both in Refs. [19,24] and in
the present study the situation is considered where active
inclusions cyclically change their shape, but do not propel
themselves, i.e., do not swim through the membrane. Formally,
this corresponds to the assumption that their active shape
changes are reciprocal. It has been previously noted that
shape changes of enzymes within a turnover cycle can be
nonreciprocal and thus self-propulsion of active proteins may
take place [25]. Moreover, the propulsion effects were also
demonstrated in numerical simulations for biomembranes
where, however, model active inclusions have been used [26].
It is not yet clear what should be the magnitude of propulsion
effects for actual protein inclusions in biological membranes
and therefore we have not considered them.

In this respect, our study is different from experimental
[27] and theoretical [28–30] investigations for thin fluid layers
occupied by bacteria that actively change their shapes and
thus swim. Diffusion can be enhanced up to a factor of 100
in such bacterial layers [27] and, principally, this is a similar
effect. Because the bacteria swim, they cannot, however, form
stationary rafts. Moreover, velocity correlations develop and
therefore orientational nematic order in swimming bacterial
populations emerges.

It would be interesting to test the predicted effects in
the experiments with actual biological membranes. In such
experiments, artificially created rafts of larger sizes can be
used. The activity of protein inclusions can be controlled either
by varying the supply of ATP or other substrates or by chemical
or optical inhibition of their turnover cycles. By repeatedly
switching it on and off, flows of passive particles into the raft
or out of it can then be induced.
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APPENDIX A: DERIVATION OF EQS. (5), (6), AND (9)

The diffusion tensor, DA
αα′ , is simplified from Eq. (2) into

the form which is convenient for further analysis:

DA
αα′ (r) = �ββ ′γ γ ′

∫
d r ′ ∂Gαβ

∂r ′
γ

∂Gα′β ′

∂r ′
γ ′

SA(r + r ′)c(r + r ′)

= 1

8

∫
d r ′

[
2

(
∂Gα1

∂r ′
1

∂Gα′1

∂r ′
1

+ ∂Gα2

∂r ′
2

∂Gα′2

∂r ′
2

)

+
(

∂Gα1

∂r ′
2

+ ∂Gα2

∂r ′
1

)(
∂Gα′1

∂r ′
2

+ ∂Gα′2

∂r ′
1

)

+
(

∂Gα1

∂r ′
1

+ ∂Gα2

∂r ′
2

)(
∂Gα′1

∂r ′
1

+ ∂Gα′2

∂r ′
2

)]

×Q(r + r ′)

= 1

32π2η2

∫
d r ′ r

′
αr ′

α′

r ′4 Q(r + r ′), (A1)

where Q(r) = SA(r)c(r). Here, we use

�ββ ′γ γ ′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
8 , if (β,β ′,γ,γ ′) = (1,1,1,1),(2,2,2,2),
1
8 , if (β,β ′,γ,γ ′) = (1,1,2,2),(1,2,1,2),

(1,2,2,1),(2,1,1,2),(2,1,2,1),(2,2,1,1),
0, otherwise,

(A2)

and the first and second derivatives of the Oseen tensor in
Eq. (4),

∂Gαβ

∂rγ

= 1

4πη

{
1

r2
(−rγ δαβ + rαδβγ + rβδαγ ) − 2rαrβrγ

r4

}
,

(A3)

∂2Gαβ

∂rγ ∂rδ

= 1

4πη

{
1

r2
(−δαβδγ δ + δαδδβγ + δαγ δβδ)

− 2

r4
(−rγ rδδαβ + rαrβδγ δ + rαrγ δβδ

+ rαrδδβγ + rβrγ δαδ + rβrδδαγ ) + 8rαrβrγ rδ

r6

}
.

(A4)

The velocity, Vα(r), is also simplified from Eq. (3) in the
same way:

Vα(r) = −�ββ ′γ γ ′

∫
d r ′ ∂

2Gαβ

∂r ′
γ ∂r ′

δ

∂Gδβ ′

∂r ′
γ ′

SA(r + r ′)c(r + r ′)

= −1

8

∫
d r ′

[
2

(
∂2Gα1

∂r ′
1∂r ′

δ

∂Gδ1

∂r ′
1

+ ∂2Gα2

∂r ′
2∂r ′

δ

∂Gδ2

∂r ′
2

)

+
(

∂2Gα1

∂r ′
2∂r ′

δ

+ ∂2Gα2

∂r ′
1∂r ′

δ

)(
∂Gδ1

∂r ′
2

+ ∂Gδ2

∂r ′
1

)

+
(

∂2Gα1

∂r ′
1∂r ′

δ

+ ∂2Gα2

∂r2∂rδ

)(
∂Gδ1

∂r ′
1

+ ∂Gδ2

∂r ′
2

)]

×Q(r + r ′)

= 1

32π2η2

∫
d r ′ r ′

α

r ′4 Q(r + r ′). (A5)

Finally, the derivation for Eq. (9) is shown. From Eq. (8),
we calculate

Uα(r) = Vα(r) − ∂Dαα′(r)

∂rα′

= 1

32π2η2

∫
d r ′

(
r ′
α

r ′4 − r ′
αr ′

α′

r ′4
∂

∂rα′

)
Q(r + r ′)

= 1

32π2η2

∫
d r ′

(
r ′
α

r ′4 +
(

∂

∂r ′
α′

r ′
αr ′

α′

r ′4

))
Q(r + r ′)

− 1

32π2η2

∫
σ

ds ′
α′

r ′
αr ′

α′

r ′4 Q(r + r ′), (A6)

where
∫
σ

ds ′
α′ is the integration along the periphery of the

domain. Here, ∂/∂rα′ can be regarded as ∂/∂r ′
α′ and the partial

integration is used. The derivative in the integrand is calculated
as

∂

∂rα′

rαrα′

r4
= δαα′rα′

r4
+ 2

rα

r4
− 4

rαr2
α′

r6
= − rα

r4
. (A7)

Thus, only the surface term remains:

Uα(r) = − 1

32π2η2

∫
σ

ds ′
α′

r ′
αr ′

α′

r ′4 Q(r + r ′). (A8)

The integration is taken over the physical boundary σoutside and
the small cutoff surface σinside around r . The integration taken
over the physical boundary σoutside becomes zero if Q = 0 at
the boundary, as we always assume. As for the cutoff surface,
we expand Q as

Q(r + r ′) = Q(r) + r ′
α

∂Q(r)

∂rα

+ O(r ′2). (A9)

Then, the integral over the small cutoff surface is calculated as

Uα(r) = − 1

32π2η2

∫ 2π

0
(−�cr̂ ′

α′dφ′)
r̂ ′

αr̂ ′
α′

�c
2

×
(

Q(r) + �cr̂ ′
β

∂Q(r)

∂rβ

+ O
(
�2

c

))

= 1

32πη2

∂Q(r)

∂rα

+ O(�c), (A10)

where r̂ ′
α is a unit vector which is parallel to r ′

α , and r̂ ′
1 =

cos φ′ and r̂ ′
2 = sin φ′. Here, we used r̂ ′

αr̂ ′
α = 1, and the

integrations of r̂α and r̂α r̂α′ with regard to φ over [0,2π ) are
zero and πδαα′ , respectively.

APPENDIX B: ANALYTICAL SOLUTION FOR A
CIRCULAR RAFT

In this section, the drift velocity and diffusion enhancement
are derived for a circular raft with a radius of R. First, the case
when the passive particle is located inside the raft, i.e., 0 �
r < R − �c, is considered. We calculate the drift velocity Vα

and diffusion enhancement DA
αα′ at the position r = (r,0) in the

Cartesian coordinates. We adopt the polar coordinates whose
origin corresponds to r . The range of the integral in the radial
direction is [�c, − r cos θ +

√
R2 − r2 sin2 θ]. The lower limit

of the integral is the cutoff length and the upper limit
is obtained by solving r2

max + r2 − 2rmaxr cos(π − θ ) = R2
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with regard to rmax. Here, we define L(θ ) as L(θ ) = −r cos θ + √
R2 − r2 sin2 θ . The drift velocity is derived as

V (r) = SA

32π2η2

∫
d r ′ 1

r ′4

(
r ′

1
r ′

2

)
c(r + r ′) = ξ

∫ 2π

0
dθ

∫ L(θ)

�c

r ′ dr ′ 1

r ′4

(
r ′ cos θ

r ′ sin θ

)
= πξ

( − r
R2−r2

0

)
, (B1)

where c(r) is defined as

c(r) =
{
c0, if |r| < R,

0, if |r| > R,
(B2)

and ξ = SAc0/(32π2η2). The diffusion enhancement is derived as

DA(r) = SA

32π2η2

∫
d r ′ 1

r ′4

(
r ′2

1 r ′
1r

′
2

r ′
1r

′
2 r ′2

2

)
c(r + r ′) = ξ

∫ 2π

0
dθ

∫ L(θ)

�c

r ′ dr ′ 1

r ′4

(
r ′2 cos2 θ r ′2 sin θ cos θ

r ′2 sin θ cos θ r ′2 sin2 θ

)

= πξ

(
ln

√
R2 − r2

�c

)
I, (B3)

where Iαβ = δαβ . Thus, Eq. (10) is obtained.
Second, the case when the passive particle is located outside of the raft, i.e., r > R + �c, is considered. The drift velocity is

calculated as

V (r) = SA

32π2η2

∫
d r ′ 1

r ′4

(
r ′

1
r ′

2

)
c(r + r ′) = ξ

∫ R

0
r ′ dr ′

∫ 2π

0
dθ

1

(r ′2 + r2 − 2r ′r cos θ )2

(
r ′ cos θ − r

r ′ sin θ

)
= πξ

(− R2

r(r2−R2)
0

)
.

(B4)

The diffusion enhancement is derived as

DA(r) = SA

32π2η2

∫
d r ′ 1

r ′4

(
r ′2

1 r ′
1r

′
2

r ′
1r

′
2 r ′2

2

)
c(r + r ′)

= ξ

∫ R

0
r ′ dr ′

∫ 2π

0
dθ

1

(r ′2 + r2 − 2r ′r cos θ )2

(
(r ′ cos θ − r)2 (r ′ cos θ − r)r ′ sin θ

r ′ sin θ (r ′ cos θ − r) r ′2 sin2 θ

)

= πξ

(
ln r√

r2−R2 + R2

2r2 0

0 ln r√
r2−R2 − R2

2r2

)
. (B5)

Thus, Eqs. (11) and (12) are obtained.
In addition, the analytical solution near the periphery of the raft, i.e., R − �c < r < R + �c, is obtained only for the radial

component of the velocity, V‖, as follows: For R − �c � r <
√

R2 − �2
c ,

V‖(r) =
∫ 2π−θ0

θ0

dθ

∫ a(θ)

�c

r dr
1

r4
r cos θ

= ξ

[
r

R2 − r2

(
R2

r2
arccos

R2 + �2
c − r2

2R�c

+ arccos
R2 − r2 − �2

c

2r�c

− π

)
−

√
(R2 − (r − �c)2)((r + �c)2 − R2)

2r�2
c

]
, (B6)

where a(θ ) = −r cos θ + √
R2 − r2 sin2 θ and θ0 = arccos[(R2 − r2 − �2

c)/(2r�c)] < π/2.
For

√
R2 − �2

c < r <
√

R2 + �2
c ,

V‖(r) =
∫ 2π−θ0

θ0

dθ

∫ a(θ)

�c

r dr
1

r4
r cos θ

= ξ

[
r

R2 − r2

(
R2

r2
arccos

R2 + �2
c − r2

2R�c

− arccos
r2 − R2 + �2

c

2r�c

)
−

√
(R2 − (r − �c)2)((r + �c)2 − R2)

2r�2
c

]
, (B7)

where a(θ ) = −r cos θ + √
R2 − r2 sin2 θ and θ0 = arccos[(R2 − r2 − �2

c)/(2r�c)] > π/2.
For

√
R2 + �2

c < r < R + �c,

V‖(r) =
∫ 2π−θ0

θ0

dθ

∫ a(θ)

�c

r dr
1

r4
r cos θ = ξ

[
− πR2

r(r2 − R2)
+ r

R2 − r2

(
− arccos

r2 + �2
c − R2

2r�c

− R2

r2
arccos

r2 − R2 − �2
c

2R�c

)

−
√

(R2 − (r − �c)2)((r + �c)2 − R2)

2r�2
c

]
, (B8)
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r / ℓc

40020

0

-2

-1

V || ℓ
c 
/ξ

FIG. 7. Profiles of the radial component of the velocity, V‖,
obtained by the numerical integration (solid circles) and analytical
calculation (solid curves) in the case with a circular raft of a radius R,
in which the concentration of active proteins is c0. We set R/�c = 20,
just as in Fig. 1. The parameter δ in Eq. (15) is set as δ = 0.

where a(θ ) = −r cos θ − √
R2 − r2 sin2 θ and θ0 =

arccos[(R2 − r2 − �2
c)/(2r�c)] > π/2. It is noted that

the transverse component of the velocity, V⊥, is always zero
due to the symmetry of the system. The analytical results
are shown in Fig. 7 together with the numerical results. The
analytical solution well matches the numerical results.

We have also obtained the explicit form of U(r) analyt-
ically. From the expression (A8), it is easily concluded that
U = 0 for r < R − �c and R + �c < r , and U⊥ = 0 for all
regions. Thus, only U‖ for R − �c < r < R + �c is nontrivial
and is calculated as

U‖(r) = −ξ

√
[R2 − (r − �c)2][(r + �c)2 − R2]

r�2
c

. (B9)

When �c is sufficiently small, U1(r) is approximated as

U‖(r) = −πξδ(r − R), (B10)

and this result appears in Eq. (20).

APPENDIX C: SMOOTHED PROFILE OF AN ELLIPTIC
RAFT

The elliptic coordinates μ and ν are defined as

x = χ cosh μ cos ν, (C1)

y = χ sinh μ sin ν, (C2)

where χ is a positive parameter. The level curve of μ = μ0 > 0
corresponds to an ellipse,

x2

a2
+ y2

b2
= 1, (C3)

where a = χ cosh μ0, b = χ sinh μ0, and a > b > 0. Here, a

and b are major and minor semiaxes, respectively. Thus, χ is
calculated as

χ =
√

a2 − b2. (C4)

Here it is noted that the periphery is defined as

μ = μ0 = arctanh
b

a
. (C5)

Considering the level curves of μ and ν cross perpendicularly
at every point, we can describe the profile as a function of only
μ as

c(r) = c0

2

[
1 + tanh

(
− (μ − μ0)

δμ

)]
, (C6)

where δμ is the smoothing factor. δμ should be determined
so that it corresponds to δ in the Cartesian coordinates. The
length unit d� along the level curve of ν is described as

d�

dμ
= χ

√
sinh2 μ + sin2 ν. (C7)

Therefore, δμ is described as

δμ = δ

λ
, (C8)

where

λ = χ

√
sinh2 μ0 + sin2 ν, (C9)

and thus Eq. (25) is obtained.
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