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Abstract

In the present work, we employ exact diagonalization for model systems on a real-space lattice to
explicitly construct the exact density-to-potential and graphically illustrate the complete exact
density-to-wavefunction map that underly the Hohenberg—Kohn theorem in density functional
theory. Having the explicit wavefunction-to-density map at hand, we are able to construct arbitrary
observables as functionals of the ground-state density. We analyze the density-to-potential map as the
distance between the fragments of a system increases and the correlation in the system grows. We
observe a feature that gradually develops in the density-to-potential map as well as in the density-to-
wavefunction map. This feature is inherited by arbitrary expectation values as functional of the
ground-state density. We explicitly show the excited-state energies, the excited-state densities, and the
correlation entropy as functionals of the ground-state density. All of them show this exact feature that
sharpens as the coupling of the fragments decreases and the correlation grows. We denominate this
feature as intra-system steepening and discuss how it relates to the well-known inter-system derivative
discontinuity. The inter-system derivative discontinuity is an exact concept for coupled subsystems
with degenerate ground state. However, the coupling between subsystems as in charge transfer
processes can lift the degeneracy. An important conclusion is that for such systems with a near-
degenerate ground state, the corresponding cut along the particle number N of the exact density
functionals is differentiable with a well-defined gradient near integer particle number.

1. Introduction

Opver the last decades ground-state density-functional theory (DFT) has become a mature tool in material
science and quantum chemistry [1-5]. Provided that the exact exchange-correlation (xc) functional is known,
DFT is a formally exact framework of the quantum many-body problem. In practice, the accuracy of observables
in DFT highly depends on the choice of the approximate xc-functional. From the local density approximation
(LDA) [6], to the gradient expansions such as the generalized gradient approximations (GGAs), e.g. Perdew—
Burke—Enzerhof[7] and the hybrid functionals such as B3LYP [8], to the orbital-functionals such as optimized
effective potentials [9] and to the range-separated hybrids such as HSE06 [10], the last decades have seen great
efforts and achievements in the development of functionals with more accurate and reliable prediction
capability.

Nonetheless, available approximate functionals such as the LDA, the GGA’s and the hybrid functionals have
known shortcomings to model gaps of semiconductors [11], molecular dissociation curves [12], barriers of
chemical reactions [13], polarizabilities of molecular chains [14, 15], and charge-transfer excitation energies,
particularly between open-shell molecules [16].

Practical applications of density functional theory encounter two major problems: (i) while the Hohenberg—
Kohn theorem tells us that arbitrary ground-state observables are functionals of the ground-state density, it does
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not provide us with the explicit density functional dependence. (ii) Even for observables for which the exact
expression of the density-functional is known, solely the true exact density gives back the exact properties of the
system. Common xc-functionals fail to reproduce the exact density in the strong-correlation limit. Any
deviations from the exact density directly translates to observables regardless whether the exact expression of the
density functionals is used.

In this work, we explicitly illustrate the density functional dependence of arbitrary observables for a specific
model system. This illustrates explicitly what was proven by Hohenberg and Kohn—but does not provide a
general recipe how to derive the functional expression of arbitrary observables for other systems. Further, we
illustrate problem (ii) by showing that the localization of the density directly manifests in the functional
dependence of arbitrary observables.

Recent advances in functional development such as optimally tuned range separated functionals [17],
ensemble density functional theory [18, 19] and local scaling corrections [20], logarithmically enhanced factors
in gradient approximations [21] and the particle—particle random-phase approximation [22] can diminish or
even cure some of the above mentioned shortcomings but not all of them.

Shortcomings of approximate functionals indicate that some important qualitative features of the exact
functional are not (sufficiently well) captured. A common example is the delocalization error as in the case of
stretched molecules, where approximate functionals such as LDA and GGA’s tend to artificially spread out the
ground-state electron density in space [23]. Since in DFT every observable is a functional of the ground-state
density the delocalization error transmits into all observables as functional of the density and in particular to the
ground-state energy functional. As a consequence most approximations for the ground-state energy as
functional of the particle number N are either concave or convex functions between integer N’s [20, 24] and
hence, violate the exact Perdew—Parr—Levy—Balduz condition [25] which states that the ground-state energy as a
function of the particle number E(N) is a linear function between integer N. The linearity of E(N) leads to the
commonly known derivative discontinuity [25] and is one exact condition on the xc-functional. Exact
conditions on the xc-functional are a very useful tool in the development of new, improved functionals. In this
paper we discuss an exact condition on the xc-functional that is relevant for systems consisting of well separated
but mutually interacting fragments, such as in stretched molecules. Among the approaches to model the limit of
strongly correlated, low density systems with DFT we highlight the long range corrected hybrids [26], the
generalization of the strictly correlated electron functional to fractional electron numbers [27-30] and the
recently introduced local scaling correction, which imposes the linearity condition to local regions of the system,
correcting both energies and densities and affirming the relevance of modeling fractional electron distributions
to reduce the delocalization error [20].

Exactly solvable model systems have shown to provide useful insight essential to understand the failures of
approximate xc-functionals and to develop new and improved approximations. For example, by studying one-
dimensional model systems of few electrons it was shown that in the dissociation limit of molecules, the exact xc-
potential as function of the spatial coordinate develops steps and peaks [31-37]. Such features are manifestations
of strong-correlation and the absence of such features in approximate functionals results in delocalization
errors. The correlation of molecules in the dissociation limit is usually dominated by static correlation, also
known as near-degeneracy correlation. A good measure for the static correlation in the system is the von-
Neumann entropy. It can be understood as well as a measure of the Slater rank [38, 39]. In the following, we refer
to strongly correlated systems if the ground-state wavefunction is not well approximated by a single Slater
determinant. Further, we do not allow spin-symmetry breaking.

Recently, [40—42] established an explicit connection between the xc potentials and the wave functions
allowing to directly compute the xc potentials from the many-electron wave functions in a numerically robust
manner. Studies of exact ground-state xc-functionals for lattice models include the exact one-to-one map
between ground-state densities and potentials computed for a half-filled one-dimensional Hubbard chain in
[43] using the Bethe Ansatz, for the one-site and double-site Hubbard models in full Fock space in [44, 45] and
for the two-electron Hubbard dimer via constraint search in [46], among others. For such lattice models the
Hohenberg—Kohn theorem [47] can be generalized by replacing the real-space potentials and densities by on-site
potentials and on-site occupations [48, 49]. The finite Hilbert space of lattice models permits the construction of
the exact density-to-potential map. The question arises what can be learned about realistic three-dimensional
systems by studying one-dimensional lattice models. Recently it was shown [50, 51] that the time-dependent
exact xc-functional of the one-dimensional Hubbard dimer in the strongly correlated limit develops the same
step feature as the real-space one-dimensional model studied in [52]. The step feature in the real-space model in
the strongly correlated limit is equivalent in the Hubbard dimer to a jump in the ground-state xc potential
difference as a functional of the density difference én between the two sites, vy, [0n], as the strongly correlated
limit is approached. The step saturates to the ionization potential difference between the two wells in the real
space model [31-37] whereas in the dimer, the value of 6y, [6n] saturates to év, the external potential difference
[50,51]. Note, in contrast to [50, 51] where the electron—electron interaction is on-site Hubbard, in this work we
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study lattice models with soft-Coulomb interaction between particles. Reference calculations of [53] show that
one-dimensional model systems capture the essence of three-dimensional systems when studying strong-
correlation in DFT.

In this work, we study the exact density-to-potential and density-to-wavefunction map of a one-
dimensional lattice model with a system size that still allows to exactly diagonalize the Hamiltonian in full Fock
space. The wavefunction-to-density map has been fully realized for fixed particle number, i.e. for the two-
electron singlet case by [54, 55] and for the more-electron case by [56, 57]. In principle, a small system size of the
model used in this work allows to graphically illustrate the complete density-to-wavefunction map in the full
Fock space of the system, and can be used to show how features such as the intra-system steepening and the
inter-system derivative discontinuity of the density-to-potential map appear in the density-to-wavefunction
map. As example, we explicitly show the complete density dependence of the two-electron singlet ground-state
wavefunction. For different values of the external potential in the Hamiltonian we perform exact diagonalization
of the Hamiltonian. Each diagonalization gives us all eigenfunctions and eigenenergies of the system, where the
eigenstate with lowest eigenenergy corresponds to the ground state. We use the ground-state of each exact
diagonalization corresponding to a fixed external and fixed chemical potential to construct both one-to-one
maps, i.e. the map between on-site potentials and ground-state on-site occupations (ground-state densities),
and the map between ground-state densities and ground-state wave-functions. To illustrate the latter, we
numerically construct the configuration-interaction (CI) coefficients of the wave-function expansion as
functionals of the ground-state density. We study the exact features of these maps for systems with different ratio
of discrete values of the kinetic hopping probability ); to the electron—electron interaction strength A,,. This
allows us to study the exact maps from the non-interacting to the strictly localized electron limit while we
gradually change the correlation of the system. We illustrate how the distinctive features of the exact density-to-
potential map transmit into the wavefunction-to-density map, and further into expectation values and
transition matrix elements of arbitrary operators as functionals of the ground-state density.

t

We show that in approaching the limit of strongly correlated electrons, i.e. :— — 0, the gradient of the exact

density-to-potential map of our model system steepens. We denote this feature as intra-system

steepening which gradually builds up within the system as the hopping probability favoring the delocalization of
electrons decreases and the electron—electron interaction favoring the localization increases. In the strictly
localized electron limit, where A, = 0, we see that the ground-state becomes degenerate and hence, the intra-
system steepening transforms into the step-like inter-system derivative discontinuity.

We find that qualitative features such as the intra-system steepening and the inter-system derivative
discontinuity of the density-to-potential map are already captured by a two-site lattice model. In the case of a
two-site model, each site can be regarded as a subsystem. With increasing distance between the subsystems, the
hopping probability decreases and the localization of the electrons on each site increases. If the sites are infinitely
apart and the subsystems are truly separated, the electrons are strictly localized on each site. We simulate the
infinite separation in the two-site model by setting the hopping parameter in the kinetic operator ), strictly to
zero. Since the kinetic energy is strictly zero, this limit is a classical limit. However, setting ), equal to zero allows
us to imitate the infinite bond-stretching of the molecular model, where the distance of the molecular wells 4
goes to 0. In this limit, A, = 0 implying d — oo, the intra-system steepening of the density-to-potential map
becomes the standard step-like inter-system derivative discontinuity.

Arbitrary observables and transition-matrix elements are affected by the presence of the intra-system
steepening and the inter-system derivative discontinuity, and in particular by the lack of it in approximate
functionals. We illustrate how both features are transmitted to the ground- and excited-state energy, the excited-
and transition-state density and to the correlation entropy functionals.

The paper is organized as follows. In section 2 we present the exact maps between local potentials, ground-
state wavefunctions and ground-state densities. In section 3 we introduce the lattice model and the methodology
that we employ in the present work. Section 4 is dedicated to the study of the intra-system steepening of the exact
one-to-one density-to-potential map when approaching the strictly localized limit (i.e. the strongly correlated
limit) and its transition into a step function with only allowed discrete integer density values for truly separated
subsystems. In section 4.1, we discuss how theses discrete integer density values of the decoupled systems
connect if a weak coupling between the systems is introduced. In section 5 we use the potential-to-density map
to construct the CI coefficients of the ground- and excited-state wavefunction expansions as explicit functionals
of the ground-state density. Ground-state degeneracies leave topological scars in the electron density [58]. We
illustrate how these degeneracies and furthermore also near-degeneracies of the eigenenergies of the system
affect the ground- and excited-state expectation values and transition matrix elements of relevant operators as
functionals of the ground-state density. Finally, in section 6, we summarize our findings and give an outlook for
future work.
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1-to-1-map

B

Figure 1. Schematic illustration of the exact mapping between N-electron wavefunctions Wy, local potentials V, and ground-state
electron densities 71. The maps are depicted as red arrows, where A maps Vonto ¥, 5 maps U onto 19y and C maps 14, onto V.
Black arrows indicate the bijectivity of each of these one-to-one maps. Note that every element in V' has an exact one-to-one equivalent
in ngyand Wy

2. Exact mappings

To understand which features approximate functionals are missing, it is instructive to explicitly construct and to
analyze the exact maps between the ground-state wavefunction ¥, the local potential V, and the ground-state
density 119, sketched in figure 1. For fixed electron—electron interaction W, the many-body Schrodinger
equation

(T + W + VY = B, (1)

defines a unique map between the set of local potentials Vand the set of energy eigenstates Wy, depicted as map
A in figure 1. The ground-state density n, can be computed as usual according to

noo(F) = N f A7 ... diy [T (B ., ) )

which establishes a unique map from the set of N-electron ground-state wavefunctions U to the set of N-
electron ground-state densities 1. Hohenberg and Kohn [47] proved that the map C in figure 1 between 1y
and Vis one-to-one and unique if V-representability is fulfilled [59—63]. Assuming existence of this one-to-one
density-to-potential map allows in principle to construct any ground-state observable as a unique functional of
the ground-state density 1,

Owo[1noo] = (Poln0l |01l 11001 ) - 3)

Note that in addition to the one-to-one V-to-n4, map, the Schrédinger equation establishes a map between
and the excited-state wavefunctions U, k = 0. As a consequence, excited-state expectation values with

k = I > 0, and transition matrix elements with k = I, can be computed as functionals of the ground-state
density using

Owulnoo] = (Welnool |01 [rg] ). (4)

The ground-state energy E, and the ground-state density 19y can be accessed using the variational principle

Ey=min Ey[n], E¢< Ey[n], n = ng. 5)
n

Given an external potential Vthe total energy is computed as Ey [n] = Fux [n] + f n(7)V (7)dr. In the Levy—
Lieb constrained search formulation [64, 65] the Hohenberg—Kohn energy functional Fyyi is found as the
minimum over all possible N-electron densities 7, of the expectation value of kinetic plus electron—electron
interaction operator

Fi [mn] = min (W[n]| T+ W ¥[m]). (6)

In the following, we illustrate the features of the exact density-to-potential and density-to-wavefunction maps
explicitly for our model systems.

3. Lattice model

In the present work, we restrict ourselves to one-dimensional lattice systems for which the construction of exact
functionals via exact diagonalization is numerically feasible. On a lattice, the potential becomes an on-site

4
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Aw = rsin(o)
A; = rcos(9)
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Figure 2. Illustration of the kinetic hopping probability ), and the strength of electron—electron interaction \,, in polar representation
for the lattice Hamiltonian used in this work as defined in equation (7).
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Figure 3. Sketch of Bader partitioning. Left panel from top to bottom: external potential for a one-dimensional diatomic molecule
with nuclear charges Z; = —1and Z, = —1and atomic separationd = 5 a.u. and the corresponding exact exchange-correlation
potential and ground-state density in real-space. We denote the blue-colored left halfspace as system S; and the red-colored right
halfspace as system S,. With increasing distance d of the molecular wells the coupling of both systems decreases. Figure on the right-
hand: exact effective density-to-potential map, where we vary the potential difference év = Z; — Z, from —5to 5. The density
difference dng, corresponds to the electronic density summed over the left half-space minus the density summed over the right half-
space as defined in equation (20). The pointaat (6ngy = 0, év = 0) in this effective map corresponds to the three panels in real-space
on the left-hand side. The red-framed zoom at the top corner shows that the density-to-potential map has a smooth behavior on the
scale of the coupling of both systems.

potential V (x) — v (x;), the density a site-occupation, n(x) — n(x;), and the integral becomes a sum over sites
i, f dx — 3, [48]. Furthermore, the kinetic energy operator becomes a nearest-neighbor hopping term.

3.1. Lattice Hamiltonian
For N interacting electrons in one spatial dimension we consider Hamiltonians of the form

A =H@) = M@T + M(@W + V + uN, )

where the parameter 1, connected to the particle number operator N, acts as a Lagrange multiplier shifting the
state with lowest energy to blocks with different particle number Nin Fock space. To switch between different
coupling limits, we introduce the amplitude of the kinetic hopping \; = r cos(¢) and the strength of the
electron—electron interaction A,, = r sin(¢) as parameters in polar representation with radius r and angle ¢, see
figure 2. The limit A, — 0,1.e. ¢ = 0, corresponds to non-interacting electrons and the limit A\, — 0, i.e.
p= %, to site-localized electrons. Without loss of generality we choose r = +/2 and ¢ € [O, g] Throughout
this work we use atomic units z = m = e = 1.

Next, we introduce the operators of the lattice model with M sites and lattice spacing dx. In second-order
finite difference representation the kinetic energy operator with nearest neighbor hopping t, = é reads
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M
7= 1‘2—0 SO Ene + e — 28] 800, ®)
=10
where élTO_ and ¢;, denote creation and annihilation operators of an electron placed on site [ with spin projection
onto the z-axis 0. Usually, the hopping #, changes with the lattice spacing dx. However, we choose to leave dx
fixed and use the parameter \; and \,, instead. The last term in equation (8) corresponds to on-site hopping. For
model systems this term is usually not taken into account. Here we keep the term to allow for a consistent first
and second quantized treatment of the Hamiltonian. We study the non-local soft-Coulomb electron—electron
interaction

Z ELGEL’U,E,,,)U/ELU
b
l,m,a,ﬁ’z\/(dx(l - m))Z + a

acting on particles located at sites / and m with spins o and ¢’. Throughout this work the Coulomb interaction is
softened by the parameter a = 1. The external potential

Wsc =

&)

A M .
V = ZV{EZT@, (10)
=1

introduces a potential difference between the sites in the lattice, which depending on its strength, shifts the
electron density among the sites in the lattice. We restrict ourselves to two different scenarios for which exact
diagonalization is still possible, similar to [66, 67]. In case (i) we consider two spin-singlet electrons on M = 206
sites. The particles are confined in a box from x = —10.25a.u. to x = +10.25 a.u. with zero boundary
conditions and alattice spacing of dx = 0.1 a.u.and A, = \,, = 1. To mimic the bond-stretching in molecular
systems, we consider an external potential

e B@ 2@ 4(0)2() -
\/(xl_g)2+1 \/(xl+§>2+1 V@ + 1
Zi(a) =—a, L(a)=-2—- ) (12)

with two atomic wells separated by distances ranging fromd = 2 tod = 8 a.u.. The depth of the wells is given by
the nuclear charges Z; and Z, which we modulate with the parameter a € [0, 2]. We will see that the essence of
such a system is already captured by a two-site model. As case (ii), we consider M = 2 sites in the lattice with a
distance dx = %, where we vary the parameters A, and \,,. In this case, the system size allows to perform exact
diagonalization in the full Fock space of the model.

3.2. Methodology

To explicitly construct the one-to-one map between external potentials and ground-state densities, we
diagonalize the Hamiltonian introduced in equation (7) for different external potentials v,,,, but fixed . The
external potential takes values v,, = mA,,, where A, is the numerical step size, and m is the step number.
Although not shown in the present work, similarly the Hamiltonian can be diagonalized for different chemical
potentials £, with the chemical potential values 11, = kA, the numerical step size A, and the step number k. In
this way all functionals are constructible as functions of the particle number N and can be studied in complete
Fock-space. Here we fix the chemical potential and select a discrete and uniformly distributed set of potentials
from the continuous set V of possible external potentials in figure 1. In the next step we use exact diagonalization
to compute the ground-state wavefunction W§ and energy E{ corresponding to each value of v;and p; (but fixed
). For each ground-state wavefunction, we compute the corresponding on-site ground-state density

ngo(xj)) = (gl Ax) V), (13)

where j is the site subindex, and the spin-summed density operator reads
Ax) = &6 &he 14
(x;) 16t + 6 Gl (14)

In addition to the ground-state wavefunction, the exact diagonalization gives us access to the excited-state
wavefunctions \I/fio, which allows us to compute excited-state observables and transition matrix elements of
operators as functionals of the ground-state density according to equation (4). On a lattice with M sites, the
continuous one-dimensional ground-state density 1, (x) becomes a vector (199 (x1), 190 (%2)---» oo (Xr) )-
Hence, expectation values and transition matrix elements as functionals of the density become rank M tensors

OF (100 (%), -+ 100 (xaar)) = (TF (100 (1), - > 1100 (an) ) | O1WY (1190 (31), - -, 1ig0 (Xr)) ) - (15)

In case (ii) where two sites in the lattice are considered, all functionals depend on the on-site densities 119 (x;)
and ng (1), i.e. [WF 100 (x1), Moo (1) 1) and V¥ [ng (x1), 190 (1) 1. Instead of expressing all functional dependen-
cies in terms of the variables 1 (x;) and ny, (%), we rotate the coordinate system to the total particle number

6
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N = ngo(x1) + 1o (%) and the occupation difference 6ngy = 1oy (1) — 1o (22) between the sites [46]. To
illustrate the wavefunction-to-density map, we expand the ground (k = 0) and the excited (k > 0) eigenstates
|W7) of the system in a complete set of Slater determinants | &),

[W§[8n00, N1) = >  [Sn00, N1| %), (16)
q

where we have chosen |®,) to be the eigenstates of the kinetic operator T'. This gives rise to the CI coefficients
i [6n00, N1 = (®g|W{[6n00, N1). (17)

By writing the CI-coefficients aﬁi’k [6ngo, N]as explicit functionals of 6714, we gain access to all ground- and
excited-state expectation values or transition matrix elements of any operator, i.e.

Of [6n00, N1= (Uf[6ngp, N1| O [¥F[6ngp, N1)
= > af ™ 6neo, N1ag [6n00, N1(Dy| O |y). (18)

aq
A prime example is the Hohenberg—Kohn energy functional defined in equation (6), which is the ground-state
expectation value of the Hamiltonian I—AIJ;:0 =X@T + N\, (W, ie.

Fy[6n00, N1= (Vg [6m00, N1| Hy_o T8 (8100, N1)

=Y ailbnoo, Nlorg[6moo, N1(Dy| Hy_g |9;). (19)
29

For the two-particle singlet states, we compute the Hohenberg—Kohn functional for different values of
p € [0, g] Note the explicit dependence of Ff [0n1g9, N]on the angle ¢, since the Hohenberg—Kohn proof can
only be established for fixed and given kinetic energy and particle—particle interaction. By changing the angle ¢,
we construct the exact energy functional Fg[6ng, N1 for different electron—electron interactions and kinetic
terms, where ¢ = 0 is the non-interactingand ¢ = % the infinitely correlated limit. Our approach allows to
construct the exact density functionals for any observable of interest. We illustrate this for a few selected
examples in the following sections. Also we emphasize that throughout this work all functionals are constructed
in the zero-temperature limit.

4. Features of the exact density-to-potential map

We start our analysis for the Hamiltonian of case (i), where we consider a diatomic molecule with different
interatomic separations. While the full density-to-potential map is a high-dimensional function for M = 206
sites and impractical to visualize, the essence of the bond stretching can be captured by the integrated densities of
fragments of the system. A natural choice to partition the system into its fragments, is to divide the total
molecular charge distribution at its minima into different Bader basins [68, 69]. By integrating the density over
each of these Bader basins, the high dimensionality of the density in real-space reduces drastically. For our
diatomic model the partitioning reduces the dimensionality from 206 to two, by mapping the sites in the grid
onto the basins. We can then refer to each basin as a effective site in real space and regard the density difference
between the basins as density difference between the two sites. For the simple diatomic molecule in one-
dimension, we simply divide the system in two equal half-spaces, and construct the density-difference according
to

M/2 M
bngo = Y ngo(x) — Y. ngo(xi). (20)
i=1 i=M/2+1

To obtain the potential difference between the two basins, we take the difference between the maximum depth of
the molecular potential wells of each basin and define the potential difference as év = Z;(a)) — Z,(«). Note, the
potential difference can be tuned by changing the nuclear charge of the two atoms with the parameter o of
equation (12). The resulting effective density-to-potential map for our diatomic model is shown in figure 4.
Starting from left to right we increase the distance between the molecular wells. The effective density-to-
potential map starts out with a smooth monotonic shape. When the distance of the atoms is increased the
gradient of the effective density-to-potential map steepens, leading ultimately to steps in the density values for
the infinitely separated limit.

The very same qualitative behavior can be found for a simple two-site lattice system. As a second example we
consider therefore the Hamiltonian of case (ii). In this case we construct the exact density-to-potential map for
the two-particle singlet states of the two-site lattice model. The results are shown in figures 5 and 6. Figure 5
shows the Hartree exchange-correlation part of the exact potential as functional of the ground-state density,
whereas the first row of figure 6 shows the dependence of the exact density as function of the external potential
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0 5 -5 0 5

Figure 4. Exact density-to-potential map for a one-dimensional diatomic molecule with nuclear charges Z; and Z,, where we vary the
potential difference v = Z; — Z, from —5 to 5 for different atomic separations d = 2 — 8 a.u. similar to [66, 67]. The density
difference 6ngg corresponds to the electronic density summed over the left half-space minus the density summed over the right half-
space as defined in equation (20) and illustrated in figure 3. The graph illustrates the influence of electron localization on the ground-
state density-to-potential map. From left to right the distance of the molecular wells increases while the gradient of the density-to-
potential steepens with increasing distance d and hence, decreasing coupling of the fragments of the system. We denote this feature of
the density-to-potential map as intra-system steepening (see text for details).

p=7/2-1/10 p=m/2
T
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Figure 5. Exact Hartree exchange-correlation potential calculated with the exact formula of [37] as functional of the ground-state
density for a two-site lattice model using soft-Coulomb interaction. From left-to-right we approach the strictly localized limit. Note,
in contrast to figures 4 and 6, here we show the inverse map 6vjy.-to- dngg by swapping the x- and y-axis.

difference between the sites. Note the density-to-potential map in figure 6 is one-to-one, and therefore
invertible, the domain and co-domain of the selected independent variable and the corresponding function
values can be swapped. In addition to the ground-state density-to-potential map in the first row of figure 6, the
second and the third row show the first and the second excited-state density-to-potential map, and the fourth
row shows the eigenenergies Ey, E; and E, as function of the external potential difference between the two sites in
lattice. From left to right, ¢ increases, i.e. the electron—electron interaction favoring the localization of the
electrons increases, whereas the kinetic energy favoring the delocalization decreases, i.e. j—; — 0. This

localization is reflected by the steep gradient of the ground- and excited-state densities dr1gg, 6111 and dmy, as
function of the external potential difference év = v; — v,. For the potential difference we select values from —5
to 5, shifting the electron density from one site in the lattice to the other. Setting ¢» = 0 in equation (7)
corresponds to non-interacting electrons, where the eigenfunctions are single-particle Slater-determinants. In
this limit the density-to-potential map for our model can be found analytically

4dx26v
Jadxisv? + A2 (o = 0)

sngp 0 (6v, Ap, dx) = — (1)

The map behaves smoothly as can be seen in the leftmost figure in the first row of figure 6.

Approaching the strictly localized limit, i.e. ¢ — g, the slope of the exact density-to-potential map sharpens
until the map develops a characteristic feature, which we denote as intra-system steepening. The intra-system
steepening of the gradient of the density-to-potential map corresponds to the localization of the electrons in the
respective subsystems. Near the strictly localized limit, e.g. o = % — ﬁ, the electrons are highlylocalized on
the sites.

In the strictly localized electron limit ¢ = g the hopping parameter is equal to zero. In this limit the system

‘breaks’ into two kinetically decoupled sites and the Hamiltonian reduces to H #=3 = W + V and hence
commutes with the position operator X = Zﬁf:lza X E,L’Ufm,g with x,, = —(M + 1)/2dx + mdx.
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Figure 6. Exact density-to-potential map for a two-site lattice model using soft-Coulomb interaction. Despite its reduced
dimensionality essential features of the density-to-potential map of the molecular model system are already captured by a two-site
model, as can be seen by comparing figures 4 and 6. The graphs illustrate how the electron localization is captured in the ground- and
excited-state density-to-potential maps and in the eigenenergies. Upper panel: exact ground-state density as function of the external
potential, i.e. 61y (6v). Second panel: exact first excited-state density as function of the external potential, i.e. §ny; (6v). Third panel:
exact second excited-state density as function of the external potential, i.e. 61y, (6v). Lower panel: eigenenergies of the two-particle
singlet states as function of the external potential E; (6v), where E; corresponds to the eigenstate | ¥;) and to the density differences
onjj = (Y| 64 | ). Inset at the bottom on the left-hand side: detailed view of the ground-state and the first excited-state density
functionals 6ngg (6v) and 6ny1 (6v) in the strictly localized limit. Inset at the bottom at the right-hand side: avoided and real crossings
of eigenenergies. From left to right the angle  increases the correlation in the system going from the non-interacting (¢ = 0) to the

T

strictly site-localized electronlimit ( ¢ = 7). In the molecular model system of figure 4 this corresponds to an increasing distance d of

the molecular wells. The gradient of all three densities steepens whenever the corresponding eigenstate as functional of the external

potential comes close to an avoided crossing. We denote this exact feature of the density-to-potential map as intra-system steepening.
In the strictly localized limit (gp = g) the intra-system steepening becomes the inter-system derivative discontinuity while the

avoided crossing turns into a real-crossing with degenerate eigenenergies.

s
2

[A”72, %] = 0, (22)

and the eigenfunctions of H are diagonal in the eigenbasis of the position operator. The three two-particle
singlet states correspond to the physical situations where both electrons are located on site one, i.e.

| W2 [6ngg = +2] > = 611 &’ 10), both electrons are onsite two, i.e. ‘ W52 [bngy = —2] > = EZTl EZTT |0), or
where the electrons are delocalized over both sites, i.e. ‘ W2 [6ngy = 0] > = % (61Tl 62‘} - E1TT ¢ 10).
Depending on the ratio between the external potential difference év and the electron—electron repulsion
strength A,,, (except in the points of degeneracy) one of these three eigenstates is energetically more favorable
and becomes the ground-state of the electronic system, see lower panel of figure 6. In the strictly localized limit,
the density difference dng transitions from a continuous variable to a discrete set of integer values. Namely, the

only possible values for the ground-state density differences are the integer values
o 72 >
dngy 2 (6v) =40,
+2.
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(a) Strictly-localized limitin N (b) Intrasystem steepening (c) Intrasystem steepening
versus straight-line behavior
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Figure 7. Differences between the strictly localized limit (a), the intra-system steepening (b), (c) and the inter-system derivative
discontinuity (c), see discussion in section 4.1. Note, all three cases are mathematically well-defined limits. However, limit (a) and in
general also the inter-system derivative discontinuity of limit (c) (except for an accidental degeneracy of the ground-state) are purely
mathematically constructions, whereas processes in nature happen in the limit of (b) since neither the kinetic coupling nor the particle
interaction can be fully switched off. We consider two systems S; with particle number N; and S, with particle number N,. In figure (a)
both systems are decoupled, and the ground-state of each isolated system is a pure state with fixed, integer particle number leading to a
distributional density-to-potential map. The Hohenberg—Kohn theorem is valid in the disjoint Hilbert space of system S; and S, but
not in the combined Hilbert space of both systems. Figure (b) shows the time-evolution of the system S; with initially N; — 1 particles
to Nj + 1. The particle number of system S, can only change if the system is coupled to a bath, here system S, with initially N, + 1
particles. Figure (c) shows the eigenenergies of the two-particle singlet states as in figure 6 and illustrates the difference between the
intra-system steepening and the inter-system derivative discontinuity. The question is how the functionals of the densities of system S;
and S, in figure (a) connect if a weak coupling between the systems is introduced. Note, although in the two-site model we kinetically
decouple both sites, the sites are still coupled via the long-range soft-Coulomb interaction. For an accidental degeneracy of the
ground-state, functionals are constructible as linear combination of the degenerate subspace. This construction then leads to the well-
known straight-line behavior along the cut in the variable N of ground-state density functionals which are not differentiable at integer
particle number "= N; + N;. In general a weak coupling lifts the degeneracy of the ground-state of the system as indicated on the
bottom of the figure and leads to a smooth density-to-potential map. The gradient of this map steepens with decreasing coupling of
the systems. The intra-system steepening is valid from strong to weak coupling.

For fully decoupled systems the different values of the external potential lead to the same density difference 67y
as can be seen in the map for ¢ = g in figure 6. Therefore, the one-to-one map between 6n¢, and v breaks
down. The Hohenberg—Kohn theorem is applicable to each disjoint system but not to the combined system. For
p= g, the two sites kinetically decouple, however both sites are still coupled via the long-range soft-Coulomb
interaction. For zero kinetic coupling, the ground-state of this combined system becomes degenerate in two
points near év = 0. Due to the points of degeneracy of the ground-state of the system, the distributional points
of the density-to-potential map can be connected via straight-lines and the intra-system steepening transitions
into the inter-system derivative discontinuity. Consequently, functionals along the cut in the variable én are a
linear combination of the functionals of the degenerate densities as has been shown for the ground-state energy
functional as functional of the particle number[25, 70]. Therefore, we connect the distributional points along the
variable 6n for all functionals via straight lines, i.e. 619y = £2(1 — w)and 0 < w < 1.Inaphysical picture
each one of the kinetically disconnected sites can be seen as a system infinitesimally weakly connected to a grand-
canonical particle reservoir.

Contrary to the widely discussed inter-system derivative discontinuity, which describes the piece-wise linear
behavior of the energy as a function of the particle number E [N], the intra-system steepening describes the
smooth behavior of the energy as functional of the density difference between fragments within the system
E [6ng]. Both features already show up in the density-to-potential map and transmit to all observables. The
Hohenberg—Kohn energy functional is therefore only one specific example for the appearance of the inter-
system derivative discontinuity and the intra-system steepening. The smooth behavior of the intra-system
steepening is a consequence of the mixing of different quantum eigenstates around avoided crossings, and the
steps related to the inter-system derivative discontinuity directly result from intersections of eigenenergies, thus
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real crossings, see lower panel and inset of figure 6. The inter-system derivative discontinuity appears when
electrons are strictly localized in states with different particle number but an accidental degeneracy of the
ground-state allows the statistical mixture of the degenerate ground-states. Note that the steepening of the
gradient for 6nqg as well as for on;; and 6ny, arises whenever the eigenvalues of the Hamiltonian in equation (7)
as function of the external potential become nearly degenerate. The connection between the avoided crossing
and the steepening of the gradients functional is closely related to the finding of [36], i.e. that the step feature of
the exact xc-potential in space arises in the vicinity of the avoided crossing, when the bonding and antibonding
orbitals become nearly degenerate. Without this step feature (and the peaks) of the exact xc-potential, the non-
interacting electron density would artificially smear out over both basins and lack the intra-system steepening of
the exact electron density-to-potential map. For ¢ = 0 all eigenvalues are non-degenerate, hence the density-
to-potential map of all eigenstates behaves smoothly. When we approach the strongly correlated limitat ¢ — g,
the first and second excited-state energies approach each other E; [év] — E,[év]andfor p = % they become
degenerate for v = 0,i.e. E|[6v] = E,[6v](see inset figure 6). Because of this degeneracy of the first and second
excited-state, the distributional points +2 and —2 of the first and second excited-state density as functional of
the ground-state density can be connected via straight lines along the cut in the variable d#, see also figure 10.
Caused by a real crossing of the eigenenergies in the strictly localized limit, the one-to-one correspondence with
an external potential breaks down for all densities, i.e. the ground-state and the excited-state densities. The
density-to-potential map becomes a distribution in this limit and the Hohenberg—Kohn theorem does not

apply.

4.1. Intra-system steepening versus intersystem derivative discontinuity

In DFT, the ground-state wavefunction and all ground-state observables are unique functionals of the ground-
state density. In this work, we also show the functional behavior of excited-state observables and transition
matrix elements, for which in general no one-to-one correspondence exist. Nevertheless, as we will see in the
following sections, features of the exact density-to-potential map directly translate to both types of functionals,
i.e. the unique ground-state functionals and the generally non-unique functionals of the excited-state
observables and the transition matrix elements. Therefore, it is of fundamental importance to identify and
classify these features of the exact density-to-potential map. In the following, we distinguish between the three
different cases displayed in figure 7. For all cases let us assume, that we have two systems S; and S,. In the two-site
lattice model one site corresponds to S; and one to S,, whereas in the many-site model one basin corresponds to
S1and the other one to S,. In the first case as in figure 7(a) the kinetic coupling as well as the coupling via
electron—electron interaction between the systems are strictly zero. This is a purely mathematical limit, since
each system S; and S, is completely isolated from its environment and thus, the particle number in the system
can not change. The Hilbert space of both systems is disjoint. The ground-state of each system corresponds to a
pure state with fixed particle number. The Hohenberg—Kohn theorem is valid in the Hilbert space of each
system, but not in the combined Hilbert space of both decoupled systems S; and S,. The cut along 6119 of the
density-to-potential map of the total system is a step function, where the values of 61 are the particle number
of system S; and S5, i.e. Ny and N,. For fully decoupled systems S; and S,, the functionals of this step-like density-
to-potential map can only take values at the integer particle number of system S; and S,, i.e. F[N; and N, ], where
the values of the functional at N} and N, are disconnected. In the second case displayed in figure 7(b) the
coupling of the systems ranges from strong to infinitesimally weak. Without loss of generality, we refer to S; as
system and to S, as bath. This case is the underlying concept of charge transfer processes or in the description of
band gaps of a system, where the particle number is changed by adding or removing a particle. These processes
are not instantaneous processes, but should be regarded as processes in which a system with initially N particles
evolves in real-time to asystemof N — 1or N + 1 particles. The particle number of a system S; can only change
ifitis coupled to abath S,. The particle number of the total system-and-bath, i.e. "= N; + N,, is fixed and
integer, whereas the particle number N; and N, can take fractional values. In general, an infinitesimal small
kinetic coupling term of a system to a bath lifts the degeneracy of the ground-state of the combined system

S1 + S; as we have exemplified for the eigenenergies of the two-site model in figure 6, ultimately leading to a
smooth density-to-potential map. Functionals of this smooth map are also smooth, as we exemplify in the
following sections for the wavefunction and selected observables as functional of the ground-state density. We
will see that in the weakly coupled limit, i.e. the limit ¢ = % — 1/100, the straight-line behavior is an excellent
approximation to the exact functional behavior along the cut in the variable é» but that the exact functional
shows a smooth behavior since the density-to-potential map is also smooth. The deviation of the straight-line
behavior depends on the energy-scale of the coupling term between the system and the bath. To see how the
functionals deviate from the straight-line behavior we included a zoom of the functionals in the respective limit
whenever it improved the clarity. The third case in figure 7(c) is valid for an infinitesimally small coupling of a
system to a bath for which the ground-state of the system shows an accidental degeneracy. Here the coupling of
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both sites is realized via the long-range soft Coulomb interaction in the Hamiltonian. Functionals of the
distributional points of the density-to-potential map are then linear combinations of the densities of the
degenerate subspace, and can be connected via straight-lines [25, 70]. For such weakly coupled processes with a
degenerate ground-state, the straight-line behavior and hence the derivative discontinuity at integer particle
number Nintroduced in the original work of Perdew is exact.

To give a mathematical more rigorous definition of the concept of the steepening, we introduce the

. . . . . . onjj .
maximum value of the gradient of the effective density-to-potential map, i.e. f, j = max (#) To obtain the
kI

effective density-to-potential map, it is necessary to first partition the density of the system, e.g. using a Bader
partitioning scheme. Second, the integrated density over each basin corresponds to a subsystem, e.g. for three
subsystems we obtain the densities 1, 1, and n3. To determine the localization and hence, the correlation
between two of the three subsystems, we construct the density difference én;, = n; — nyand dny; = m, — n3as
functional of the potential difference, i.e. 6111, (Ov13, Ov23) and dmp3 (Ovyp, Ov23), wheree.g. dvy = Zp — Zyand Z;
is the maximal depth of the external potential present in basin k. The gradient fj;;; is a measure how the
localization over subsystems changes subject to small changes in the external effective potential and therefore,
can be used to illustrate the intra-system steepening while e.g. stretching the one-dimensional molecule. The size
of the tensor fj; depends on the number of subsystems present in the system. The steepening presents a slope
that gets steeper as the correlation between subsystems in e.g. our bipartite system increases. The relation
between 6n;; and 6vy remains locally one-to-one and therefore invertible, the domain and co-domain of the
selected independent variable and the corresponding functional values can be swapped as long as the
corresponding value of f;j; is bounded. In the limit of the inter-system derivative discontinuity the functional
value of f;;,; for given ijkl diverges, indicating that an infinitesimally small change in the effective potential
changes the electron localization in the system dramatically. For our specific model system, we illustrate that the
transition of the steepening to the non-differentiable derivative discontinuity corresponds to a maximum in the
von-Neumann correlation functional which provides a good measure for the correlation present in the system.
For systems with degenerate ground-state (each of which corresponds to a Hilbert space with fixed particle
number), the ground-state density can be constructed by a linear combination in the degenerate subspace
resulting in a straight-line behavior whose slope changes at integer 6n = N. Functionals in these points (at
integer N) are not differentiable. Whenever an intra-system steepening in the effective density-to-potential map
appears as a consequence of high correlation, we expect such a feature to be present in the xc functional as a
functional of the ground-state density.

5. Features of the exact density-to-wavefunction map

The inter-system derivative discontinuity and the intra-system steepening discussed in the previous section are
exact properties of the density-to-potential map. As a consequence, also the exact wavefunction and hence, all
exact observables as function of the exact density inherit the intra-system steepening and the inter-system
derivative discontinuity. In the following sections we illustrate this fact. In particular, we show how these
features show up in the CI-coefficients, and consequently in the energy, the excited-densities and in the
correlation entropy functional.

5.1. Exact configuration interaction coefficients as functionals of the ground-state density

To construct the density-to-wavefunction map, we expand the correlated ground- and excited-state
wavefunctions from the exact diagonalization of the Hamiltonian in a complete set of Slater determinants | &;).
This gives rise to CI coefficients as functionals of the ground-state density as defined in equation (17). Clearly,
each choice for the set of Slater determinants | &) induces a different set of CI functionals. Here we choose as
basis set the determinants which are eigenfunctions of the free kinetic energy operator. More specifically, we
project the two-particle singlet ground-state wavefunction of the Hamiltonian in equation (7) onto the three
two-particle singlet eigenstates of the kinetic operator T to construct one of these sets for each different ¢. The
results are summarized in figure 8. Each row in the figure displays one of the ground-state CI coefficients as
function of the density difference between the sites, o, [61109] = (B[ Y[N = 2, §?=0,S, =0, dng)). For
non-interacting electrons, the CI coefficients can be evaluated analytically. In our chosen basis the coefficients
have no explicit dependency on A,

=0 O (Bngy — 22 + 4 — 8ny)) (2 + |8n0])
(0% [57100] = —

, (23)
4\/—(—4 + ng) (4 + dngy + 416n0ol)
5= [Srgg] = — 210 (24)
242
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Figure 8. CI coefficients of the two-particle ground-state wavefunction in the kinetic operator basis. From left-to-right we approach
the strictly localized limit (p = g) and the gradient of all three CI coefficients steepens. For ¢ = % the CI coefficients take only
discrete values which can be interpolated linearly (dashed lines) due to the degeneracy of the eigenstates in the strictly localized limit.

om0 (4 + gy + 244 — 6nd)(2 + |6n40))
a3 [6ng0] = — .

(25)
43— (—4 + 6ndy) (4 + 6ndy + 46ncol)

The CI coefficients of the non-interacting electrons are shown in the leftmost column of figure 8, where ¢ = 0.
Approaching the strictly localized electron limit, i.e. from left to right in figure 8, the gradient of the CI
coefficients sharpens. This sharpening corresponds to the intra-system steepening of the 6r¢y-to- v map
introduced in section 4 and is inherited by the CI coefficients. Furthermore, the inter-system derivative
discontinuity shows up in the CI coefficients for ¢ = % and the CI functionals become distributional points

%, for éngy = —2
af 2 [8ngo] = 3 %’ for orioo =0

%, for éngy = +2,

.

%, for éngy = —2
af " [énel =40, for Sngy =0

— —, for éngo = +2,

|~ %

_ %, for 6ngp = —2
af:%[tsnoo] = 1 L2’ for 8o = 0

_ %, for éngo = +2,

which are connected via straight lines due to the degeneracy of the ground-state, see discussion in section 4.1.

5.2. Exact ground-state and excited-state energy functionals

Since the CI coefficients o)) of the wavefunction inherit the intra-system steepening and the inter-system
derivative discontinuity, arbitrary ground-state expectation values, defined in equation (18), also inherit the
intra-system steepening and the inter-system derivative discontinuity. Note, the excited-state CI coefficients
also show the same exact features, which are then inherited by excited-state functionals in the respective limit. As
particular examples for this inheritance, we illustrate in figure 9 the intra-system steepening and the inter-

system derivative discontinuity for the exact Hohenberg—Kohn functional (j = 0) and the excited-state energy
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Figure 9. Exact energy functionals F; = (| A () T+ (@)W | ;) of the ground-, the first- and second-excited state for different
strengths of the electron localization (. First row: second excited-state energy F, as functional of the ground-state density. Second
row: first excited-state energy Fy; as functional of the ground-state density. Third row: ground-state energy Fy as functional of the
ground-state density, i.e. the Hohenberg—Kohn functional. From the non-interacting limit (left) to the strictly localized limit (right),

the gradient of all energy functionals steepens. In the highlylocalized limit, where ¢ = % - ﬁ, all energy functionals are continuous.

In particular, the ground-state energy functional shows a convex behavior as can be seen in the detailed view of the intra-system
steepening of highly localized electrons and the inter-system derivative discontinuity of strictly localized electrons at the bottom of the
figure. Note, that here the x-axis has been scaled by one order of magnitude. In the strictly localized limit, for all energy functionals
only the three distributional points 6rgy = £2 and 6ngy = 0 exist. Due to the degeneracy of the eigenstates in the strictly localized
limit which is shown in the lower panel of figure 6, these three distributional points connect via straight lines indicated by a black-
dashed line.

functionals (j=1,2)

Fi[8n00] = (W5 | A (@ T + Ay (D)W |5 ), (26)

for the two-particle singlet states | U5, ) = [W¥[dng, N = 2, §* = 0, S, = 0]). The third row of figure 9 shows
the exact Hohenberg—Kohn functional (j = 0) discussed previously in literature [43—46], the first and second
row show the first and second excited-state energy functional (j = 1, 2), respectively. The gradient of all three
functionals F;;[6no] steepens approaching the limit of strictly localized electrons, just as previously observed for
the density-to-potential map in section 4 and the density-to-wavefunction map in section 5.1. However, if
differs infinitesimally from the strictly localized limit, all energy functionals are continuous. In particular, the
ground-state energy functional Fy, is convex. The difference between the highlylocalized and the strictly
localized limit, is displayed in an inset at the bottom in figure 9, which contains a zoom of the critical region of
the ground- and first excited-state state functional. Here, in the limit of strictly localized electrons, in which both
sites are kinetically decoupled, the intra-system steepening transitions into the inter-system derivative
discontinuity. As already discussed for the density-to-wavefunction map, the distributional points can be
connected via straight lines due to the degeneracy of the eigenstates in this limit.

5.3. Exact excited- and transition density functionals

To illustrate the fact that all physical observables inherit the intra-system steepening and the inter-system
derivative discontinuity, we also show the excited- (k = j = 1, 2) and transition-state densities
k=j=0,1,2)

nij [8n00] = (Ti[6ngo, N1| O [¥[6n9, N1) (27)
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Figure 10. Density functionals for ground- and excited-singlet states. First panel: ground-state density as functional of the ground-
state density. Second panel: first excited-state density as functional of the ground-state density. Third panel: second excited-state
density as functional of the ground-state density. From the non-interacting limit (left) to the strictly localized limit (right), the gradient
of all excited-state density functionals steepens. A detailed view of the intra-system steepening for highlylocalized electrons

(cp = % — ﬁ) and the inter-system derivative discontinuity is given on the right.
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Figure 11. Transition matrix elements of the density operator between different excited many-body states as functional of the ground-
state density dnjx = (Uj| 67 | ). First row: absolute value of the exact transition density from the first and second excited-state as
functional of the ground-state density 6n;, (6n¢). Second row: absolute value of the exact transition density from the ground-and the
first excited-state as functional of the ground-state density 6n¢; (61190). From the non-interacting (left) to the strictly localized limit
(right), approaching the strictly localized limit the gradient of both transition density functionals steepens. In the strictly localized
limit, the sites are disconnected. Therefore, there are no transitions between the three two-particle singlet states, and the transition
densities are zero.

as functionals of the ground-state density 7. The excited-state density functionals are shown in the second
and third row of figure 10 respectively. For completeness, also the trivial linear behavior of the ground-state

T Dimitrov et al

density as functional of the ground-state density is shown in the first row of the figure. From the non-interacting
(left) to the strictly localized limit (right), the gradient of the excited-state density functionals steepens up to the
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Figure 12. Correlation entropy as functional of the ground-state density indicating the correlation within the system. For non-
interacting electrons the correlation entropy is zero. From left to right, approaching the strictly localized limit, the correlation and the
mixing of the eigenstates and hence the correlation entropy increases. Furthermore, the gradient of the functional obeys the intra-
system steepening and the inter-system derivative discontinuity for ¢ = 3

strictly localized limit where the excited-state density functionals obey the straight-line condition due to the
degeneracy of the ground-state. To highlight the difference of the intra-system steepening and inter-system
derivative discontinuity of the excited-state density functionals a detailed view of the critical region can be found
on the right-hand side of figure 10.

Transition densities are an important ingredient for linear response calculations in time-dependent DFT.
For our model system, we show the exact transition densities as functionals of the ground-state density. In
contrast to the excited-state density functionals, the transition density functionals are phase-dependent.
Figure 11 shows the absolute value of the transition density as functional of the ground-state density. The first
and second row of figure 11 show the absolute value of the transition density from the first to the second and
from the ground- to the second excited state, respectively. Approaching the strictly localized limit, both
transition-state densities show clearly the intra-system steepening. In the strictly localized limit, there is no
transition between the eigenstates of the system and the transition-state densities are zero, see ¢ = % in panel
one and two.

5.4. Exact correlation entropy functional

As final example we illustrate the functional behavior of the correlation entropy. The correlation entropy,
discussed in detail in [38] measures the correlation and entanglement present in a many-body system. It can be
understood as well as a measure of the Slater rank [38, 39] as can be seen if we compare the correlation entropy
plotted in figure 12 with the mixing of the eigenstates in lower panel and inset of figure 6 for the different values
of the parameter (. In the two-site model, where we have access to all eigenvectors and eigenvalues, we can
compute the correlation entropy of the system

o
S ="> njlnn;, (28)
=1

where n; are the eigenvalues of the reduced one-body density matrix
poo(jo j'0’) = (Wo| &850 Vo). (29)

The correlation entropy is zero for pure states, and has its maximum for maximally mixed states [38, 39, 71].In
figure 12 we see that the correlation entropy increases with increasing correlation while the gradient of the
correlation entropy functional obeys the intra-system steepening and transitions into the inter-system derivative
discontinuity due to the degeneracy of the ground-state for ¢ = % In the limit of non-interacting electrons,
where there is no correlation, the correlation entropy vanishes. The maximum value of the correlation entropy is
reached in the strictly localized limit for éngy = 0 where all three eigenenergies are degenerate.

6. Summary

In the present work we have illustrated for a simple but general interacting lattice model how the intra-system
steepening, an exact feature of the ground-state density-to-potential map, develops gradually with increasing
decoupling between fragments of a system and transforms into the well-known inter-system derivative
discontinuity for an accidental degeneracy of the ground-state of weakly coupled systems. As a consequence of
the Hohenberg—Kohn theorem, the wavefunction-to-density map inherits the exact features of the density-to-
potential map as well as the ground- and excited-state observables and transition-matrix elements.
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Although both exact features are linked to the localization of the electrons, we carved out that the intra-
system steepening and the inter-system derivative discontinuity are conceptually different features within
density functional theory. The inter-system derivative discontinuity corresponds to the electron localization in
weakly coupled subsystems with degenerate ground-state. The inter-system derivative discontinuity coincides
with areal crossing of the eigenenergies of the system as function of the external potential. In this limit, the cut
along the variable 6n of the generally very high-dimensional ground-state density functionals have straight lines
between different values for the particle number N due to the mixture of the states in degenerate subspaces,

F = (1 — w)Fy + wFy1with the mixing parameter 0 < w < 1. The intra-system steepening instead
corresponds to the electron localization in weakly to strong coupled fragments of a system. The intra-system
steepening coincides with an avoided crossing of the eigenenergies as function of the external potential and
sharpens when approaching the real crossing. Ground-state density functionals result directly from the one-to-
one correspondence of the Hohenberg—Kohn theorem, such as the convex ground-state energy as function of
the density difference between the fragments of the system.

The inter-system derivative discontinuity plays a crucial role whenever the particle number of the total
system changes which is the case for observables such as the electron affinity A = E[N] — E[N + 1],the
ionization energy I = E[N — 1] — E[N], the fundamental gap which is the difference of ionization energy and

affinity Eg,, = I — A, and the chemical hardness 1 = (%)V of a system. The intra-system steepening is linked
to processes where particles are transferred from one fragment to another within a system of fixed particle
number such as stretched molecules, charge-transfer processes and any problem involving highly localized
electrons. We expect approximate functionals may fail to describe such problems because of the lack of the intra-
system steepening feature. Given the relevance of the above mentioned problems it is crucial to develop
improved density functionals that capture this exact condition of the exact density-to-potential and density-to-
wavefunction maps. In the highlylocalized electron limit the exact xc-functional does not present a straight line
behavior but rather a sharp but differentiable one.

Our work illustrates those fundamental concepts of density functional theory. To improve the accuracy of
DFT observables, approximate functionals should capture both, the inter-system derivative discontinuity and
the intra-system steepening respectively. Work about how to generalize the present results from lattice
Hamiltonians to real-space systems is currently in progress. Our results also allow to get insight about spin DFT
functionals as the magnetization of the N electron system can be written in terms of the ground-state density (as
all other observables we discussed in this paper). This is a way to solve the known problems of spin DFT [72, 73]
(however it would require going beyond present adiabatic functionals, work along those lines is in progress).
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