
Network Problems with Non-Polynomial

Weights and Applications

(Submitted to Track A)

Kurt Mehlhorn and Dimitrios Michail

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{mehlhorn,michail}@mpi-sb.mpg.de

Abstract. The most efficient algorithms for several network problems
like minimum cost flow and the maximum weight matching problem fol-
low the primal-dual paradigm. These algorithms perform arithmetic (ad-
ditions and subtractions) on numbers of magnitude O(nC) when the edge
weights (also called costs) are integers bounded by C and n denotes the
number of vertices. Under the standard assumption that arithmetic on
numbers of magnitude O(n) has constant cost, arithmetic on numbers of
this size has cost O((log C)/ log n). We show for the scaling versions of
these algorithms that arithmetic on numbers of size polynomial in n suf-
fices without increasing the asymptotic number of arithmetic operations.
In this way, we obtain an O(T +

√
nm log(nC)) time and O(S+m) space

algorithm for the maximum weight matching problem on bipartite graphs
where T and S are the time and space bound of an algorithm to sequen-
tially enumerate the sets Ei, 1 ≤ i ≤ ⌈log C⌉, of all edges having a one
in the i-th bit of their weight. The previously best algorithm had run-
ning time O(

√
nm(log(nC))2/ log n). We obtain similar improvements

for the capacitated transshipment problem with polynomially bounded
demands.

Some matching problems on bipartite graphs reduce to weighted match-
ing problems with C = nr, r ≤ m. For these problems, we have T =
O(r

√
nm log n) and S = O(m) and hence our algorithm improves upon

previous solutions by a factor Θ(r).

1 Introduction

This paper was inspired by a study of rank-optimal matching problems. Let G =
(V, E) be a bipartite graph and let E = E1 ∪̇E2 ∪̇ . . . ∪̇Er, r ≤ m be a partition
of the edge set. We call the edges in class Ei the edges of rank i. For a matching
M in G, let si(M) = |M ∩ Ei| be the number of edges in M of rank i. We call
a matching rank-maximal if it maximizes the vector (s1, s2, . . . , sr), maximum
cardinality rank-maximal if it maximizes the vector (

∑
i si, s1, s2, . . . , sr), and

fair if it maximizes (
∑

i si,−sr,−sr−1, . . . ,−s1). All three versions of the rank-
optimal matching problems reduce to weighted matching problems. For example,
if an edge of rank i is given weight 2⌈log n⌉·(r−i) then maximum weight matchings

correspond to rank-maximal matchings. Observe that the binary representation
of these weights has a simple structure.

The running times of the best strongly and weakly polynomial algorithms for
the maximum weight matching problem in bipartite graphs are usually stated
as O(nm+n2 log n) [1] and O(

√
nm log(nC)) [2], respectively. Here n and m de-

note the number of vertices and edges, respectively, and C denotes the maximal
edge weight. Edge weights are assumed to be integral. The bounds just stated
assume that arithmetic operations have constant cost. The algorithms perform
arithmetic (additions and subtractions) on numbers of magnitude O(nC); arith-
metic on numbers of this size has cost O((log C)/ log n) under the customary
assumption that arithmetic on numbers of magnitude O(n) has constant cost.
Thus, the true time bounds are a factor (log C)/ log n larger than the bounds
stated above. In particular, the running time of the weakly polynomial algo-
rithm is O(

√
nm(log(nC))2/ logn). In the application to rank-maximal match-

ings C = 2⌈log n⌉·(r−1) and hence the time bounds of the strongly and weakly
polynomial algorithms are O(rnm) and O(r2

√
nm log n), respectively. We show

that the use of numbers of magnitude O(nC) can be avoided in the weakly poly-
nomial algorithm; it suffices to handle numbers of polynomial size. In this way,
we avoid the penalty factor (log C)/ log n.

Our work is based on the weakly polynomial algorithm of Gabow and Tarjan.
This algorithm uses scaling. Let c(e) be the weight (cost) of edge e and let
K = ⌈log C⌉. For 0 ≤ i ≤ K, let ci(e) = ⌊c(e)/2K−i⌋ be the weight obtained
by considering only the first i-bits of the binary representation of c(e) when
viewed as numbers with K bits. The algorithm operates in K phases. In the
i-th phase, it computes a nearly optimal matching Mi for the cost function
ci and a potential function πi proving the near-optimality of the matching. A
potential function assigns an integer to each vertex. It guides the construction
of the matching Mi+1 in the next phase through the use of reduced costs. For a
potential function π : V 7→ Z and a cost function c : E 7→ Z≥0, the reduced cost
of an edge e = (v, w) is defined as c(e) = π(v)+π(w)−c(e). In the Gabow/Tarjan
algorithm, potential values and reduced costs may become as large as Θ(nC).
Our improved algorithm is based on the following observations:

– Edges whose reduced cost becomes sufficiently large (= larger than 8n) in
some phase can be safely ignored (“priced out” in the terminology of combi-
natorial optimization) in later phases. They will never be part of an optimal
matching.

– If potential values are not stored explicitly, but only the reduced cost of
edges, only numbers polynomially bounded in n need to be handled and
hence arithmetic has constant cost.

In this way, we obtain an O(T +
√

nm log(nC)) time and O(S + m) space algo-
rithm for the maximum weight matching problem on bipartite graphs where T
and S are the time and space bound of an algorithm to sequentially enumerate
the sets Ei, 1 ≤ i ≤ ⌈log C⌉, of all edges having a one in the i-th bit of their
weight (each weight is assumed to be a signed integer ±b1b2 . . . b⌈log C⌉ , where b1

is the most-significant bit). We obtain similar improvements for the capacitated
transshipment problem with polynomially bounded demands.

In the application to rank-optimal matching problems, we have T = O(r
√

nm log n)
and S = O(m) and hence we obtain running time O(r

√
nm log n) and space

requirement O(m). Similarly for rank-optimal b-matching problems we obtain
O(rnm log (n2/m) log n) time and space O(m). For some of these problems r
can be replaced by r∗ ≤ r ≤ m, which for a particular instance is the maximal
rank used in an optimal solution.

The paper is organized as follows. In Section 2 we discuss the maximum
weight matching problem and in Section 4 the minimum cost flow problem. In
Sections 3 and 5 we give several applications. We summarize and offer conclusions
in Section 6.

2 Maximum weight bipartite matching

We give a variant of the Gabow/Tarjan scaling algorithm [2] for weighted bipar-
tite matchings which runs in time O(T +

√
nm log nC) where C is the largest

weight of any edge on the graph. The algorithm ensures that any arithmetic
performed will be on numbers of size polynomial in n. The space requirement is
O(S + m).

2.1 Preliminaries

We are given a bipartite graph G = (V, E), V = A∪̇B and a non-negative weight
function on the edges, c : E 7→ Z≥0. We assume that all weights are divisible
by 2⌈1+log n⌉; this assumption can always be ensured by multiplying the weights
by 2⌈log n⌉. We are looking for a maximum weight matching M . A well-known
transformation allows us to assume that |A| = |B| and that there is a maximum
weight matching which is also perfect.

We create a graph Ĝ with two copies of G, namely G1 and G2. For any vertex
v ∈ G, let v1 ∈ G1 and v2 ∈ G2 be the two copies of v. We add a zero cost edge
between v1 and v2. Observe that Ĝ is bipartite if G is and that both sides of the
bipartition of Ĝ have the same cardinality. For any matching M in G there is
perfect matching of twice the cost in Ĝ, use a copy of M each in G1 and G2 and
match vertices free in M with their copy by the new zero cost edges. Conversely,
any matching M̂ in Ĝ induces matchings M1 and M2 in G1 and G2, respectively,
whose cost adds up to the cost of M̂ . Thus, in Ĝ, a maximum weight matching
can be assumed to be perfect. We assume from now on that the transformation
has been performed and use G to denote the transformed graph and n to denote
the common cardinality of the two sides of the bipartition of G.

We need a few definitions. A matching M is called 1-feasible matching for
cost function c if there are dual variables π(v), v ∈ V such that:

π(u) + π(v) ≥ c(e) − 1 ∀e = (u, v) ∈ E (1a)

π(u) + π(v) = c(e) ∀e = (u, v) ∈ M (1b)

A matching M is 1-optimal if it is 1-feasible and it is perfect. The reduced cost of
an edge e = (v, w) ∈ E with respect to a cost function c and a potential function
π is defined as c̄(e) = π(v) + π(w) − c(e).

Bertsekas [3, 4] observed that, under the assumption that weights are divisible
by 21+⌈log n⌉, a 1-optimal matching is optimal. Indeed, let M∗ be 1-optimal, let π
be a potential function proving 1-optimality, and let P be any perfect matching.
Then

c(M∗) =
∑

e∈M∗

c(e) =
∑

v∈V

π(v) ≥ c(P) − n.

On the other hand, c(P) − c(M∗) is divisible by 21+⌈log n⌉ and hence c(P) ≤
c(M∗).

2.2 The algorithm

The algorithm operates in phases 0 to K. In phase zero all edges have cost
zero. We set M0 to an arbitrary perfect matching, e.g., the edges added in the
transformation presented in Section 2.1. We also set the reduced cost of all edges
to zero and, implicitly, the potential of all nodes to zero. During the algorithm
we will only maintain the reduced costs. With these settings, M0 is an 1-optimal
matching and phase zero ends.

Consider any latter phase. At the beginning of phase i we have a 1-optimal
matching Mi−1 and reduced costs c̄i−1(e) for e ∈ E. Our goal it to compute a
1-optimal matching Mi for the cost function ci. Let bi(e) = 1 if e ∈ Ei and 0
otherwise and define an auxiliary cost function c̃ by

c̃(e) = 2c̄i−1(e) + 2 − b(e).

Then c̃(e) ≥ 2 · (−1) + 2 − 1 = −1 and c̃(Mi−1) =
∑

e∈Mi−1
2 − b(e) ≤ 2n. We

are now in a position to use a result of Gabow and Tarjan.

Lemma 1. Let b > 0 be a constant and let G be a bipartite graph with cost
function c̃. If c̃(e) ≥ −1 and there is a perfect matching with cost at most bn, a
perfect matching M and a potential function π with (1) c̃(e) = π(u) + π(v) for
all e = (u, v) ∈ M , (2) c̃(e) ≥ π(u) + π(v) − 1 for all e = (u, v) ∈ E, and (3)
|π(v)| ≤ (b + 2)n for all v ∈ A ∪ B can be determined in time O(

√
nm).

We can use this Lemma with b = 2. Let M and π be as in this Lemma. We
implicitly set πi(v) = 2πi−1(v) − π(v) + 2 · (v ∈ A). Then for e = (u, v)

c̄i(e) = πi(u) + πi(v) − ci(e)

= 2πi−1(u) − π(u) + 2 + 2πi−1(v) − π(v) − 2ci−1(e) − b(e)

= 2c̄i−1(e) + 2 − b(e) − π(u) − π(v) = c̃(e) − π(u) − π(v)

and hence c̄i(e) = 0 for e ∈ M and c̄i(e) ≥ −1 for all e 6∈ M . Thus Mi = M
is 1-optimal. We need one more fact. Let M ′ = Mi−1 be the matching with
c̃(M ′) ≤ bn. Then

c̃(M) =
∑

e=(u,v)∈M

π(u) + π(v) ≤
∑

e=(u,v)∈M ′

c̃(e) + 1 ≤ (b + 1)n

and hence c̃(e) ≤ (b + 2)n for any e ∈ M .

We compute c̄i(e) as c̄i(e) = 2c̄i−1(e) + 2 − b(e) − π(u) − π(v) and so the
update is a change by a number of polynomial size. The next lemma shows how
to ensure that reduced costs are in O(n) as well.

Lemma 2. Consider any edge e with c̄i−1(e) ≥ 8n. Then e is not part of the
1-optimal matching computed in any phase j ≥ i.

Proof. If c̄i−1(e) ≥ 8n, c̃i(e) ≥ 16n. Thus e 6∈ Mi by the discussion above. Also
c̄i(e) = 2c̄i−1(e) + 2 − b(e) − π(u) − π(v) ≥ 16n − 8n ≥ 8n.

During the algorithm we maintain the reduced costs. When an edge reaches
reduced cost 8n or more, we delete it. In this way, reduced costs stay in O(n).
Summarizing, we have the following theorem.

Theorem 1. The maximum weight matching problem on a bipartite graph G(A∪̇
B, E) can be solved in O(T +

√
nm log nC) time and O(S + m) space using

arithmetic on numbers of size polynomial in n only. Here, T and S are the
time and space bounds of an algorithm to sequentially enumerate the sets Ei,
1 ≤ i ≤ ⌈log C⌉, of all edges having a one in the i-th bit of their weight.

3 An Application to Rank-Optimal Matchings

Let G = (V, E), V = A ∪̇B where |V | = n and |E| = m be a bipartite graph and
let E = E1 ∪̇E2 ∪̇. . .∪̇Er, r ≤ m, be a partition of the edge set. We call the edges
in class Ei the edges of rank i. For a matching M in G, let si(M) = |M ∩ Ei|
be the number of edges in M of rank i. We call a matching:

– rank-maximal, if it maximizes the vector (s1, s2, . . . , sr),

– maximum cardinality rank-maximal, if it maximizes the vector (
∑

i si, s1, s2, . . . , sr),
and

– fair: if it maximizes (
∑

i si,−sr,−sr−1, . . . ,−s1).

We show how to reduce all three versions to weighted matching problems, where
the binary representation of the edge weights has a very simple structure. The
reductions involve weights as large as nr.

The rank-maximal matching problem has been previously studied in [5],
where two algorithms were presented. The first with O(r∗

√
nm) running time

and O(m) space and the second with O(r∗nm) running time and the same
space. Here r∗ is the maximal rank used in any optimal solution for a particu-
lar instance. We present O(r∗

√
nm log n) algorithms for all three problems. No

polynomial algorithm was known for the maximum cardinality rank-maximal
and the fair matching problem; in particular, the O(r∗

√
nm) algorithm from [5]

does not seem to generalize.

Rank-maximal matchings Given an edge of rank i we assign to it a weight of
2⌈log n⌉·(r−i). Then C = 2⌈log n⌉·(r−1) and the sets Ej for 1 ≤ j ≤ ⌈log C⌉ are
disjoint. This allows us to enumerate them efficiently. The enumeration algorithm
maintains a list of buckets, where bucket i contains the edges which have a 1 in
their i-th bit. Since only r such buckets are required the space requirement is
O(m + r). The total running time of the algorithm to compute a rank-maximal
matching is therefore O(r

√
nm logn) with space requirement O(m) since r ≤ m.

In this time bound, we can replace r by r∗ in the following way. Let φ(i) =
(i − 1)⌈log n⌉ + 1 for 1 ≤ i ≤ r be the phase that we change the weight of rank
i edges from 0 to 1. Instead of setting only the weight of i-ranked edges to 1
we set the weight of all edges with rank ≥ i to 1. We then execute O(log n)
phases where we only scale by 2 every time (not adding anything on the edge
weights). The resulting matching will be optimal w.r.t the edge weights at phase
φ(i) (due to integrality). If the resulting matching does not use any edge of rank
≥ i, then we know that there exists a rank-maximal matching using only edges
of rank < i. Otherwise, we reset the weights to their original values and restart
phase φ(i). This way the total number of phases will be O(r∗ log n) instead of
O(r log n).

Theorem 2. The rank-maximal matching problem can be solved on a bipartite
graph in O(r∗

√
nm log n) time using space O(m), where r∗ ≤ r ≤ m is the

maximal rank of an edge used in an optimal solution.

Maximum cardinality rank-maximal matchings We modify the previous reduc-
tion by adding a sufficient large weight to each edge weight. This way we can
make sure than any maximum weight matching has maximum cardinality. The
largest weight we might have is 2⌈log n⌉(r−1) and therefore adding a weight larger
than 2n2⌈log n⌉(r−1) such as 2⌈log n⌉(r−1)+⌈log n⌉+2 = 2⌈log n⌉r+2 is sufficient. This
is true since any matching may contain less than n edges. The new edge weights
do not increase the complexity of enumerating the sets Ei, since we simply add
every edge to a constant number of new sets.

Fair matchings The fair matching problem can be similarly solved by assigning a
weight of 2⌈log n⌉(i−1) to edges of rank i and finding a minimum weight maximum
cardinality matching.

Theorem 3. The maximum cardinality rank-maximal and fair matching prob-
lems can be solved on a bipartite graph in time O(r

√
nm log n) using space O(m).

4 Minimum cost flow

In this section we deal with the capacitated transshipment version of the min-
imum cost flow problem. Let G = (V, E) be a directed network with a cost
c : E 7→ Z and capacity u : E 7→ Z≥0 associated with each edge. With each
v ∈ V a number b(v) is associated;

∑
v∈V b(v) = 0. If b(v) > 0, v is a supply

node, and if b(v) < 0, v is a demand node. We assume G to be symmetric, i.e.,

e ∈ E implies that the reverse arc eR ∈ E. The reversed edges are added in
the initialization step. The cost and capacity functions satisfy c(e) = −c(eR) for
each e ∈ E, u(e) ≥ 0 for the original edges and u(eR) = 0 for the additional
edges. From now on, E denotes the original and artificial edges.

A pseudoflow is a function x : E 7→ Z satisfying the capacity and antisym-
metry constraints: for each e ∈ E, x(e) ≤ u(e) and x(e) = −x(eR). This implies
x(e) ≥ 0 for the original edges. For a pseudoflow x and a node v, the imbalance
imbx(v) is defined by imbx(v) =

∑
(w,v)∈E x(w, v) + b(v). A flow is a pseud-

oflow x such that, imbx(v) = 0 for all v ∈ V . The cost of a pseudoflow x is
cost(x) =

∑
e∈E c(e)x(e). The minimum-cost flow problem asks for a flow of

minimum cost.

For a given flow x, the residual capacity of e ∈ E is ux(e) = u(e)−x(e). The
residual graph G(x) = (V, E(x)) is the graph induced by edges with positive
residual capacity.

A potential function is a function π : V 7→ Z. For a potential function π, the
reduced cost of an edge e = (v, w) is cπ(v, w) = c(v, w) + π(v) − π(w).

A flow x is optimal if and only if there exists a potential function π such
that cπ(e) ≥ 0 for all e ∈ E(x). For a constant ǫ ≥ 0 a flow is ǫ-optimal
if cπ(e) ≥ −ǫ for all e ∈ E(x) for some potential function π. Consider an ǫ-
optimal flow x and any original edge e. If cπ(e) < −ǫ, the residual capacity
of e must be zero and hence e is saturated, i.e., x(e) = u(e). If cπ(e) > ǫ, we
have cπ(eR) = −cπ(e) < −ǫ and hence the residual capacity of eR must be zero.
Thus eR is saturated, i.e., x(eR) = u(eR) = 0. So e is unused. As in Section 2, we
assume that all costs are divisible by 21+⌈log n⌉. This guarantees that a 1-optimal
flow is optimal. We refer the reader to [1] for more details.

Goldberg and Tarjan [6, 7] gave a scaling algorithm for the capacitated trans-
shipment problem. It scales the costs and runs in O(log(nC)) phases. We assume
that capacities, demands and supplies are polynomially bounded in n, but costs
are arbitrary. We modify the algorithm of Goldberg and Tarjan so that all num-
bers handled by the algorithm are polynomially bounded. The main ideas are to
maintain node potentials implicitly and to fix the flow across edges of large (posi-
tive or negative) reduced cost. Fixing flow or node potentials has been previously
used in network problems in order to obtain strongly polynomial algorithms [1,
page 397].

4.1 The algorithm

The algorithm works in phases; in phase i it computes a 1-optimal flow with
respect to the cost function ci. In phase 0 we set the cost of every edge to 0 and
calculate any feasible flow x0. The zero potential function proves the 1-optimality
of x0. We therefore set the reduced cost of any edge to zero.

Consider next any phase i with i ≥ 1. At the beginning of the phase, we have a
1-optimal flow xi−1 and a reduced cost function c

πi−1

i−1 . We scale up by multiplying
the potentials and the edge costs by 2 and adding ±1 (after multiplying by 2)
to the edge costs of edges in Ei (we either add or subtract based on the sign of

c(e)). The reduced costs scale up as follows:

c̃(v, w) = 2c
πi−1

i−1 (v, w) + (1 if e ∈ Ei else 0) × sign(e) (2)

where sign(e) is 1 or −1 depending on the sign of the original cost of e, c(e).
At the end of phase i−1 the flow xi−1 is 1-optimal and therefore c

πi−1

i−1 (e) ≥ −1
for any edge e with positive residual capacity. After scaling up, Equation (2)
gives us c̃(e) ≥ −3, i.e, xi−1 is 3-optimal with respect to the edge costs c̃ and the
constant zero potential function. We use a variant of the algorithm of Goldberg
and Tarjan [6, 7] to transform the 3-optimal flow into a 1-optimal flow.

Lemma 3. Given the cost function c̃, a 3-optimal flow xi−1, in time O(nm log (n2/m))
one can compute a potential function π and a flow xi which is 1-optimal with
respect to the reduced costs cπ(u, v) = c̃(u, v) + π(u) − π(v). Potentials are only
decreased during the computation and π(v) ≥ −dn for some constant d and all
v.

At the end of the phase, we implicitly set πi(v) = 2πi−1(v) + π(v) for all v
and explicitly recompute reduced costs as cπi

i (u, v) = c̃(u, v)+π(u)−π(v). Thus
all updates are by polynomially bounded numbers. We next show that edges of
large reduced cost can be discarded; more precisely, we can fix the flow to either
zero or the capacity.

We say that the reduced cost of an edge e is large positive from phase i on,
if cπ(e) > 1 at the end of every phase after phase i, and is large negative from
phase i on, if cπ(e) < −1 at the end of every phase after phase i. If e is large
positive from phase i on, we have xj(e) = 0 for all j ≥ i and if e is large negative
from phase i on, we have xj(e) = u(e) for all j ≥ i.

Lemma 4. Let f(n) = dn be the maximum potential change (decrease) of any
vertex during any phase and let e be any edge. If c̃i(e) > 2f(n)+1 at the beginning
of phase i, e is large positive from phase i on, and if c̃i(e) < −2f(n) − 1 at the
beginning of phase i, e is large negative from phase i on.

Proof. Assume c̃i(e) > 2f(n)+1 at the beginning of some phase i. Then cπi

i (e) >
f(n) + 1 since the reduced cost can change by at most f(n). Therefore at the
beginning of the next phase c̃i+1 = 2cπi

i (v, w)+(1 if e ∈ Ei+1 else 0)×sign(e) >
2f(n) + 2 − 1 = 2f(n) + 1. Thus e is large positive from phase i on.

Assume next that c̃i(e) < −2f(n)−1 at the beginning of some phase i. Then
cπi

i (e) < −f(n)−1 since the reduced cost can change by at most f(n). Therefore
at the beginning of the next phase c̃i+1 = 2cπi

i (v, w) + (1 if e ∈ Ei+1 else 0) ×
sign(e) < −2f(n) − 2 + 1 = −2f(n) − 1. Thus e is large negative from phase i
on.

The Lemma above allows us to fix the flow across an edge e once |c̃i(e)| >
dn + 1. We remove the edge e (and its reversal eR) from the graph and modify
the imbalances of both endpoints accordingly. In this way, all reduced costs stay
in O(n).

Theorem 4. The minimum cost flow problem with polynomially bounded de-
mands can be solved in O(T + nm log (n2/m) log nC) time and O(S + m) space
using arithmetic only on numbers of size polynomial in n, where T and S are
the time and space bounds of an algorithm to sequentially enumerate the sets Ei,
1 ≤ i ≤ ⌈log C⌉, of all edges having a one in the i-th bit of their weight.

5 An Application to Rank-Optimal b-Matchings

The rank-maximal matchings problem can be generalized by introducing capac-
ities on the vertices. We are given a function q : V 7→ Z>0 denoting the capacity
of each vertex. Each vertex v ∈ V is allowed to be matched with at most q(v)
edges. Without loss of generality we may assume that q(v) ≤ deg(v), where
deg(v) is the degree of v ∈ G.

We can transform such an instance into a minimum-cost flow problem. We
add two additional vertices s and t. For each vertex v ∈ A we add an edge
(s, v) with capacity q(v) and cost zero. For each vertex v ∈ B we add an edge
(v, t) again with capacity q(v) and cost zero. Every edge (v, w) where v ∈ A and
w ∈ B has capacity one and is directed from A to B. The resulting instance has
a trivial upper bound on the maximum s-t flow of n2/4. We need to assign costs
to the edges in order for no collection of rank ≥ i+1 edges to overcome the cost
of a rank i edge.

An edge of rank i will be assigned a cost of −22⌈log n⌉(r−i). In order to search
for a circulation we also add an edge from t to s with cost zero and capacity
> n2/4. We set the supplies of all vertices to zero and search for a minimum-cost
circulation with the algorithm presented in Section 4. The resulting circulation
will correspond to a rank-maximal b-matching.

The sets Ej for 1 ≤ j ≤ 2⌈logn⌉(r−1), are again disjoint and therefore can be
enumerated efficiently using linear space. The resulting algorithm has running
time O(rnm log (n2/m) log n) using space O(m + r) = O(m) since r ≤ m.

We can again replace r by r∗ in the following way. At the beginning of phase
φ(i) = 2(i−1)⌈log n⌉+1 for some 1 ≤ i ≤ r instead of setting only the weights of
i-ranked edges to −1 we set the weight of all edges with rank ≥ i to −1. Now, we
execute O(log n) more phases where we simply scale by 2 (not adding anything to
the edge weights). The resulting flow will be optimal w.r.t the weights at phase
φ(i) (due to integrality). If the resulting matching does not use any edges of
rank ≥ i, then we know that there exists a rank-maximal b-matching using only
edges of rank < i. Otherwise, we reset the edges to their original weights and
restart phase φ(i). The above imply that we require O(r∗ log n) phases instead
of O(r log n).

Theorem 5. The rank-maximal b-matching problem can be solved on a
bipartite graph in O(r∗nm log (n2/m) log n) time using space O(m), where r∗ ≤
r ≤ m is the maximal rank used in the optimal solution.

We can also solve the maximum cardinality rank-maximal b-matchings since
we can find a minimum cost maximum s-t flow. In order to do so, we do not

introduce the edge (t, s) and we set the demand of s to |f | and t to −|f |, where
f is a maximum s-t flow. Finally we can solve in the same way the fair matching
problem with capacities, by assigning weights of 22⌈log n⌉(i−1) on rank i edges
and finding a maximum s-t flow of minimum cost.

Theorem 6. The maximum cardinality rank-maximal and fair b-matching prob-
lems can be solved on a bipartite graph in O(rnm log (n2/m) log n) using space
O(m).

6 Conclusions

This paper was motivated by studying rank-optimal matching problems. These
problems reduce to weighted matching problems where the magnitude of the
weights can be as large as nO(m). Therefore, a direct application of the fastest
known network algorithms does not result on efficient algorithms.

By exploiting the fact that on the primal-dual algorithms there is no need
to explicitly maintain the potential function, and by “pricing out” edges whose
reduced cost has become large we obtained an algorithm for the maximum weight
matching problem with running time O(T +

√
nm lognC) and space O(S + m).

Here T and S are the time and space respectively of an algorithm to sequentially
enumerate the sets Ei, 1 ≤ i ≤ ⌈log C⌉ of all edges having a one in the i-th bit of
their weight. These running times assume only that arithmetic on O(log n) bits
take constant time. We also obtained a similar improvement for the capacitated
transshipment problem with polynomially bounded demands.

Using the above algorithms we presented efficient algorithms for the rank-
optimal matching problems with running time O(r

√
nm log n) and space O(m)

and for the rank-optimal b-matching problems with running time O(rnm log (n2/m) log n)
and space O(m). In some of these problems r can be replaced by r∗ ≤ r ≤ m,
the maximal rank for a particular instance used on an optimal solution.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall (1993)

2. Gabow, H.N., Tarjan, R.: Faster scaling algorithms for network problems. SIAM
Journal of Computing 18 (1989) 1013–1036

3. Bertsekas, D.P.: A distributed algorithm for the assignment problem. Laboratory
for Information and Decision Sciences, Mass. Inst. of Technology, Cambridge, MA,
Unpublished working paper (1979)

4. Bertsekas, D.P.: Distributed asynchronous relaxation methods for linear network
flow problems. Technical Report LIDS Report P-1606, Mass. Inst. of Technology,
Cambridge, MA (1986) preliminary version in Proc. 25th IEEE Conference of De-
cision and Control, December 1986.

5. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal
matchings. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Dis-
crete algorithms, Society for Industrial and Applied Mathematics (2004) 68–75

6. Goldberg, A., Tarjan, R.: Solving minimum-cost flow problems by successive ap-
proximation. In: Proceedings of the nineteenth annual ACM conference on Theory
of computing, ACM Press (1987) 7–18

7. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive
approximation. Math. Oper. Res. 15 (1990) 430–466

