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Abstract
In the present work, we employ exact diagonalization formodel systems on a real-space lattice to
explicitly construct the exact density-to-potential and graphically illustrate the complete exact
density-to-wavefunctionmap that underly theHohenberg–Kohn theorem in density functional
theory.Having the explicit wavefunction-to-densitymap at hand, we are able to construct arbitrary
observables as functionals of the ground-state density.We analyze the density-to-potentialmap as the
distance between the fragments of a system increases and the correlation in the system grows.We
observe a feature that gradually develops in the density-to-potentialmap aswell as in the density-to-
wavefunctionmap. This feature is inherited by arbitrary expectation values as functional of the
ground-state density.We explicitly show the excited-state energies, the excited-state densities, and the
correlation entropy as functionals of the ground-state density. All of them show this exact feature that
sharpens as the coupling of the fragments decreases and the correlation grows.We denominate this
feature as intra-system steepening and discuss how it relates to thewell-known inter-system derivative
discontinuity. The inter-systemderivative discontinuity is an exact concept for coupled subsystems
with degenerate ground state. However, the coupling between subsystems as in charge transfer
processes can lift the degeneracy. An important conclusion is that for such systemswith a near-
degenerate ground state, the corresponding cut along the particle numberN of the exact density
functionals is differentiable with awell-defined gradient near integer particle number.

1. Introduction

Over the last decades ground-state density-functional theory (DFT) has become amature tool inmaterial
science and quantum chemistry [1–5]. Provided that the exact exchange-correlation (xc) functional is known,
DFT is a formally exact framework of the quantummany-body problem. In practice, the accuracy of observables
inDFThighly depends on the choice of the approximate xc-functional. From the local density approximation
(LDA) [6], to the gradient expansions such as the generalized gradient approximations (GGAs), e.g. Perdew–
Burke–Enzerhof [7] and the hybrid functionals such as B3LYP [8], to the orbital-functionals such as optimized
effective potentials [9] and to the range-separated hybrids such asHSE06 [10], the last decades have seen great
efforts and achievements in the development of functionals withmore accurate and reliable prediction
capability.

Nonetheless, available approximate functionals such as the LDA, theGGA’s and the hybrid functionals have
known shortcomings tomodel gaps of semiconductors [11], molecular dissociation curves [12], barriers of
chemical reactions [13], polarizabilities ofmolecular chains [14, 15], and charge-transfer excitation energies,
particularly between open-shellmolecules [16].

Practical applications of density functional theory encounter twomajor problems: (i)while theHohenberg–
Kohn theorem tells us that arbitrary ground-state observables are functionals of the ground-state density, it does
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not provide uswith the explicit density functional dependence. (ii)Even for observables for which the exact
expression of the density-functional is known, solely the true exact density gives back the exact properties of the
system.Common xc-functionals fail to reproduce the exact density in the strong-correlation limit. Any
deviations from the exact density directly translates to observables regardless whether the exact expression of the
density functionals is used.

In this work, we explicitly illustrate the density functional dependence of arbitrary observables for a specific
model system. This illustrates explicitly whatwas proven byHohenberg andKohn—but does not provide a
general recipe how to derive the functional expression of arbitrary observables for other systems. Further, we
illustrate problem (ii) by showing that the localization of the density directlymanifests in the functional
dependence of arbitrary observables.

Recent advances in functional development such as optimally tuned range separated functionals [17],
ensemble density functional theory [18, 19] and local scaling corrections [20], logarithmically enhanced factors
in gradient approximations [21] and the particle–particle random-phase approximation [22] can diminish or
even cure some of the abovementioned shortcomings but not all of them.

Shortcomings of approximate functionals indicate that some important qualitative features of the exact
functional are not (sufficiently well) captured. A common example is the delocalization error as in the case of
stretchedmolecules, where approximate functionals such as LDA andGGA’s tend to artificially spread out the
ground-state electron density in space [23]. Since inDFT every observable is a functional of the ground-state
density the delocalization error transmits into all observables as functional of the density and in particular to the
ground-state energy functional. As a consequencemost approximations for the ground-state energy as
functional of the particle numberN are either concave or convex functions between integerNʼs [20, 24] and
hence, violate the exact Perdew–Parr–Levy–Balduz condition [25]which states that the ground-state energy as a
function of the particle number E(N) is a linear function between integerN. The linearity ofE(N) leads to the
commonly knownderivative discontinuity [25] and is one exact condition on the xc-functional. Exact
conditions on the xc-functional are a very useful tool in the development of new, improved functionals. In this
paperwe discuss an exact condition on the xc-functional that is relevant for systems consisting of well separated
butmutually interacting fragments, such as in stretchedmolecules. Among the approaches tomodel the limit of
strongly correlated, low density systemswithDFTwe highlight the long range corrected hybrids [26], the
generalization of the strictly correlated electron functional to fractional electron numbers [27–30] and the
recently introduced local scaling correction, which imposes the linearity condition to local regions of the system,
correcting both energies and densities and affirming the relevance ofmodeling fractional electron distributions
to reduce the delocalization error [20].

Exactly solvablemodel systems have shown to provide useful insight essential to understand the failures of
approximate xc-functionals and to develop new and improved approximations. For example, by studying one-
dimensionalmodel systems of few electrons it was shown that in the dissociation limit ofmolecules, the exact xc-
potential as function of the spatial coordinate develops steps and peaks [31–37]. Such features aremanifestations
of strong-correlation and the absence of such features in approximate functionals results in delocalization
errors. The correlation ofmolecules in the dissociation limit is usually dominated by static correlation, also
known as near-degeneracy correlation. A goodmeasure for the static correlation in the system is the von-
Neumann entropy. It can be understood as well as ameasure of the Slater rank [38, 39]. In the following, we refer
to strongly correlated systems if the ground-state wavefunction is not well approximated by a single Slater
determinant. Further, we do not allow spin-symmetry breaking.

Recently, [40–42] established an explicit connection between the xc potentials and thewave functions
allowing to directly compute the xc potentials from themany-electronwave functions in a numerically robust
manner. Studies of exact ground-state xc-functionals for latticemodels include the exact one-to-onemap
between ground-state densities and potentials computed for a half-filled one-dimensional Hubbard chain in
[43] using the BetheAnsatz, for the one-site and double-siteHubbardmodels in full Fock space in [44, 45] and
for the two-electronHubbard dimer via constraint search in [46], among others. For such latticemodels the
Hohenberg–Kohn theorem [47] can be generalized by replacing the real-space potentials and densities by on-site
potentials and on-site occupations [48, 49]. ThefiniteHilbert space of latticemodels permits the construction of
the exact density-to-potentialmap. The question arises what can be learned about realistic three-dimensional
systems by studying one-dimensional latticemodels. Recently it was shown [50, 51] that the time-dependent
exact xc-functional of the one-dimensional Hubbard dimer in the strongly correlated limit develops the same
step feature as the real-space one-dimensionalmodel studied in [52]. The step feature in the real-spacemodel in
the strongly correlated limit is equivalent in theHubbard dimer to a jump in the ground-state xc potential
difference as a functional of the density difference dn between the two sites, [ ]d dv nHxc , as the strongly correlated
limit is approached. The step saturates to the ionization potential difference between the twowells in the real
spacemodel [31–37]whereas in the dimer, the value of [ ]d dv ns saturates to dv, the external potential difference
[50, 51]. Note, in contrast to [50, 51]where the electron–electron interaction is on-siteHubbard, in this workwe
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study latticemodels with soft-Coulomb interaction between particles. Reference calculations of [53] show that
one-dimensionalmodel systems capture the essence of three-dimensional systemswhen studying strong-
correlation inDFT.

In this work, we study the exact density-to-potential and density-to-wavefunctionmap of a one-
dimensional latticemodel with a system size that still allows to exactly diagonalize theHamiltonian in full Fock
space. Thewavefunction-to-densitymap has been fully realized forfixed particle number, i.e. for the two-
electron singlet case by [54, 55] and for themore-electron case by [56, 57]. In principle, a small system size of the
model used in this work allows to graphically illustrate the complete density-to-wavefunctionmap in the full
Fock space of the system, and can be used to showhow features such as the intra-system steepening and the
inter-systemderivative discontinuity of the density-to-potential map appear in the density-to-wavefunction
map. As example, we explicitly show the complete density dependence of the two-electron singlet ground-state
wavefunction. For different values of the external potential in theHamiltonianwe perform exact diagonalization
of theHamiltonian. Each diagonalization gives us all eigenfunctions and eigenenergies of the system,where the
eigenstate with lowest eigenenergy corresponds to the ground state.We use the ground-state of each exact
diagonalization corresponding to afixed external andfixed chemical potential to construct both one-to-one
maps, i.e.themap between on-site potentials and ground-state on-site occupations (ground-state densities),
and themap between ground-state densities and ground-state wave-functions. To illustrate the latter, we
numerically construct the configuration-interaction (CI) coefficients of thewave-function expansion as
functionals of the ground-state density.We study the exact features of thesemaps for systemswith different ratio
of discrete values of the kinetic hopping probability lt to the electron–electron interaction strength lw . This
allows us to study the exactmaps from the non-interacting to the strictly localized electron limit while we
gradually change the correlation of the system.We illustrate how the distinctive features of the exact density-to-
potentialmap transmit into thewavefunction-to-densitymap, and further into expectation values and
transitionmatrix elements of arbitrary operators as functionals of the ground-state density.

We show that in approaching the limit of strongly correlated electrons, i.e. l
l

0t

w
, the gradient of the exact

density-to-potentialmap of ourmodel system steepens.We denote this feature as intra-system
steepening which gradually builds upwithin the system as the hopping probability favoring the delocalization of
electrons decreases and the electron–electron interaction favoring the localization increases. In the strictly
localized electron limit, where l = 0t , we see that the ground-state becomes degenerate and hence, the intra-
system steepening transforms into the step-like inter-systemderivative discontinuity.

Wefind that qualitative features such as the intra-system steepening and the inter-systemderivative
discontinuity of the density-to-potential map are already captured by a two-site latticemodel. In the case of a
two-sitemodel, each site can be regarded as a subsystem.With increasing distance between the subsystems, the
hopping probability decreases and the localization of the electrons on each site increases. If the sites are infinitely
apart and the subsystems are truly separated, the electrons are strictly localized on each site.We simulate the
infinite separation in the two-sitemodel by setting the hopping parameter in the kinetic operator lt strictly to
zero. Since the kinetic energy is strictly zero, this limit is a classical limit. However, setting lt equal to zero allows
us to imitate the infinite bond-stretching of themolecularmodel, where the distance of themolecular wells d
goes to¥. In this limit, l = 0t implying  ¥d , the intra-system steepening of the density-to-potentialmap
becomes the standard step-like inter-systemderivative discontinuity.

Arbitrary observables and transition-matrix elements are affected by the presence of the intra-system
steepening and the inter-systemderivative discontinuity, and in particular by the lack of it in approximate
functionals.We illustrate howboth features are transmitted to the ground- and excited-state energy, the excited-
and transition-state density and to the correlation entropy functionals.

The paper is organized as follows. In section 2we present the exactmaps between local potentials, ground-
state wavefunctions and ground-state densities. In section 3we introduce the latticemodel and themethodology
thatwe employ in the present work. Section 4 is dedicated to the study of the intra-system steepening of the exact
one-to-one density-to-potentialmapwhen approaching the strictly localized limit (i.e. the strongly correlated
limit) and its transition into a step functionwith only allowed discrete integer density values for truly separated
subsystems. In section 4.1, we discuss how theses discrete integer density values of the decoupled systems
connect if a weak coupling between the systems is introduced. In section 5we use the potential-to-densitymap
to construct the CI coefficients of the ground- and excited-state wavefunction expansions as explicit functionals
of the ground-state density. Ground-state degeneracies leave topological scars in the electron density [58].We
illustrate how these degeneracies and furthermore also near-degeneracies of the eigenenergies of the system
affect the ground- and excited-state expectation values and transitionmatrix elements of relevant operators as
functionals of the ground-state density. Finally, in section 6, we summarize ourfindings and give an outlook for
futurework.
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2. Exactmappings

Tounderstandwhich features approximate functionals aremissing, it is instructive to explicitly construct and to
analyze the exactmaps between the ground-state wavefunction Y0, the local potentialV, and the ground-state
density n00, sketched infigure 1. For fixed electron–electron interaction Ŵ , themany-body Schrödinger
equation

( ˆ ˆ ˆ ) ( )+ + Y = YT W V E , 1k k k

defines a uniquemap between the set of local potentialsV and the set of energy eigenstates Yk, depicted asmap
 infigure 1. The ground-state density n00 can be computed as usual according to

( ) ∣ ( )∣ ( )    
ò= Yn r N r r r rd ... d .., , 2N N00 2 0 2

2

which establishes a uniquemap from the set ofN-electron ground-state wavefunctions Y0 to the set ofN-
electron ground-state densities n00. Hohenberg andKohn [47] proved that themap  infigure 1 between n00
andV is one-to-one and unique ifV-representability is fulfilled [59–63]. Assuming existence of this one-to-one
density-to-potentialmap allows in principle to construct any ground-state observable as a unique functional of
the ground-state density n00,

[ ] [ ]∣ ˆ∣ [ ] ( )= áY Y ñO n n O n . 300 00 0 00 0 00

Note that in addition to the one-to-oneV-to-n00map, the Schrödinger equation establishes amap between n00
and the excited-state wavefunctions Y ¹k, 0k . As a consequence, excited-state expectation values with
= >k l 0, and transitionmatrix elements with ¹k l , can be computed as functionals of the ground-state

density using

[ ] [ ]∣ ˆ∣ [ ] ( )= áY Y ñO n n O n . 4kl k l00 00 00

The ground-state energyE0 and the ground-state density n00 can be accessed using the variational principle

[ ] [ ] ( )= < ¹E E n E E n n nmin , , . 5
n

V V0 0 00

Given an external potentialV the total energy is computed as [ ] [ ] ( ) ( ) 
ò= +E n F n n r V r rdV HK

3 . In the Levy–
Lieb constrained search formulation [64, 65] theHohenberg–Kohn energy functional FHK is found as the
minimumover all possibleN-electron densities n, of the expectation value of kinetic plus electron–electron
interaction operator

[ ] [ ]∣ ˆ ˆ ∣ [ ] ( )= áY + Y ñ
Y

F n n T W nmin . 6
n

HK

In the following, we illustrate the features of the exact density-to-potential and density-to-wavefunctionmaps
explicitly for ourmodel systems.

3. Latticemodel

In the present work, we restrict ourselves to one-dimensional lattice systems for which the construction of exact
functionals via exact diagonalization is numerically feasible. On a lattice, the potential becomes an on-site

Figure 1. Schematic illustration of the exactmapping betweenN-electronwavefunctions Yk, local potentialsV, and ground-state
electron densities n00. Themaps are depicted as red arrows, where mapsV onto Yk,  maps Yk onto n00 and  maps n00 ontoV.
Black arrows indicate the bijectivity of each of these one-to-onemaps. Note that every element inV has an exact one-to-one equivalent
in n00 and Y0.
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potential ( ) ( )V x v xi , the density a site-occupation, ( ) ( )n x n xi , and the integral becomes a sumover sites

i, ò  åxd i [48]. Furthermore, the kinetic energy operator becomes a nearest-neighbor hopping term.

3.1. LatticeHamiltonian
ForN interacting electrons in one spatial dimensionwe considerHamiltonians of the form

ˆ ˆ ( ) ( ) ˆ ( ) ˆ ˆ ˆ ( )j l j l j m= = + + +jH H T W V N , 7t w

where the parameterμ, connected to the particle number operator N̂ , acts as a Lagrangemultiplier shifting the
state with lowest energy to blocks with different particle numberN in Fock space. To switch between different
coupling limits, we introduce the amplitude of the kinetic hopping ( )l j= r cost and the strength of the
electron–electron interaction ( )l j= r sinw as parameters in polar representationwith radius r and anglej, see
figure 2. The limit l  0w , i.e.j = 0, corresponds to non-interacting electrons and the limit l  0t , i.e.

j = p
2
, to site-localized electrons.Without loss of generality we choose =r 2 andj Î p⎡⎣ ⎤⎦0,

2
. Throughout

this workwe use atomic units  = = =m e 1.
Next, we introduce the operators of the latticemodel withM sites and lattice spacing dx. In second-order

finite difference representation the kinetic energy operatorwith nearest neighbor hopping =t
x0
1

d 2 reads

Figure 2. Illustration of the kinetic hopping probability lt and the strength of electron–electron interaction lw in polar representation
for the latticeHamiltonian used in this work as defined in equation (7).

Figure 3. Sketch of Bader partitioning. Left panel from top to bottom: external potential for a one-dimensional diatomicmolecule
with nuclear charges = -Z 11 and = -Z 12 and atomic separation d=5 a.u. and the corresponding exact exchange-correlation
potential and ground-state density in real-space.We denote the blue-colored left halfspace as system S1 and the red-colored right
halfspace as system S2.With increasing distance d of themolecular wells the coupling of both systems decreases. Figure on the right-
hand: exact effective density-to-potentialmap, wherewe vary the potential difference d = -v Z Z1 2 from−5 to 5. The density
difference dn00 corresponds to the electronic density summed over the left half-spaceminus the density summed over the right half-
space as defined in equation (20). The point at ( )d d= =n v0, 000 in this effectivemap corresponds to the three panels in real-space
on the left-hand side. The red-framed zoom at the top corner shows that the density-to-potentialmap has a smooth behavior on the
scale of the coupling of both systems.
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † †åå= - + -
s

s s s s s s
=

+ +T
t

c c c c c c
2

2 , 8
l

M

l l l l l l
0

1
, 1, 1, , , ,

where ˆ†
scl, and ˆ scl, denote creation and annihilation operators of an electron placed on site lwith spin projection

onto the z-axisσ. Usually, the hopping t0 changes with the lattice spacing dx. However, we choose to leave dx
fixed and use the parameter lt and lw instead. The last term in equation (8) corresponds to on-site hopping. For
model systems this term is usually not taken into account. Herewe keep the term to allow for a consistent first
and second quantized treatment of theHamiltonian.We study the non-local soft-Coulomb electron–electron
interaction

ˆ ˆ ˆ ˆ ˆ

( ( ))
( )

† †

å=
- +s s

s s s s

¢

¢ ¢
W

c c c c

x l m a2 d
, 9

l m

l m m l
SC

, , ,

, , , ,

2

acting on particles located at sites l andmwith spinsσ and s¢. Throughout this work theCoulomb interaction is
softened by the parameter a=1. The external potential

ˆ ˆ ˆ ( )†å=
=

V v c c , 10
l

M

l l l
1

introduces a potential difference between the sites in the lattice, which depending on its strength, shifts the
electron density among the sites in the lattice.We restrict ourselves to two different scenarios for which exact
diagonalization is still possible, similar to [66, 67]. In case (i)we consider two spin-singlet electrons onM=206
sites. The particles are confined in a box from = -x 10.25 a.u. to = +x 10.25 a.u. with zero boundary
conditions and a lattice spacing of dx=0.1 a.u. and l l= = 1t w . Tomimic the bond-stretching inmolecular
systems, we consider an external potential

( ) ( )
( ) ( ) ( ) ( )

( )
( )a a a a

=
- +

+
+ +

+
+

v
Z

x

Z

x

Z Z

d1 1 1
, 11l

l
d

l
d

1

2

2

2

2

2

1 2

2

( ) ( ) ( ) ( )a a a a= - = - -Z Z, 2 121 2

with two atomicwells separated by distances ranging from d=2 to d=8 a.u.. The depth of thewells is given by
the nuclear chargesZ1 andZ2 whichwemodulate with the parameter [ ]a Î 0, 2 .Wewill see that the essence of
such a system is already captured by a two-sitemodel. As case (ii), we considerM=2 sites in the lattice with a
distance =xd 1

2
, wherewe vary the parameters lt and lw. In this case, the system size allows to perform exact

diagonalization in the full Fock space of themodel.

3.2.Methodology
To explicitly construct the one-to-onemap between external potentials and ground-state densities, we
diagonalize theHamiltonian introduced in equation (7) for different external potentials vm, butfixedj. The
external potential takes values = Dv mm v, whereDv is the numerical step size, andm is the step number.
Although not shown in the present work, similarly theHamiltonian can be diagonalized for different chemical
potentials mk with the chemical potential values m = Dmkk , the numerical step sizeDm and the step number k. In
this way all functionals are constructible as functions of the particle numberN and can be studied in complete
Fock-space. Herewefix the chemical potential and select a discrete and uniformly distributed set of potentials
from the continuous set V of possible external potentials infigure 1. In the next stepwe use exact diagonalization
to compute the ground-state wavefunction Yj

0 and energy
jE0 corresponding to each value of vi and mi (butfixed

j). For each ground-state wavefunction, we compute the corresponding on-site ground-state density

( ) ∣ ˆ ( )∣ ( )= áY Y ñj j jn x n x , 13j j00 0 0

where j is the site subindex, and the spin-summed density operator reads

ˆ ( ) ˆ ˆ ˆ ˆ ( )† †= +   n x c c c c . 14j j j j j, , , ,

In addition to the ground-state wavefunction, the exact diagonalization gives us access to the excited-state
wavefunctions Yj

¹k 0, which allows us to compute excited-state observables and transitionmatrix elements of
operators as functionals of the ground-state density according to equation (4). On a lattice withM sites, the
continuous one-dimensional ground-state density ( )n x00 becomes a vector ( ( ) ( ) ( ))n x n x n x, ,..., M00 1 00 2 00 .
Hence, expectation values and transitionmatrix elements as functionals of the density become rankM tensors

( ( ) ( )) ( ( ) ( ))∣ ˆ∣ ( ( ) ( )) ( )¼ = áY ¼ Y ¼ ñj j jO n x n x n x n x O n x n x, , , , , , . 15kl M k M l M00 1 00 00 1 00 00 1 00

In case (ii)where two sites in the lattice are considered, all functionals depend on the on-site densities ( )n x00 1

and ( )n x00 2 , i.e.∣ [ ( ) ( )]Y ñj n x n x,k 00 1 00 2 and [ ( ) ( )]jV n x n x,00 1 00 2 . Instead of expressing all functional dependen-
cies in terms of the variables ( )n x00 1 and ( )n x00 2 , we rotate the coordinate system to the total particle number
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( ) ( )= +N n x n x00 1 00 2 and the occupation difference ( ) ( )d = -n n x n x00 00 1 00 2 between the sites [46]. To
illustrate thewavefunction-to-densitymap, we expand the ground ( )=k 0 and the excited ( )>k 0 eigenstates
∣Y ñjk of the system in a complete set of Slater determinants ∣F ñq ,

∣ [ ] [ ]∣ ( )åd a dY ñ = F ñj jn N n N, , , 16k
q

q
k

q00
,

00

wherewe have chosen ∣F ñq to be the eigenstates of the kinetic operator T̂ . This gives rise to theCI coefficients

[ ] ∣ [ ] ( )a d d= áF Y ñj jn N n N, , . 17q
k

q k
,

00 00

Bywriting theCI-coefficients [ ]a dj n N,q
k,

00 as explicit functionals of dn00, we gain access to all ground- and
excited-state expectation values or transitionmatrix elements of any operator, i.e.

[ ] [ ]∣ ˆ ∣ [ ]

[ ] [ ] ∣ ˆ ∣ ( )*åå
d d d

a d a d

= áY Y ñ

= áF F ñ

j j j

j j

¢
¢ ¢

O n N n N O n N

n N n N O

, , ,

, , . 18

kl k l

q q
q

k
q

l
q q

00 00 00

00 00

Aprime example is theHohenberg–Kohn energy functional defined in equation (6), which is the ground-state
expectation value of theHamiltonian ˆ ( ) ˆ ( ) ˆl j l j= +

j
=H T Wv t w0l

, i.e.

[ ] [ ]∣ ˆ ∣ [ ]

[ ] [ ] ∣ ˆ ∣ ( )*å
d d d

a d a d

= áY Y ñ

= áF F ñ

j j j j

j
=

¢
¢ ¢ =

F n N n N H n N

n N n N H

, , ,

, , . 19

v

q q
q q q v q

00 00 0 00 0 0 00

,
00 00 0

l

l

For the two-particle singlet states, we compute theHohenberg–Kohn functional for different values of

j Î p⎡⎣ ⎤⎦0,
2
. Note the explicit dependence of [ ]djF n N,00 00 on the anglej, since theHohenberg–Kohn proof can

only be established forfixed and given kinetic energy and particle–particle interaction. By changing the anglej,
we construct the exact energy functional [ ]djF n N,00 00 for different electron–electron interactions and kinetic
terms, wherej = 0 is the non-interacting andj = p

2
the infinitely correlated limit. Our approach allows to

construct the exact density functionals for any observable of interest.We illustrate this for a few selected
examples in the following sections. Alsowe emphasize that throughout this work all functionals are constructed
in the zero-temperature limit.

4. Features of the exact density-to-potentialmap

We start our analysis for theHamiltonian of case (i), wherewe consider a diatomicmolecule with different
interatomic separations.While the full density-to-potential map is a high-dimensional function forM=206
sites and impractical to visualize, the essence of the bond stretching can be captured by the integrated densities of
fragments of the system. Anatural choice to partition the system into its fragments, is to divide the total
molecular charge distribution at itsminima into different Bader basins [68, 69]. By integrating the density over
each of these Bader basins, the high dimensionality of the density in real-space reduces drastically. For our
diatomicmodel the partitioning reduces the dimensionality from206 to two, bymapping the sites in the grid
onto the basins.We can then refer to each basin as a effective site in real space and regard the density difference
between the basins as density difference between the two sites. For the simple diatomicmolecule in one-
dimension, we simply divide the system in two equal half-spaces, and construct the density-difference according
to

( ) ( ) ( )å åd = -
= = +

n n x n x . 20
i

M

i
i M

M

i00
1

2

00
2 1

00

To obtain the potential difference between the two basins, we take the difference between themaximumdepth of
themolecular potential wells of each basin and define the potential difference as ( ) ( )d a a= -v Z Z1 2 . Note, the
potential difference can be tuned by changing the nuclear charge of the two atomswith the parameterα of
equation (12). The resulting effective density-to-potential map for our diatomicmodel is shown infigure 4.
Starting from left to right we increase the distance between themolecular wells. The effective density-to-
potentialmap starts outwith a smoothmonotonic shape. When the distance of the atoms is increased the
gradient of the effective density-to-potential map steepens, leading ultimately to steps in the density values for
the infinitely separated limit.

The very same qualitative behavior can be found for a simple two-site lattice system. As a second examplewe
consider therefore theHamiltonian of case (ii). In this case we construct the exact density-to-potentialmap for
the two-particle singlet states of the two-site latticemodel. The results are shown infigures 5 and 6. Figure 5
shows theHartree exchange-correlation part of the exact potential as functional of the ground-state density,
whereas the first row offigure 6 shows the dependence of the exact density as function of the external potential
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difference between the sites. Note the density-to-potentialmap infigure 6 is one-to-one, and therefore
invertible, the domain and co-domain of the selected independent variable and the corresponding function
values can be swapped. In addition to the ground-state density-to-potentialmap in the first row offigure 6, the
second and the third row show the first and the second excited-state density-to-potential map, and the fourth
row shows the eigenenergies E0,E1 andE2 as function of the external potential difference between the two sites in
lattice. From left to right,j increases, i.e. the electron–electron interaction favoring the localization of the

electrons increases, whereas the kinetic energy favoring the delocalization decreases, i.e. l
l

0t

w
. This

localization is reflected by the steep gradient of the ground- and excited-state densities dn00, dn11 and dn22 as
function of the external potential difference d = -v v v1 2. For the potential difference we select values from−5
to 5, shifting the electron density fromone site in the lattice to the other. Settingj = 0 in equation (7)
corresponds to non-interacting electrons, where the eigenfunctions are single-particle Slater-determinants. In
this limit the density-to-potential map for ourmodel can be found analytically

( )
( )

( )d d l
d

d l j
= -

+ =
j=n v x

x v

x v
, , d

4d

4d 0
. 21t

t

00
0

2

4 2 2

Themap behaves smoothly as can be seen in the leftmostfigure in the first row offigure 6.
Approaching the strictly localized limit, i.e.j  p

2
, the slope of the exact density-to-potential map sharpens

until themap develops a characteristic feature, whichwe denote as intra-system steepening. The intra-system
steepening of the gradient of the density-to-potentialmap corresponds to the localization of the electrons in the
respective subsystems.Near the strictly localized limit, e.g.j = -p

2

1

100
, the electrons are highly localized on

the sites.
In the strictly localized electron limitj = p

2
the hopping parameter is equal to zero. In this limit the system

‘breaks’ into two kinetically decoupled sites and theHamiltonian reduces to ˆ ˆ ˆ= +j= p

H W V2 and hence
commutes with the position operator ˆ ˆ ˆ†= å ås s s=x x c cm

M
m m m1 , , with ( )= - + +x M x m x1 2d dm .

Figure 4.Exact density-to-potentialmap for a one-dimensional diatomicmolecule with nuclear chargesZ1 andZ2, wherewe vary the
potential difference d = -v Z Z1 2 from−5 to 5 for different atomic separations = -d 2 8 a.u. similar to [66, 67]. The density
difference dn00 corresponds to the electronic density summed over the left half-spaceminus the density summed over the right half-
space as defined in equation (20) and illustrated in figure 3. The graph illustrates the influence of electron localization on the ground-
state density-to-potentialmap. From left to right the distance of themolecular wells increaseswhile the gradient of the density-to-
potential steepens with increasing distance d and hence, decreasing coupling of the fragments of the system.We denote this feature of
the density-to-potentialmap as intra-system steepening (see text for details).

Figure 5.ExactHartree exchange-correlation potential calculatedwith the exact formula of [37] as functional of the ground-state
density for a two-site latticemodel using soft-Coulomb interaction. From left-to-right we approach the strictly localized limit. Note,
in contrast tofigures 4 and 6, herewe show the inversemap dvhxc-to-dn00 by swapping the x- and y-axis.
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[ ˆ ˆ] ( )=j= p
H x, 0, 222

and the eigenfunctions of Ĥ are diagonal in the eigenbasis of the position operator. The three two-particle
singlet states correspond to the physical situations where both electrons are located on site one, i.e.

[ ] ˆ ˆ ∣† †dY = + = ñj=
 

p

n c c2 00 00 1 1
2 , both electrons are on site two, i.e. [ ] ˆ ˆ ∣† †dY = - = ñj=

 

p

n c c2 00 00 2 2
2 , or

where the electrons are delocalized over both sites, i.e. [ ] (ˆ ˆ ˆ ˆ )∣† † † †dY = = - ñj=
   

p

n c c c c0 00 00
1

2 1 2 1 2
2 .

Depending on the ratio between the external potential difference dv and the electron–electron repulsion
strength lw , (except in the points of degeneracy) one of these three eigenstates is energeticallymore favorable
and becomes the ground-state of the electronic system, see lower panel offigure 6. In the strictly localized limit,
the density difference dn00 transitions from a continuous variable to a discrete set of integer values. Namely, the
only possible values for the ground-state density differences are the integer values

( )d d =
-

+

j= p
⎧
⎨⎪
⎩⎪

n v
2,

0,
2.

00
2

Figure 6.Exact density-to-potentialmap for a two-site latticemodel using soft-Coulomb interaction. Despite its reduced
dimensionality essential features of the density-to-potentialmap of themolecularmodel system are already captured by a two-site
model, as can be seen by comparingfigures 4 and 6. The graphs illustrate how the electron localization is captured in the ground- and
excited-state density-to-potentialmaps and in the eigenenergies. Upper panel: exact ground-state density as function of the external
potential, i.e. ( )d dn v00 . Second panel: exact first excited-state density as function of the external potential, i.e. ( )d dn v11 . Third panel:
exact second excited-state density as function of the external potential, i.e. ( )d dn v22 . Lower panel: eigenenergies of the two-particle
singlet states as function of the external potential ( )dE vj , where Ej corresponds to the eigenstate ∣Yñj and to the density differences

∣ ˆ ∣d d= áY Yñn njj j j . Inset at the bottomon the left-hand side: detailed view of the ground-state and thefirst excited-state density
functionals ( )d dn v00 and ( )d dn v11 in the strictly localized limit. Inset at the bottom at the right-hand side: avoided and real crossings
of eigenenergies. From left to right the anglej increases the correlation in the system going from the non-interacting (j = 0) to the
strictly site-localized electron limit ( )j = p

2
. In themolecularmodel system offigure 4 this corresponds to an increasing distance d of

themolecular wells. The gradient of all three densities steepens whenever the corresponding eigenstate as functional of the external
potential comes close to an avoided crossing.We denote this exact feature of the density-to-potentialmap as intra-system steepening.

In the strictly localized limit ( )j = p
2

the intra-system steepening becomes the inter-systemderivative discontinuity while the

avoided crossing turns into a real-crossingwith degenerate eigenenergies.

9

New J. Phys. 18 (2016) 083004 TDimitrov et al



For fully decoupled systems the different values of the external potential lead to the same density difference dn00

as can be seen in themap forj = p
2
infigure 6. Therefore, the one-to-onemap between dn00 and dv breaks

down. TheHohenberg–Kohn theorem is applicable to each disjoint systembut not to the combined system. For
j = p

2
, the two sites kinetically decouple, however both sites are still coupled via the long-range soft-Coulomb

interaction. For zero kinetic coupling, the ground-state of this combined systembecomes degenerate in two
points near d =v 0. Due to the points of degeneracy of the ground-state of the system, the distributional points
of the density-to-potentialmap can be connected via straight-lines and the intra-system steepening transitions
into the inter-systemderivative discontinuity. Consequently, functionals along the cut in the variable dn are a
linear combination of the functionals of the degenerate densities as has been shown for the ground-state energy
functional as functional of the particle number[25, 70]. Therefore, we connect the distributional points along the
variable dn for all functionals via straight lines, i.e. ( )d w=  -n 2 100 and  w0 1. In a physical picture
each one of the kinetically disconnected sites can be seen as a system infinitesimally weakly connected to a grand-
canonical particle reservoir.

Contrary to thewidely discussed inter-systemderivative discontinuity, which describes the piece-wise linear
behavior of the energy as a function of the particle number [ ]E N , the intra-system steepening describes the
smooth behavior of the energy as functional of the density difference between fragmentswithin the system

[ ]dE n00 . Both features already showup in the density-to-potentialmap and transmit to all observables. The
Hohenberg–Kohn energy functional is therefore only one specific example for the appearance of the inter-
systemderivative discontinuity and the intra-system steepening. The smooth behavior of the intra-system
steepening is a consequence of themixing of different quantum eigenstates around avoided crossings, and the
steps related to the inter-systemderivative discontinuity directly result from intersections of eigenenergies, thus

Figure 7.Differences between the strictly localized limit (a), the intra-system steepening (b), (c) and the inter-systemderivative
discontinuity (c), see discussion in section 4.1.Note, all three cases aremathematically well-defined limits. However, limit (a) and in
general also the inter-systemderivative discontinuity of limit (c) (except for an accidental degeneracy of the ground-state) are purely
mathematically constructions, whereas processes in nature happen in the limit of (b) since neither the kinetic coupling nor the particle
interaction can be fully switched off.We consider two systems S1 with particle numberN1 and S2 with particle numberN2. Infigure (a)
both systems are decoupled, and the ground-state of each isolated system is a pure state withfixed, integer particle number leading to a
distributional density-to-potentialmap. TheHohenberg–Kohn theorem is valid in the disjointHilbert space of system S1 and S2, but
not in the combinedHilbert space of both systems. Figure (b) shows the time-evolution of the system S1 with initially -N 11 particles
to +N 11 . The particle number of system S1 can only change if the system is coupled to a bath, here system S2 with initially +N 12

particles. Figure (c) shows the eigenenergies of the two-particle singlet states as infigure 6 and illustrates the difference between the
intra-system steepening and the inter-systemderivative discontinuity. The question is how the functionals of the densities of system S1
and S2 in figure (a) connect if aweak coupling between the systems is introduced. Note, although in the two-sitemodel we kinetically
decouple both sites, the sites are still coupled via the long-range soft-Coulomb interaction. For an accidental degeneracy of the
ground-state, functionals are constructible as linear combination of the degenerate subspace. This construction then leads to thewell-
known straight-line behavior along the cut in the variableN of ground-state density functionals which are not differentiable at integer
particle number  = +N N1 2. In general aweak coupling lifts the degeneracy of the ground-state of the system as indicated on the
bottomof thefigure and leads to a smooth density-to-potentialmap. The gradient of thismap steepenswith decreasing coupling of
the systems. The intra-system steepening is valid from strong toweak coupling.
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real crossings, see lower panel and inset offigure 6. The inter-systemderivative discontinuity appears when
electrons are strictly localized in states with different particle number but an accidental degeneracy of the
ground-state allows the statisticalmixture of the degenerate ground-states. Note that the steepening of the
gradient for dn00 as well as for dn11 and dn22 arises whenever the eigenvalues of theHamiltonian in equation (7)
as function of the external potential become nearly degenerate. The connection between the avoided crossing
and the steepening of the gradients functional is closely related to the finding of [36], i.e. that the step feature of
the exact xc-potential in space arises in the vicinity of the avoided crossing, when the bonding and antibonding
orbitals become nearly degenerate.Without this step feature (and the peaks) of the exact xc-potential, the non-
interacting electron density would artificially smear out over both basins and lack the intra-system steepening of
the exact electron density-to-potential map. Forj = 0 all eigenvalues are non-degenerate, hence the density-
to-potentialmap of all eigenstates behaves smoothly.Whenwe approach the strongly correlated limit atj  p

2
,

thefirst and second excited-state energies approach each other [ ] [ ]d dE v E v1 2 and forj = p
2
they become

degenerate for d =v 0, i.e. [ ] [ ]d d=E v E v1 2 (see inset figure 6). Because of this degeneracy of the first and second
excited-state, the distributional points+2 and−2 of thefirst and second excited-state density as functional of
the ground-state density can be connected via straight lines along the cut in the variable dn, see also figure 10.
Caused by a real crossing of the eigenenergies in the strictly localized limit, the one-to-one correspondence with
an external potential breaks down for all densities, i.e. the ground-state and the excited-state densities. The
density-to-potentialmap becomes a distribution in this limit and theHohenberg–Kohn theoremdoes not
apply.

4.1. Intra-system steepening versus intersystemderivative discontinuity
InDFT, the ground-state wavefunction and all ground-state observables are unique functionals of the ground-
state density. In this work, we also show the functional behavior of excited-state observables and transition
matrix elements, for which in general no one-to-one correspondence exist. Nevertheless, as wewill see in the
following sections, features of the exact density-to-potential map directly translate to both types of functionals,
i.e. the unique ground-state functionals and the generally non-unique functionals of the excited-state
observables and the transitionmatrix elements. Therefore, it is of fundamental importance to identify and
classify these features of the exact density-to-potential map. In the following, we distinguish between the three
different cases displayed infigure 7. For all cases let us assume, that we have two systems S1 and S2. In the two-site
latticemodel one site corresponds to S1 and one to S2, whereas in themany-sitemodel one basin corresponds to
S1 and the other one to S2. In the first case as infigure 7(a) the kinetic coupling as well as the coupling via
electron–electron interaction between the systems are strictly zero. This is a purelymathematical limit, since
each system S1 and S2 is completely isolated from its environment and thus, the particle number in the system
can not change. TheHilbert space of both systems is disjoint. The ground-state of each system corresponds to a
pure state withfixed particle number. TheHohenberg–Kohn theorem is valid in theHilbert space of each
system, but not in the combinedHilbert space of both decoupled systems S1 and S2. The cut along dn00 of the
density-to-potentialmap of the total system is a step function, where the values of dn00 are the particle number
of system S1 and S2, i.e.N1 andN2. For fully decoupled systems S1 and S2, the functionals of this step-like density-
to-potentialmap can only take values at the integer particle number of system S1 and S2, i.e. F [N1 andN2], where
the values of the functional atN1 andN2 are disconnected. In the second case displayed infigure 7(b) the
coupling of the systems ranges from strong to infinitesimally weak.Without loss of generality, we refer to S1 as
system and to S2 as bath. This case is the underlying concept of charge transfer processes or in the description of
band gaps of a system, where the particle number is changed by adding or removing a particle. These processes
are not instantaneous processes, but should be regarded as processes inwhich a systemwith initiallyN particles
evolves in real-time to a systemof -N 1or +N 1particles. The particle number of a system S1 can only change
if it is coupled to a bath S2. The particle number of the total system-and-bath, i.e.  = +N N1 2, isfixed and
integer, whereas the particle numberN1 andN2 can take fractional values. In general, an infinitesimal small
kinetic coupling termof a system to a bath lifts the degeneracy of the ground-state of the combined system

+S S1 2 aswe have exemplified for the eigenenergies of the two-sitemodel infigure 6, ultimately leading to a
smooth density-to-potentialmap. Functionals of this smoothmap are also smooth, as we exemplify in the
following sections for thewavefunction and selected observables as functional of the ground-state density.We
will see that in theweakly coupled limit, i.e. the limitj = -p 1 100

2
, the straight-line behavior is an excellent

approximation to the exact functional behavior along the cut in the variable dn but that the exact functional
shows a smooth behavior since the density-to-potentialmap is also smooth. The deviation of the straight-line
behavior depends on the energy-scale of the coupling termbetween the system and the bath. To see how the
functionals deviate from the straight-line behaviorwe included a zoomof the functionals in the respective limit
whenever it improved the clarity. The third case infigure 7(c) is valid for an infinitesimally small coupling of a
system to a bath for which the ground-state of the system shows an accidental degeneracy. Here the coupling of
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both sites is realized via the long-range soft Coulomb interaction in theHamiltonian. Functionals of the
distributional points of the density-to-potentialmap are then linear combinations of the densities of the
degenerate subspace, and can be connected via straight-lines [25, 70]. For suchweakly coupled processes with a
degenerate ground-state, the straight-line behavior and hence the derivative discontinuity at integer particle
numberN introduced in the original work of Perdew is exact.

To give amathematicalmore rigorous definition of the concept of the steepening, we introduce the

maximumvalue of the gradient of the effective density-to-potential map, i.e. ( )=
d

d
f maxijkl

n

v

ij

kl
. To obtain the

effective density-to-potentialmap, it is necessary tofirst partition the density of the system, e.g. using a Bader
partitioning scheme. Second, the integrated density over each basin corresponds to a subsystem, e.g. for three
subsystemswe obtain the densities n n,1 2 and n3. To determine the localization and hence, the correlation
between two of the three subsystems, we construct the density difference d = -n n n12 1 2 and d = -n n n23 2 3 as
functional of the potential difference, i.e. ( )d d dn v v,12 12 23 and ( )d d dn v v,23 12 23 , where e.g. d = -v Z Zkl k l andZk
is themaximal depth of the external potential present in basin k. The gradient fijkl is ameasure how the
localization over subsystems changes subject to small changes in the external effective potential and therefore,
can be used to illustrate the intra-system steepeningwhile e.g. stretching the one-dimensionalmolecule. The size
of the tensor fijkl depends on the number of subsystems present in the system. The steepening presents a slope
that gets steeper as the correlation between subsystems in e.g. our bipartite system increases. The relation
between dnij and dvkl remains locally one-to-one and therefore invertible, the domain and co-domain of the
selected independent variable and the corresponding functional values can be swapped as long as the
corresponding value of fijkl is bounded. In the limit of the inter-systemderivative discontinuity the functional
value of fijkl for given ijkl diverges, indicating that an infinitesimally small change in the effective potential
changes the electron localization in the systemdramatically. For our specificmodel system, we illustrate that the
transition of the steepening to the non-differentiable derivative discontinuity corresponds to amaximum in the
von-Neumann correlation functional which provides a goodmeasure for the correlation present in the system.
For systemswith degenerate ground-state (each of which corresponds to aHilbert space withfixed particle
number), the ground-state density can be constructed by a linear combination in the degenerate subspace
resulting in a straight-line behavior whose slope changes at integer d =n N . Functionals in these points (at
integerN) are not differentiable.Whenever an intra-system steepening in the effective density-to-potential map
appears as a consequence of high correlation, we expect such a feature to be present in the xc functional as a
functional of the ground-state density.

5. Features of the exact density-to-wavefunctionmap

The inter-systemderivative discontinuity and the intra-system steepening discussed in the previous section are
exact properties of the density-to-potential map. As a consequence, also the exact wavefunction and hence, all
exact observables as function of the exact density inherit the intra-system steepening and the inter-system
derivative discontinuity. In the following sections we illustrate this fact. In particular, we showhow these
features showup in theCI-coefficients, and consequently in the energy, the excited-densities and in the
correlation entropy functional.

5.1. Exact configuration interaction coefficients as functionals of the ground-state density
To construct the density-to-wavefunctionmap, we expand the correlated ground- and excited-state
wavefunctions from the exact diagonalization of theHamiltonian in a complete set of Slater determinants ∣F ñq .
This gives rise toCI coefficients as functionals of the ground-state density as defined in equation (17). Clearly,
each choice for the set of Slater determinants ∣F ñq induces a different set of CI functionals. Herewe choose as
basis set the determinants which are eigenfunctions of the free kinetic energy operator.More specifically, we
project the two-particle singlet ground-state wavefunction of theHamiltonian in equation (7) onto the three
two-particle singlet eigenstates of the kinetic operator T̂ to construct one of these sets for each differentj. The
results are summarized infigure 8. Each row in the figure displays one of the ground-state CI coefficients as
function of the density difference between the sites, [ ] ∣ [ ]a d d= áF Y = = = ñn N S S n2, 0, 0,q q z00 0

2
00 . For

non-interacting electrons, the CI coefficients can be evaluated analytically. In our chosen basis the coefficients
have no explicit dependency on lt ,
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TheCI coefficients of the non-interacting electrons are shown in the leftmost columnoffigure 8, wherej = 0.
Approaching the strictly localized electron limit, i.e. from left to right infigure 8, the gradient of the CI
coefficients sharpens. This sharpening corresponds to the intra-system steepening of the dn00-to-dv map
introduced in section 4 and is inherited by theCI coefficients. Furthermore, the inter-systemderivative
discontinuity shows up in theCI coefficients forj = p

2
and theCI functionals become distributional points
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which are connected via straight lines due to the degeneracy of the ground-state, see discussion in section 4.1.

5.2. Exact ground-state and excited-state energy functionals
Since theCI coefficients ajq of thewavefunction inherit the intra-system steepening and the inter-system
derivative discontinuity, arbitrary ground-state expectation values, defined in equation (18), also inherit the
intra-system steepening and the inter-systemderivative discontinuity. Note, the excited-state CI coefficients
also show the same exact features, which are then inherited by excited-state functionals in the respective limit. As
particular examples for this inheritance, we illustrate in figure 9 the intra-system steepening and the inter-
systemderivative discontinuity for the exactHohenberg–Kohn functional ( j=0) and the excited-state energy

Figure 8.CI coefficients of the two-particle ground-state wavefunction in the kinetic operator basis. From left-to-right we approach
the strictly localized limit (j = p

2
) and the gradient of all three CI coefficients steepens. For j = p

2
theCI coefficients take only

discrete values which can be interpolated linearly (dashed lines)due to the degeneracy of the eigenstates in the strictly localized limit.
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functionals ( j= 1, 2)

[ ] ∣ ( ) ˆ ( ) ˆ ∣ ( )d l j l j= áY + Y ñj j jF n T W , 26jj j t w j00 2s, 2s,

for the two-particle singlet states ∣ ∣ [ ]dY ñ = Y = = = ñj j n N S S, 2, 0, 0j j z2s, 00
2 . The third row offigure 9 shows

the exactHohenberg–Kohn functional ( j= 0)discussed previously in literature [43–46], thefirst and second
row show thefirst and second excited-state energy functional ( j=1, 2), respectively. The gradient of all three
functionals [ ]dF njj 00 steepens approaching the limit of strictly localized electrons, just as previously observed for
the density-to-potentialmap in section 4 and the density-to-wavefunctionmap in section 5.1.However, ifj
differs infinitesimally from the strictly localized limit, all energy functionals are continuous. In particular, the
ground-state energy functional F00 is convex. The difference between the highly localized and the strictly
localized limit, is displayed in an inset at the bottom infigure 9, which contains a zoomof the critical region of
the ground- andfirst excited-state state functional. Here, in the limit of strictly localized electrons, inwhich both
sites are kinetically decoupled, the intra-system steepening transitions into the inter-systemderivative
discontinuity. As already discussed for the density-to-wavefunctionmap, the distributional points can be
connected via straight lines due to the degeneracy of the eigenstates in this limit.

5.3. Exact excited- and transition density functionals
To illustrate the fact that all physical observables inherit the intra-system steepening and the inter-system
derivative discontinuity, we also show the excited- ( = =k j 1, 2) and transition-state densities
( ¹ =k j 0, 1, 2)

[ ] [ ]∣ ˆ ∣ [ ] ( )d d d d= áY Y ñn n n N O n N, , 27kj k j00 00 00

Figure 9.Exact energy functionals ∣ ( ) ˆ ( ) ˆ ∣l j l j= áY + YñF T Wjj j t w j of the ground-, thefirst- and second-excited state for different
strengths of the electron localizationj. First row: second excited-state energy F22 as functional of the ground-state density. Second
row: first excited-state energy F11 as functional of the ground-state density. Third row: ground-state energy F00 as functional of the
ground-state density, i.e. theHohenberg–Kohn functional. From the non-interacting limit (left) to the strictly localized limit (right),
the gradient of all energy functionals steepens. In the highly localized limit, where j = -p

2

1

100
, all energy functionals are continuous.

In particular, the ground-state energy functional shows a convex behavior as can be seen in the detailed view of the intra-system
steepening of highly localized electrons and the inter-systemderivative discontinuity of strictly localized electrons at the bottomof the
figure.Note, that here the x-axis has been scaled by one order ofmagnitude. In the strictly localized limit, for all energy functionals
only the three distributional points d = n 200 and d =n 000 exist. Due to the degeneracy of the eigenstates in the strictly localized
limit which is shown in the lower panel offigure 6, these three distributional points connect via straight lines indicated by a black-
dashed line.
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as functionals of the ground-state density dn00. The excited-state density functionals are shown in the second
and third rowoffigure 10 respectively. For completeness, also the trivial linear behavior of the ground-state
density as functional of the ground-state density is shown in the first row of the figure. From the non-interacting
(left) to the strictly localized limit (right), the gradient of the excited-state density functionals steepens up to the

Figure 10.Density functionals for ground- and excited-singlet states. First panel: ground-state density as functional of the ground-
state density. Second panel: first excited-state density as functional of the ground-state density. Third panel: second excited-state
density as functional of the ground-state density. From the non-interacting limit (left) to the strictly localized limit (right), the gradient
of all excited-state density functionals steepens. A detailed view of the intra-system steepening for highly localized electrons

( )j = -p
2

1

100
and the inter-systemderivative discontinuity is given on the right.

Figure 11.Transitionmatrix elements of the density operator between different excitedmany-body states as functional of the ground-
state density ∣ ˆ ∣d d= áY Y ñn njk j k . First row: absolute value of the exact transition density from thefirst and second excited-state as
functional of the ground-state density ( )d dn n12 00 . Second row: absolute value of the exact transition density from the ground-and the
first excited-state as functional of the ground-state density ( )d dn n01 00 . From the non-interacting (left) to the strictly localized limit
(right), approaching the strictly localized limit the gradient of both transition density functionals steepens. In the strictly localized
limit, the sites are disconnected. Therefore, there are no transitions between the three two-particle singlet states, and the transition
densities are zero.
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strictly localized limit where the excited-state density functionals obey the straight-line condition due to the
degeneracy of the ground-state. To highlight the difference of the intra-system steepening and inter-system
derivative discontinuity of the excited-state density functionals a detailed view of the critical region can be found
on the right-hand side offigure 10.

Transition densities are an important ingredient for linear response calculations in time-dependentDFT.
For ourmodel system,we show the exact transition densities as functionals of the ground-state density. In
contrast to the excited-state density functionals, the transition density functionals are phase-dependent.
Figure 11 shows the absolute value of the transition density as functional of the ground-state density. The first
and second rowoffigure 11 show the absolute value of the transition density from thefirst to the second and
from the ground- to the second excited state, respectively. Approaching the strictly localized limit, both
transition-state densities show clearly the intra-system steepening. In the strictly localized limit, there is no
transition between the eigenstates of the system and the transition-state densities are zero, seej = p

2
in panel

one and two.

5.4. Exact correlation entropy functional
Asfinal example we illustrate the functional behavior of the correlation entropy. The correlation entropy ,
discussed in detail in [38]measures the correlation and entanglement present in amany-body system. It can be
understood as well as ameasure of the Slater rank [38, 39] as can be seen if we compare the correlation entropy
plotted infigure 12with themixing of the eigenstates in lower panel and inset offigure 6 for the different values
of the parameterj. In the two-sitemodel, wherewe have access to all eigenvectors and eigenvalues, we can
compute the correlation entropy of the system

( )å=
=

¥

S n nln , 28
j

j j
1

where nj are the eigenvalues of the reduced one-body densitymatrix

( ) ∣ ˆ ˆ ∣ ( )†r s s¢ ¢ = áY Y ñs s¢ ¢j j c c, . 29j j00 0 0

The correlation entropy is zero for pure states, and has itsmaximum formaximallymixed states [38, 39, 71]. In
figure 12we see that the correlation entropy increases with increasing correlationwhile the gradient of the
correlation entropy functional obeys the intra-system steepening and transitions into the inter-systemderivative
discontinuity due to the degeneracy of the ground-state forj = p

2
. In the limit of non-interacting electrons,

where there is no correlation, the correlation entropy vanishes. Themaximumvalue of the correlation entropy is
reached in the strictly localized limit for d =n 000 where all three eigenenergies are degenerate.

6. Summary

In the present workwe have illustrated for a simple but general interacting latticemodel how the intra-system
steepening, an exact feature of the ground-state density-to-potential map, develops gradually with increasing
decoupling between fragments of a system and transforms into thewell-known inter-systemderivative
discontinuity for an accidental degeneracy of the ground-state of weakly coupled systems. As a consequence of
theHohenberg–Kohn theorem, thewavefunction-to-densitymap inherits the exact features of the density-to-
potentialmap aswell as the ground- and excited-state observables and transition-matrix elements.

Figure 12.Correlation entropy as functional of the ground-state density indicating the correlationwithin the system. For non-
interacting electrons the correlation entropy is zero. From left to right, approaching the strictly localized limit, the correlation and the
mixing of the eigenstates and hence the correlation entropy increases. Furthermore, the gradient of the functional obeys the intra-
system steepening and the inter-systemderivative discontinuity for j = p

2
.
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Although both exact features are linked to the localization of the electrons, we carved out that the intra-
system steepening and the inter-systemderivative discontinuity are conceptually different features within
density functional theory. The inter-systemderivative discontinuity corresponds to the electron localization in
weakly coupled subsystemswith degenerate ground-state. The inter-systemderivative discontinuity coincides
with a real crossing of the eigenenergies of the system as function of the external potential. In this limit, the cut
along the variable dn of the generally very high-dimensional ground-state density functionals have straight lines
between different values for the particle numberN due to themixture of the states in degenerate subspaces,

( )w w= - + +F F F1 N N 1with themixing parameter  w0 1. The intra-system steepening instead
corresponds to the electron localization inweakly to strong coupled fragments of a system. The intra-system
steepening coincides with an avoided crossing of the eigenenergies as function of the external potential and
sharpenswhen approaching the real crossing. Ground-state density functionals result directly from the one-to-
one correspondence of theHohenberg–Kohn theorem, such as the convex ground-state energy as function of
the density difference between the fragments of the system.

The inter-systemderivative discontinuity plays a crucial role whenever the particle number of the total
system changes which is the case for observables such as the electron affinity [ ] [ ]= - +A E N E N 1 , the
ionization energy [ ] [ ]= - -I E N E N1 , the fundamental gapwhich is the difference of ionization energy and

affinity = -E I Agap , and the chemical hardness ( )h = ¶
¶

E

N v

2

2 of a system. The intra-system steepening is linked

to processes where particles are transferred fromone fragment to another within a systemoffixed particle
number such as stretchedmolecules, charge-transfer processes and any problem involving highly localized
electrons.We expect approximate functionalsmay fail to describe such problems because of the lack of the intra-
system steepening feature. Given the relevance of the abovementioned problems it is crucial to develop
improved density functionals that capture this exact condition of the exact density-to-potential and density-to-
wavefunctionmaps. In the highly localized electron limit the exact xc-functional does not present a straight line
behavior but rather a sharp but differentiable one.

Ourwork illustrates those fundamental concepts of density functional theory. To improve the accuracy of
DFTobservables, approximate functionals should capture both, the inter-systemderivative discontinuity and
the intra-system steepening respectively.Work about how to generalize the present results from lattice
Hamiltonians to real-space systems is currently in progress. Our results also allow to get insight about spinDFT
functionals as themagnetization of theN electron system can bewritten in terms of the ground-state density (as
all other observables we discussed in this paper). This is a way to solve the known problems of spinDFT [72, 73]
(however it would require going beyond present adiabatic functionals, work along those lines is in progress).
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