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We argue that the presence of conformal anomalies in gravitational theories can lead to observable 
modifications to Einstein’s equations via the induced anomalous effective actions, whose non-localities 
can overwhelm the smallness of the Planck scale. The fact that no such effects have been seen in 
recent cosmological or gravitational wave observations therefore imposes strong restrictions on the field 
content of possible extensions of Einstein’s theory: all viable theories should have vanishing conformal 
anomalies. We then show that a complete cancellation of conformal anomalies in D = 4 for both the C2

invariant and the Euler (Gauss–Bonnet) invariant E4 can only be achieved for N-extended supergravity 
multiplets with N � 5, as well as for M theory compactified to four dimensions. Although there remain 
open questions, in particular concerning the true significance of conformal anomalies in non-conformal 
theories, as well as their possible gauge dependence for spin s � 3

2 , these cancellations suggest a hidden 
conformal structure of unknown type in these theories.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In this Letter, we study the effect of conformal anomalies on 
low energy (sub-Planckian) gravitational physics. While the effect 
of the non-anomalous part of the effective action on Einstein’s 
equations for any matter coupling is completely negligible away 
from the Planck regime, due to the powers of �Pl (the Planck 
length) that come with higher order curvature and other quantum 
corrections, we will here argue that the (non-unique) anomalous 
part �anom of the non-local effective action, which is responsible 
for the conformal anomaly via formula (3) below, is not only rel-
evant for the quantised theory, but could also affect classical low 
energy processes (such as the propagation of gravitational waves) 
in observable ways, for instance by exciting longitudinal gravita-
tional degrees of freedom. This effect is made possible through the 
compensation of the smallness of the Planck scale �Pl by a large 
factor coming from the non-locality, analogous to the standard ax-
ial anomaly which arises by the competition of a UV divergence 
and a vanishing expression in D = 4 (e.g. in dimensional regulari-
sation). It can thus be viewed as a low energy (IR) manifestation 
of trans-Planckian physics, in analogy with other anomaly induced 
low energy effects, such as axion couplings. The absence of such 
modifications in recent cosmological or gravitational wave obser-
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vations leads us to conclude that all conformal anomalies must 
cancel. In principle, our considerations apply to any context where 
Einstein’s equations play a central role (e.g. black holes, dispersion 
relations for gravitational waves, amplification of primordial quan-
tum fluctuations, etc.).

2. Conformal anomaly

We refer to [1–10] for a derivation and basic properties of the 
conformal anomaly, as well as for further references. The confor-
mal anomaly has two sources, namely the fact that the UV regula-
tor for any conformal matter system coupled to gravity necessarily 
breaks conformal invariance, and secondly the fact that even for 
classically conformal fields the functional measure depends on the 
metric in a non-local manner. In four dimensions the anomaly 
takes the form

T μ
μ = 1

180(4π)2

(
csC2 + asE4

)
+ · · · ≡ A + · · · (1)

where

C2 ≡ Cμνρσ Cμνρσ = Rμνρσ Rμνρσ − 2Rμν Rμν + 1

3
R2

E4 = Rμνρσ Rμνρσ − 4Rμν Rμν + R2 (2)

and the coefficients cs and as depend on the spin s of the field 
that couples to gravity, and on whether these fields are massless 
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or massive, see Table 1. E4 is the Gauss-Bonnet density, a total 
derivative that gives a topological invariant when integrated over 
a 4-dimensional manifold. A further possible term ∝ �g R to (1)
can be dropped as it is obtainable by variation of a local functional 
(∝ R2). Because we will also be dealing with non-conformal theo-
ries we have put dots on the r.h.s. of (1) to allow for extra terms 
originating from explicit or spontaneous breaking of conformal in-
variance, such as mass terms ∝ m2ϕ2; in general, there might even 
be non-local contributions, although we are not aware of any ex-
ample where such a non-locality has been exhibited explicitly. The 
r.h.s. of (1), being expressible as the variational derivative of the 
(total) effective action w.r.t. the conformal factor, must satisfy the 
Wess–Zumino consistency condition, independently of whether the 
theory is classically conformal or not.1

While the anomaly A in (1) itself is a local expression, it is 
well known that it cannot be obtained by variation of a local ac-
tion functional (otherwise the anomaly could be cancelled by a 
local counterterm). Accordingly, we are here concerned with the 
anomalous part �anom[g, φ] of the non-local effective action that 
gives rise to (1) via variation of the conformal factor,

A(x) = − 2√−g(x)
gμν(x)

δ�anom[g, φ]
δgμν(x)

(3)

where φ stands for any kind of matter field. In four dimensions 
such actions – apart from not being unique – are not known in 
completely explicit form, although there are partial results. This 
is in contrast to the case D = 2 where there is a unique expres-
sion satisfying all consistency requirements, namely the famous 
Polyakov formula �D=2

anom[g] = − 1
2

∫ √−g R �−1
g R , where �−1

g is the 
Green’s function [14]. As is very well known [14,15], the pres-
ence of this anomalous term in the effective action changes the 
behaviour of the quantised theory in dramatic ways – altering 
the critical dimension of the effective string theory and adding a 
new propagating (Liouville) degree of freedom to restore quantum 
conformal invariance. For higher dimensional gravity the non-local
effects of �anom[g, φ] have not been much discussed so far (but 
see [16–18]), not only because of the absence of sufficiently ex-
plicit expressions, but also for the obvious reason that gravity is 
non-renormalizable. By contrast, for a finite or renormalizable the-
ory of quantum gravity the extra term does make a difference, like 
for Yang–Mills theories where anomalies are well known to spoil 
the renormalizability, hence the consistency, of the quantised the-
ory. Similarly, the presence of conformal anomalies can spoil the 
finiteness or unitarity (or both) of Weyl invariant theories of grav-
ity and supergravity [7].

3. Classical considerations

We now show that the presence of an anomalous contribution 
�anom to the effective action may affect the classical theory in observ-
able ways. The addition of �anom to the effective action leads to an 
effective modification of Einstein’s equations, viz.

�−2
Pl

(
Rμν − 1

2
gμν R

)
(x) = − 2√−g

δ�anom[g, φ]
δgμν(x)

+ · · · (4)

where the dots stand for non-anomalous matter contributions as 
well as contributions from non-anomalous higher order curvature 

1 For conformal theories, there is a direct link between the one-loop divergence 
and the trace anomaly, as explained in [11,6,7]. This link is broken for non-
conformal theories in the presence of a (gauge-dependent) divergent counterterm 
∝ R2. The issue of gauge dependence and the status of the conformal anomaly for 
non-conformal theories is not completely settled [12], but see [13] for a proposal 
how to fix the potential ambiguities in accord with the Wess–Zumino consistency 
condition.
corrections (which are negligible). The above equation entails the 
consistency condition

∇μ

(
2√−g(x)

δ�anom[g, φ]
δgμν(x)

)
= 0 (5)

which is automatically satisfied also for non-local �anom[g] if the 
latter is diffeomeorphism invariant. The vanishing divergence of 
the contribution from the non-anomalous part of the effective ac-
tion follows from the standard Ward–Takahashi identities.

Our main interest here is in the variation of �anom w.r.t. met-
ric deformations which are neither trace nor diffeomorphisms; we 
may generically refer to such deformations as ‘gravitational waves’ 
(in the broadest sense of the word, that these must only satisfy 
the conditions at infinity first identified by Trautman [19]). Unlike 
for (3), such variations cannot be expected to be local, as is already 
evident for the Polyakov action for which

2√−g

δ�D=2
anom[g]
δgμν

= 2gμν R − 2∇μ∇ν

(
1

�g
R

)
(6)

+ (gμα gνβ − 1

2
gμν gαβ)∇α

(
1

�g
R

)
∇β

(
1

�g
R

)
Tracing with gμν we recover the standard conformal anomaly; 
also, this expression does satisfy (5) identically. This result illus-
trates our claim that variations of �anom other than trace variations 
remain non-local. Equally important, it exhibits potential singular-
ities associated with the Green’s functions �−1

g (x, y). However, in 
this particular case the singularities are harmless because of a well 
known peculiarity of D = 2 gravity: there are no deformations of 
the metric other than conformal or diffeomorphism variations.2

For D = 4, matters are much more involved, because the metric 
now carries propagating degrees of freedom; in this case �anom[g]
will be a rather more complicated functional. Various candidate ac-
tions have been discussed in the literature, either of non-local type 
[20,8,21,22,9], or, for spontaneously broken conformal symmetry, 
of local type with a dilaton [18,23–25]. In particular, for E4 there 
is a closed form action (‘Riegert action’) analogous to the Polyakov 
action, and involving the inverse of a 4th order differential opera-
tor [7,20] which however does not produce conformally covariant 
correlators in the flat space limit [22,9,26] (in fact, no closed form 
action with this property seems to be known). Even if (5) is satis-
fied, hence diffeomorphism invariance maintained, the example of 
Liouville theory teaches us that �anom must be expected to excite 
new (longitudinal) gravitational degrees of freedom. In quantum 
gauge theory, this effect would entail the breaking of gauge in-
variance via the insertion of anomalous triangles into vector boson 
self-energy diagrams. In addition, the presence of �anom can lead 
to observable consequences even in the classical approximation, 
provided we can show that the smallness of �Pl can be overcome 
by the non-localities on the r.h.s. of (4).

Because a detailed analysis of the resulting non-local effects 
and closed formulas for the Riegert and the dilaton actions are 
presented in [27], we will content ourselves here with a more gen-
eral argument. To this aim we observe that, in lowest order, �D=4

anom
must contain a term ∝ E4 (�g + 1

6 R)−1 R , which is present in all 
actions that have been proposed so far when suitably expanded. 
Varying this term it is easy to see that the Einstein equation (4)
will be modified by a term proportional to

2 In Liouville theory with Euclidean signature on compact Riemann surfaces all 
singularities are actually integrable because the scalar propagators only exhibit log-
arithmic singularities at coincident points and the worldsheets are compact.
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∝ ∇μ (G 
 E4)∇ν (G 
 R) + (μ ↔ ν) (7)

where G is the Green’s function associated with the conformal 
d’Alembertian, for which 

( − �g + 1
6 R(x)

)
G(x) = δ(4)(x), and the 

symbol 
 stands for the convolution integral (the locality after trac-
ing with gμν is ensured by further contributions that we have not 
written out). The above term represents a physical effect because, 
unlike (6), it cannot be rendered local by an appropriate gauge 
choice. Unlike for the conventional treatment of Liouville theory, 
we now have to deal squarely with the Lorentzian signature, as 
there is no equivalence theorem relating pseudo-Riemannian and 
Riemannian geometry.

To arrive at a quantitative estimate we consider a cosmologi-
cal solution of the classical Einstein equations with metric ds2 =
a2(η)

( − dη2 + dx2
)
, where η is conformal time, and with the re-

tarded Green’s function [28]

G
(
η,x;η′,y

) = 1

4π |x − y| · δ(η − η′ − |x − y|)
a(η)a(η′)

(8)

valid for any profile of the scale factor a(η). As an example let 
us consider the radiation era ending at t = trad and starting at 
t0 = n∗lP where n∗ can be large (say, 108, i.e. long after the 
Planck era). Then η = 2

√
t trad and a(η) =η/(2trad); furthermore 

R = 0 for radiation, so the last convolution in (7) receives contri-
butions only from primordial perturbations, therefore we can very 
crudely estimate this contribution as ∇0 (G 
 R) ≈ 10−5t−1

rad [29]. 
However, the first convolution integral gives a dramatically bigger 
contribution since in the radiation era E4 = −3/(2t4). With x = 0
and t = trad, and neglecting subleading contributions we get (with 
t′ = (η′)2/trad)

∂

∂t

∫
d3 y

ηrad∫
η0

dη′ a(η′)4

4π |y|
δ(η − η′ − |y|)

a(η)a(η′)
3

2t′ 4
= 8

(n∗�Pl)
3

(9)

We therefore see that the pre-factor �−2
Pl in (4) that would nor-

mally suppress the corrections on the r.h.s. of (4) can be ‘beaten’ 
by the anomalous action because the convolution integral picks 
up the contributions along the past lightcone back to t0 = n∗�Pl, 
yielding an anomalous T00(trad) ∼ 10−5t−1

rad(n∗�Pl)
−3 that with our 

assumptions on n∗ is much bigger than the l.h.s. ∼ t−2
rad�−2

Pl . Note 
that we do not even need to go back all the way to the Planck 
era t ∼�Pl for this argument! In this way a perfectly smooth solu-
tion to Einstein’s equation could receive a very large ‘jolt’ from the 
non-local contributions. Because the enhancement effect exhibited 
above persists also for the closed form Riegert action, where ex-
act computations can be done, as well as for actions with a dilaton 
we expect that the precise form of �anom will not alter this main 
conclusion [27].

Let us emphasise that no such effects are expected to arise from 
the non-anomalous part of the non-local effective action which is 
obtained by integrating out massive modes. To be sure, the split of 
the effective action into an anomalous and a non-anomalous part 
is not unique, but we here suppose that the ambiguities (which are 
Weyl invariant functionals) are not relevant to the enhancement 
effects discussed above. At low energies the contributions of the 
standard effective action reduce to vertices which are effectively 
local (similar to the 4-Fermi interaction in electroweak theory), 
and hence would remain suppressed. By contrast, the conformal 
anomaly should be viewed as an IR manifestation of physics in the 
deep UV region (similar to the axion gluon vertex which is thought 
to arise from anomalous triangles with superheavy quarks). This 
feature is reflected in the anomalous part of the effective action, 
whose non-localities are independent of the masses of the parti-
cles contributing to the anomaly, as a consequence of which the 
resulting corrections to Einstein’s equations need not remain sup-
pressed. Consequently, the terms indicated by ellipses in (1) are 
not relevant to the effects discussed above, which are present like-
wise for conformal and for non-conformal theories. To clarify this 
point it is helpful to recall the well known example of the axial 
anomaly. In the presence of a mass term (which breaks axial sym-
metry explicitly), the divergence of the axial current is

∂μ J 5μ = mχ̄γ 5χ + α

4π
F μν F̃μν (10)

The important point here is that even in the presence of explicit break-
ing, the anomaly is always present and may actually dominate over 
the classical contribution, as put in evidence by (10) and the ex-
ample of π0 decay. Likewise the physical effects induced by �anom
can dominate over other (local) contributions coming from the ex-
plicit breaking of conformal invariance, as we have shown above.

4. Cancelling the conformal anomaly

Let us now survey the theories for which the contributions from 
the different spins to the conformal anomaly cancel. For conformal
theories it was already shown in [7] that a cancellation is only 
possible for N = 4 conformal supergravity coupled to N = 4 Yang–
Mills with any gauge group of dimension r = 4; see [30] for a 
recent update on the status of these theories. For non-conformal 
(Poincaré or AdS) supergravities, the situation is less clear because 
there remain open issues, e.g. related to gauge dependence. Even 
though these theories do not respect conformal invariance (this 
is not immediately obvious for spins s ≤ 1 as the associated ki-
netic terms are conformally invariant, but the conformal invariance 
is lost because the scalar fields couple via a non-linear σ -model 
which is not conformal), we will nevertheless use the coefficients 
as determined with the harmonic gauge from the conformal ac-
tions in [31] by the procedure explained in the appendix. In Ta-
ble 1 we list the coefficients cs and as for spins up to s = 2 (first 
two columns). For spins s ≤ 1, these coefficients have been known 
for a long time [32,3,4,6,33–36]; the entries labelled 0∗ give the 
results for two-form fields (which have no massive analog). For 
s = 3

2 and s = 2 there is the further complication [4,6] that only 
the sums (as + cs) (multiplying the square of the Riemann ten-
sor) are gauge-invariant, but to extract the as and cs coefficients 
separately, one has to go off-shell and fix a gauge (but see [13]
for a proposal how to fix the gauge ambiguity by invoking the 
Wess–Zumino consistency condition). We note that these num-
bers have also been used more recently in connection with the 
AdS/CFT correspondence [37]. The numbers for the massive fields 
(last two columns) are obtained in the usual way by adding the 
lower helicities, e.g. c̄2 = c2 + c1 + c0. This is in accord with the 
fact that spontaneous symmetry breaking does not affect the con-
formal anomaly, and that the anomalies must match between the 
phases with broken and unbroken conformal symmetry [23].

We first consider the sum of the anomaly coefficients. As shown 
long ago [38] the sum 

∑
(cs + as) can be made to vanish for all 

Table 1
Anomaly coefficients for the harmonic gauge.

Massless Massive

cs as c̄s ās

0(0∗) 3
2 ( 3

2 ) − 1
2 ( 179

2 ) 3
2 (∅) − 1

2 (∅)

1
2

9
2 − 11

4
9
2 − 11

4

1 18 −31 39
2 − 63

2
3
2 − 411

2
589

4 −201 289
2

2 783 −571 1605
2 − 1205

2
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N = 3 supermultiplets with maximum spin s � 2 by replacing one 
scalar by one two-form field in the spin- 3

2 multiplet; the resulting 
multiplets can then be used as building blocks to arrange for all 
N � 4 supergravities to have vanishing 

∑
(cs + as). This implies in 

particular that the combined contribution vanishes for the maxi-
mal N = 4 Yang–Mills multiplet.

Next, turning to the C2 anomaly, it is a remarkable fact that the 
presence of gravitinos is mandatory for any cancellation involving 
the coefficients cs because the gravitinos are the only fields that 
contribute with a negative sign. It is easy to check that no N �
4 supergravity can achieve this because the summed contribution 
from the pure supergravity multiplets for N � 4 is positive, hence 
of the same sign as the one from any of the associated matter 
multiplets, so no cancellation of the C2 anomaly is possible for 
these theories.

One then checks that 
∑

cs vanishes for the N � 5 supergravity 
multiplets,

c2 + 5c 3
2

+ 10c1 + 11c 1
2

+ 10c0 = 0

c2 + 6c 3
2

+ 16c1 + 26c 1
2

+ 30c0 = 0 ,

c2 + 8c 3
2

+ 28c1 + 56c 1
2

+ 70c0 = 0 , (11)

but for no other theories. This cancellation requires the harmonic
gauge adopted in [31] (an analogous cancellation for the N = 8
multiplet in a different gauge was already noticed in [6]). These 
cancellations are analogous to the ones for the β-function in 
gauged extended supergravities [39], and due to similar spin sum 
rules [40]. Unlike the cancellation of gauge anomalies which can in 
principle be arranged for arbitrary chiral gauge groups by suitable 
choice of matter multiplets, the above cancellation thus singles out 
three very special cases.

With the same assumptions as above one can furthermore show 
that, in addition to the cancellation for the massless supergravity 
multiplets, the contributions to cs also cancel for the whole tower 
of Kaluza–Klein states of maximal D = 11 supergravity compact-
ified on S7, and they do so ‘floor by floor’ – exactly as for the 
one-loop β-function in [41,42]. For the reader’s convenience we 
reproduce below from [41] the full table of massive Kaluza–Klein 
multiplets with the Dynkin labels of the associated SO(8) represen-
tations (note that some towers start ‘higher up’, because no entry 
in a Dynkin label can be negative).

Using the Weyl formula for S O (8), as quoted in [41],

D(a1,b,a2,a3) = 1

4320
b̃ã1ã2ã3(b̃ + ã1)(b̃ + ã2)(b̃ + ã3)×

× (b̃ + ã1 + ã2)(b̃ + ã1 + ã3)(b̃ + ã2 + ã3)×
× (b̃ + ã1 + ã2 + ã3)(2b̃ + ã1 + ã2 + ã3) (12)

where b̃ = b + 1, ãi = ai + 1, the sum Ns(n) over the dimensions of 
the representations for spin s at level n comes out to be

Ns(n) = ds

(
1

20
n5 + 13

36
n4 + 4

3
n3 + 949

360
n2 + 157

60
n + 1

)
, (13)

the same for all spins s! The coefficients ds are given in the last 
column of Table 2; they are equal to the multiplicities of the N = 8
supermultiplet in D = 5. Using the c̄s coefficients for the massive 
representations from Table 1 it is easy to check that∑

s

dsc̄s = 0 (14)

Consequently, the sum over spins vanishes separately for each n. 
Furthermore, since the anomaly is independent of the chosen back-
ground solution it follows immediately that this result remains 
Table 2
Massive states in the S7 compactification [41].

S O (8) representations ds

0 [n+2 0 0 0], [n 0 2 0], [n−2 2 0 0], [n−2 0 0 2], [n−2 0 0 0] 42
1
2 [n+1 0 1 0], n−1 1 1 0], [n−2 1 0 1], [n−2 0 0 1] 48

1 [n 1 0 0], [n−1 0 1 1], [n−2 1 0 0] 27
3
2 [n 0 0 1], [n−1 0 1 0] 8

2 [n 0 0 0] 1

true for any compactification of M theory to four dimensions. Of course, 
for all we presently know, this is not a conformal theory, and 
therefore the significance of these cancellations remains to be un-
derstood, see also remarks below.

From the Table 1 we see that the contribution from the spin-0 
fields to the Gauss–Bonnet invariant E4 depends on the field rep-
resentation, unlike c0. From the results of [38] it follows directly 
that one can arrange for the sum 

∑
as to vanish for all N � 5

supergravities with appropriate choice of field representation for 
the spin-0 degrees of freedom, but for no other theories. To be 
sure, the contributions to as fail to cancel if one chooses to repre-
sent all spin-0 degrees of freedom by scalar fields, and they also 
do not cancel for the massive Kaluza–Klein supermultiplets. Never-
theless, as shown in [41], even in that case the total contribution 
to as does cancel provided one adds up the contribution from all
Kaluza–Klein supermultiplets. The argument involves a ζ -function 
regularisation and is basically due to the fact that one compactifies 
on an odd-dimensional manifold. Again, this result is background 
independent and thus remains valid for any compactification of M 
theory to four dimensions.

5. A hidden conformal structure?

A puzzling aspect of the present work is that the most in-
teresting cancellations occur precisely for those combinations of 
fields for which no (super-)conformal actions are known. While 
there is no issue with conformal covariance for the s = 0, 12 , 1
couplings in lowest order, this is not the case for the s = 3

2 and 
s = 2 couplings. The fact that the coefficients cancel nevertheless 
for the non-conformal N ≥ 5 supergravities (albeit with a fixed 
choice of gauge) is, to us, indicative of a hidden underlying con-
formal structure that is spontaneously broken, and that cannot 
be of any known type because conformal supergravities stop at 
N = 4 [43,30]. Likewise, the cancellations for the massive modes 
can possibly be understood in terms of spontaneously broken con-
formal symmetry. Hints of such a hidden conformal structure have 
appeared in various different places [44–47], but perhaps most sig-
nificant here is the fact that the massless N = 8 states constitute 
a (short) multiplet of the super-conformal group SU (2, 2 | 8) [44]. 
Let us also mention recent work [48] which, arguing from a very 
different perspective, reaches the same conclusion that conformal 
anomalies must cancel for a theory to be viable.

Finally, the complete cancellation of conformal anomalies takes 
place for the very same multiplets for which the composite R sym-
metry anomaly cancels [49]. As argued in [50,51] it is precisely 
the presence or absence of this anomaly that is responsible for the 
finiteness properties of the N � 5 supergravities, and that explains 
the appearance of non-renormalizable divergences in N = 4 super-
gravity at four loops. This remarkable coincidence leads us to con-
jecture that the conformal anomaly may play a similar role for the 
finiteness properties of extended supergravities, and is suggestive 
of a possible link between these cancellations via supersymmetry.
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Appendix A

In this appendix we briefly explain how to extract the numbers 
quoted in Table 1 for the massless fields from the results derived 
in [31]. We restrict attention to spins 3

2 and 2 since the results for 
lowers spins were established already long ago. The results for as
and (as + cs) are obtained by specializing the relevant formulas of 
[31] to, respectively, conformally flat and Ricci flat backgrounds. All 
equation numbers below refer to [31]. Note that we use the oppo-
site sign for a and a uniform normalization (which differs from the 
one in [31] by factors of 180).

• The results for bosonic as were given in (3.39)

ab
s = −1

2
(2 − 15s2 + 75s4) (15)

whence a2 = −571 (the value a0 = −1 corresponds to a com-
plex scalar).

• To derive the results for fermionic a f
s we start from (4.29)

a f (s,m) = 5
(

s + 1
2

)(
s + 3

2

)[(
s + 1

2

)(
s + 3

2

)

− 3m2 + 12m − 121

10

]
(16)

Then from (4.10) we get

a 3
2

= −1

4
a f

(
1
2 ,−1

)
+ 1

4

[
a f

(
3
2 ,3

)
− a f

(
1
2 ,−1

)]
= 589

4
(17)

• For the bosonic as + cs (Ricci flat background) we have (3.11)

β1(s) = −1

2
(s + 1)2

[
21 − 20(s + 1)2 + 3(s + 1)4

]
(18)

Then from (3.3)

a2 + c2 = −1

2

[
β1(2) + β1(0)

] + β1(1) = 212 (19)

Using (15) above we infer

cs = 3 − 45s2 + 60s4 (20)

whence c1 = 18 and c2 = 783 (c0 = 3 again corresponds to a 
complex scalar).

• For the fermionic as + cs we start from the expression in (4.6):

β1(s) = 2

8

(
s + 1

2

)(
s + 3

2

)[
50 − 28

(
s + 1

2

)(
s + 3

2

)

+ 3 · 4
(

s + 1
2

)2 (
s + 3

2

)2
]

(21)
Then from (4.3) we get

c 3
2

+ a 3
2

= 1

2
β1

(
1
2

)
− 1

4
β1

(
3
2

)
= −233

4
(22)

which gives c 3
2

= − 411
2 .
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