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Abstract

Real-time simultaneous tracking of hands manipulating and interacting with
external objects has many potential applications in augmented reality, tangi-
ble computing, and wearable computing. However, due to difficult occlusions,
fast motions, and uniform hand appearance, jointly tracking hand and object
pose is more challenging than tracking either of the two separately. Many
previous approaches resort to complex multi-camera setups to remedy the oc-
clusion problem and often employ expensive segmentation and optimization
steps which makes real-time tracking impossible. In this paper, we propose
a real-time solution that uses a single commodity RGB-D camera. The core
of our approach is a 3D articulated Gaussian mixture alignment strategy tai-
lored to hand-object tracking that allows fast pose optimization. The align-
ment energy uses novel regularizers to address occlusions and hand-object
contacts. For added robustness, we guide the optimization with discrimi-
native part classification of the hand and segmentation of the object. We
conducted extensive experiments on several existing datasets and introduce
a new annotated hand-object dataset. Quantitative and qualitative results
show the key advantages of our method: speed, accuracy, and robustness.
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1 Introduction

The human hand exhibits incredible capacity for manipulating external ob-
jects via gripping, grasping, touching, pointing, caging, and throwing. We
can use our hands with apparent ease, even for subtle and complex mo-
tions, and with remarkable speed and accuracy. However, this dexterity also
makes it hard to track a hand in close interaction with objects. While a
lot of research has explored real-time tracking of hands or objects in isola-
tion, real-time hand-object tracking remains unsolved. It is inherently more
challenging due to the higher dimensionality of the problem, additional oc-
clusions, and difficulty in disambiguating hand from object. A fast, accurate,
and robust solution based on a minimal camera setup is a precondition for
many new and important applications in vision-based input to computers,
including virtual and augmented reality, teleoperation, tangible computing,
and wearable computing. In this paper, we present a real-time method to
simultaneously track a hand and the manipulated object. We support
tracking objects of different shapes, sizes, and colors. Previous work has
employed setups with multiple cameras [5, 17] to limit the influence of oc-
clusions which restricts use to highly controlled setups. Many methods that
exploit dense depth and color measurements from commodity RGB-D cam-
eras [9, 14, 15] have been proposed. However, these methods use expensive

Figure 1.1. Proposed real-time hand-object tracking approach: we use a single
commodity depth camera (left) to classify (top) and track the articulation of a
hand and the rigid body motion of a manipulated object (bottom)
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Figure 1.2. We perform classification of the input into object and hand parts.
The hand and object are tracked using 3D articulated Gaussian mixture alignment

segmentation and optimization steps that make interactive performance hard
to attain. At the other end of the spectrum, discriminative one-shot methods
(for tracking only hands) often suffer from temporal instability [12, 33, 43].
Such approaches have also been applied to estimate hand pose under object
occlusion [24], but the object is not tracked simultaneously. In contrast, the
approach proposed here is the first to track hand and object motion simulta-
neously at real-time rates using only a single commodity RGB-D camera (see
Fig. 1.1). Building on recent work in single hand tracking and 3D pointset
registration, we propose a 3D articulated Gaussian mixture alignment strat-
egy tailored to hand-object tracking. Gaussian mixture alignment aligns two
Gaussian mixtures and has been successfully used in 3D pointset registra-
tion [11]. It can be interpreted as a generalization of ICP and does not
require explicit, error-prone, and computationally expensive correspondence
search [7]. Previous methods have used articulated 2.5D Gaussian mixture
alignment formulations [27] that are discontinuous. This leads to tracking in-
stabilities because 3D spatial proximity is not considered. We also introduce
additional novel regularizers that consider occlusions and enforce contact
points between fingers and objects analytically. Our combined energy has
a closed form gradient and allows for fast and accurate tracking. For an
overview of our approach see Figure 1.2. To further increase robustness and
allow for recovery of the generative tracker, we guide the optimization using
a multi-layer random forest hand part classifier. We use a variational opti-
mization strategy that optimizes two different hand-object tracking energies
simultaneously (multiple proposals) and then selects the better solution. The
main contributions are:

• A 3D articulated Gaussian mixture alignment approach for jointly
tracking hand and object accurately.

• Novel contact point and occlusion objective terms that were motivated
by the physics of grasps, and can handle difficult hand-object interac-
tions.

• A multi-layered classification architecture to segment hand and object,
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and classify hand parts in RGB-D sequences.

• An extensive evaluation on public datasets as well as a new, fully an-
notated dataset consisting of diverse hand-object interactions.
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2 Related Work

Single Hand Tracking Single hand tracking has received a lot of atten-
tion in recent years with discriminative and generative methods being the two
main classes of methods. Discriminative methods for monocular RGB track-
ing index into a large database of poses or learn a mapping from image to pose
space [3, 42]. However, accuracy and temporal stability of these methods are
limited. Monocular generative methods optimize pose of more sophisticated
3D or 2.5D hand models by optimizing an alignment energy [10, 6, 8]. Oc-
clusions and appearance ambiguities are less problematic with multi-camera
setups [5]. [41] use a physics-based approach to optimize the pose of a hand
using silhouette and color constraints at slow non-interactive frame rates.
[28] use multiple RGB cameras and a single depth camera to track single
hand poses in near real-time by combining generative tracking and finger tip
detection. More lightweight setups with a single depth camera are preferred
for many interactive applications. Among single camera methods, examples
of discriminative methods are based on decision forests for hand part label-
ing [12], on a latent regression forest in combination with a coarse-to-fine
search [33], fast hierarchical pose regression [31], or Hough voting [43]. Real-
time performance is feasible, but temporal instability remains an issue. [19]
generatively track a hand by optimizing a depth and appearance-based align-
ment metric with particle swarm optimization (PSO). A real-time generative
tracking method with a physics-based solver was proposed in [16]. The sta-
bilizaton of real-time articulated ICP based on a learned subspace prior on
hand poses was used in [32]. Template-based non-rigid deformation tracking
of arbitrary objects in real-time from RGB-D was shown in [45], very simple
unoccluded hand poses can be tracked. Combining generative and discrimi-
native tracking enables recovery from some tracking failures [25, 39, 28]. [27]
showed real-time single hand tracking from depth using generative pose opti-
mization under detection constraints. Similarly, reinitialization of generative
estimates via finger tip detection [23], multi-layer discriminative reinitializa-
tion [25], or joints detected with convolutional networks is feasible [36]. [34]
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employ hierarchical sampling from partial pose distributions and a final hy-
pothesis selection based on a generative energy. None of the above methods is
able to track interacting hands and objects simultaneously and in non-trivial
poses in real-time.

Tracking Hands in Interaction Tracking two interacting hands, or a
hand and a manipulated object, is a much harder problem. The straight-
forward combination of methods for object tracking, e.g. [4, 35], and hand
tracking does not lead to satisfactory solutions, as only a combined formula-
tion can methodically exploit mutual constraints between object and hand.
[40] track two well-separated hands from stereo by efficient pose retrieval
and IK refinement. In [18] two hands in interaction are tracked at 4 Hz with
an RGB-D camera by optimizing a generative depth and image alignment
measure. Tracking of interacting hands from multi-view video at slow non-
interactive runtimes was shown in [5]. They use generative pose optimization
supported by salient point detection. The method in [32] can track very sim-
ple two hand interactions with little occlusion. Commercial solutions, e.g.
Leap Motion [1] and NimbleVR[2], fail if two hands interact closely or inter-
act with an object. In [17], a marker-less method based on a generative pose
optimization of a combined hand-object model is proposed. They explicitly
model collisions, but need multiple RGB cameras. In [9] the most likely
pose is found through belief propagation using part-based trackers. This
method is robust under occlusions, but does not explicitly track the object.
A temporally coherent nearest neighbor search tracks the hand manipulat-
ing an object in [24], but not the object, in real time. Results are prone to
temporal jitter. [14] perform frame-to-frame tracking of hand and objects
from RGB-D using physics-based optimization. This approach has a slow
non-interactive runtime. An ensemble of Collaborative Trackers (ECT) for
RGB-D based multi-object and multiple hand tracking is used in [15]. Their
accuracy is high, but runtime is far from real-time. [21] infer contact forces
from a tracked hand interacting with an object at slow non-interactive run-
times. [20] and [38] propose methods for in-hand RGB-D object scanning.
Both methods use known generative methods to track finger contact points
to support ICP-like shape scanning. Recently, [37] introduced a method for
tracking hand-only, hand-hand, and hand-object (we include a comparison
with this method). None of the above methods can track the hand and
the manipulated object in real-time in non-trivial poses from a single depth
camera view, which is what our approach achieves.
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Model-based Tracking Approaches A common representation for model
tracking are meshes [5, 32]. Other approaches use primitives [15, 23], quadrics [29],
2.5D Gaussians [27], or Gaussian mixtures [11]. Gaussian mixture alignment
has been successfully used in rigid pointset registration [11]. In contrast, we
propose a 3D articulated Gaussian mixture alignment strategy. [44] relate
template and data via a probabilistic formulation and use EM to compute
the best fit. Different from our approach, they only model the template as a
Gaussian mixture.
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3 Discriminative Hand Part
Classification

As a preprocessing step, we classify depth pixels as hand or object, and
further into hand parts. The obtained labeling is later used to guide the
generative pose optimization. Our part classification strategy is based on
a two-layer random forest that takes occlusions into account. Classification
is based on a three step pipeline (see Fig. 3.1). Input is the color Ct and
depth Dt frames captured by the RGB-D sensor. We first perform hand-
object segmentation based on color cues to remove the object from the depth
map. Afterwards, we select a suitable two-layer random forest to obtain the
classification. The final output per pixel is a part probability histogram
that encodes the class likelihoods. Note, object pixel histograms are set to
an object class probability of 1. The forests are trained based on a set of
training images that consists of real hand motions re-targeted to a virtual
hand model to generate synthetic data from multiple viewpoints. A virtual
object is automatically inserted in the scene to simulate occlusions. To this
end, we randomly sample uniform object positions between the thumb and
one other finger and prune implausible poses based on intersection tests.

Viewpoint Selection We trained two-layer forests for hand part classi-
fication from different viewpoints. Four cases are distinguished: observing
the hand from the front, back, thumb and little finger sides. We select the
forest that best matches the hand orientation computed in the last frame.
The selected two-layer forest is then used for hand part classification.

Color-Based Object Segmentation As a first step, we segment out the
object from the captured depth map Dt. Similar to many previous hand-
object tracking approaches [19], we use the color image Ct in combination
with an HSV color segmentation strategy. As we show in the results, we are
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thumb

depth

color

a) Viewpoint selection b) Color-based object c) Two-layer hand part classification d) Final hand part
segmentation classification

Figure 3.1. Three stage hand part classification: Stage 1: Viewpoint selection,
stage 2: color-based object segmentation, and stage 3: two-layer hand part classi-
fication

able to support objects with different colors. Object pixels are removed to
obtain a new depth map D̂t, which we then feed to the next processing stage.

Two-Layer Hand Part Classification We use a two-layer random forest
for hand part classification. The first layer classifies hand and arm pixels
while the second layer uses the hand pixels and further classifies them into
one of several distinct hand parts. Both layers are per-pixel classification
forests [26]. The hand-arm classification forest is trained on N = 100k images
with diverse hand-object poses. For each of the four viewpoints a random
forest is trained on N = 38k images. The random forests are based on
three trees, each trained on a random distinct subset. In each image, 2000
example foreground pixels are chosen. Split decisions at nodes are based
on 100 random feature offsets and 40 thresholds. Candidate features are a
uniform mix of unary and binary depth difference features [26]. Nodes are
split as long as the information gain is sufficient and the maximum tree depth
of 19 (21 for hand-arm forest) has not been reached. On the first layer, we
use 3 part labels: 1 for hand, 1 for arm and 1 to represent the background.
On the second layer, classification is based on 7 part labels: 6 for the hand
parts, and 1 for the background. We use one label for each finger and one
for the palm, see Fig. 3.1c. We use a cross-validation procedure to find the
best hyperparameters. On the disjoint test set, the hand-arm forest has a
classification accuracy of 65.2%. The forests for the four camera views had
accuracies of 59.8% (front), 64.7% (back), 60.9% (little), and 53.5% (thumb).
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4 Gaussian Mixture Model
Representation

Joint hand-object tracking requires a representation that allows for accurate
tracking, is robust to outliers, and enables fast pose optimization. Gaus-
sian mixture alignment, initially proposed for rigid pointset alignment (e.g.
[11]), satisfies all these requirements. It features the advantages of ICP-like
methods, without requiring a costly, error-prone correspondence search. We
extend this approach to 3D articulated Gaussian mixture alignment tailored
to hand-object tracking. Compared to our 3D formulation, 2.5D [27] ap-
proaches are discontinuous. This causes instabilities, since the spatial prox-
imity between model and data is not fully considered. We quantitatively
show this for hand-only tracking (Section 8).
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5 Unified Density
Representation

We parameterize the articulated motion of the human hand using a kinematic
skeleton with |Xh| = 26 degrees of freedom (DOF). Non-rigid hand motion
is expressed based on 20 joint angles in twist representation. The remaining
6 DOFs specify the global rigid transform of the hand with respect to the
root joint. The manipulated object is assumed to be rigid and its motion is
parameterized using |Xo| = 6 DOFs. In the following, we deal with the hand
and object in a unified way. To this end, we refer to the vector of all unknowns
as X . For pose optimization, both the input depth as well as the scene (hand
and object) are expressed as 3D Gaussian Mixture Models (GMMs). This
allows for fast and analytical pose optimization. We first define the following
generic probability density distribution M(x) =

∑K
i=1wiGi(x|µi, σi) at each

point x ∈ R3 in space. This mixture contains K unnormalized, isotropic
Gaussian functions Gi with mean µi ∈ R3 and variance σ2

i ∈ R. In the case
of the model distribution, the positions of the Gaussians are parameterized
by the unknowns X . For the hand, this means each Gaussian is being rigidly
rigged to one bone of the hand. The probability density is defined and non-
vanishing over the whole domain R3.

Hand and Object Model The three-dimensional shape of the hand and
object is represented in a similar fashion as probability density distributions
Mh andMo, respectively. We manually attach Nh = 30 Gaussian functions
to the kinematic chain of the hand to model its volumetric extent. Stan-
dard deviations are set such that they roughly correspond to the distance
to the actual surface. The object is represented by automatically fitting a
predefined number No of Gaussians to its spatial extent, such that the one
standard deviation spheres model the objects volumetric extent. No is a
user defined parameter which can be used to control the trade-off between
tracking accuracy and runtime performance. We found that No ∈ [12, 64]
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provides a good trade-off between speed and accuracy for the objects used in
our experiments. We refer to the combined hand-object distribution asMs,
with Ns = Nh + No Gaussians. Each Gaussian is assigned to a class label li
based on its semantic location in the scene. Note, the input GMM is only a
model of the visible surface of the hand/object. Therefore, we incorporate a
visibility factor fi ∈ [0, 1] (0 completely occluded, 1 completely visible) per
Gaussian. This factor is approximated by rendering an occlusion map with
each Gaussian as a circle (radius equal to its standard deviation). The GMM
is restricted to the visible surface by setting wi = fi in the mixture. These
operations are performed based on the solution of the previous frame Xold.

Input Depth Data We first perform bottom-up hierarchical quadtree
clustering of adjacent pixels with similar depth to convert the input to the
density based representation. We cluster at most (2(4−1))2 = 64 pixels, which
corresponds to a maximum tree depth of 4. Clustering is performed as
long as the depth variance in the corresponding subdomain is smaller than
εcluster = 30 mm. Each leaf node is represented as a Gaussian function Gi
with µi corresponding to the 3D center of gravity of the quad and σ2

i = (a
2
)2,

where a is the backprojected side length of the quad. Note, the mean µi ∈ R3

is obtained by backprojecting the 2D center of gravity of the quad based on
the computed average depth and displacing by a in camera viewing direction
to obtain a representation that matches the model of the scene. In addition,
each Gi stores the probability pi and index li of the best associated semantic
label. We obtain the best label and its probability by summing over all cor-
responding per-pixel histograms obtained in the classification stage. Based
on this data, we define the input depth distribution Mdh(x) for the hand
and Mdo(x) for the object. The combined input distribution Md(x) has
Nd = Ndo + Ndh Gaussians. We set uniform weights wi = 1 based on the
assumption of equal contribution. Nd is much smaller than the number of
pixels leading to real-time hand-object tracking.
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6 Multiple Proposal
Optimization

We optimize for the best pose X ∗ using two proposals X ∗i , i ∈ {0, 1} that
are computed by minimizing two distinct hand-object tracking energies:

X ∗0 = argmin
X

Ealign(X ), X ∗1 = argmin
X

Elabel(X ) . (6.1)

Ealign leverages the depth observations and the second energy Elabel incorpo-
rates the discriminative hand part classification results. In contrast to the
optimization of the sum of the two objectives, this avoids failure due to bad
classification and ensures fast recovery. For optimization, we use analytical
gradient descent (10 iterations per proposal, adaptive step length) [30]. We
initialize based on the solution of the previous frame Xold. Finally, X ∗ is se-
lected as given below, where we slightly favor (λ = 1.003) the label proposal
to facilitate fast pose recovery:

X ∗ =

{
X ∗1 if

(
Eval(X ∗1 ) < λEval(X ∗0 )

)
X ∗0 otherwise

. (6.2)

The energy Eval(X ) = Ea(X ) + wpEp(X ) is designed to select the proposal
that best explains the input, while being anatomically correct. Therefore, it
considers spatial alignment to the input depth map Ea and models anatomical
joint angle limits Ep, see Section 7. In the following, we describe the used
energies in detail.
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7 Hand-Object Tracking
Objectives

Given the input depth distribution Md, we want to find the 3D model Ms

that best explains the observations by varying the corresponding parameters
X . We take inspiration from methods with slow non-interactive runtimes that
used related 3D implicit shape models for full-body pose tracking [22, 13],
but propose a new efficient tracking objective tailored for real-time hand-
object tracking. In contrast to previous methods, our objective operates in
3D (generalization of ICP), features an improved way of incorporating the
discriminative classification results, and incorporates two novel regularization
terms. Together, this provides for a better, yet compact, representation that
allows for fast analytic pose optimization on the CPU. To this end, we define
the following two objective functions. The first energy Ealign measures the
alignment with the input:

Ealign(X ) = Ea + wpEp + wtEt + wcEc + woEo . (7.1)

The second energy Elabel incorporates the classification results:

Elabel(X ) = Ea + wsEs + wpEp . (7.2)

The energy terms consider spatial alignment Ea, semantic alignment Es,
anatomical plausibility Ep, temporal smoothness Et, contact points Ec, and
object-hand occlusions Eo, respectively. The priors in the energies are cho-
sen such that they do not hinder the respective alignment objectives. All
parameters wp = 0.1, wt = 0.1, ws = 3 ·10−7, wc = 5 ·10−7 and wo = 1.0 have
been empirically determined and stay fixed for all experiments. We optimize
both energies simultaneously using a multiple proposal based optimization
strategy and employ a winner-takes-all strategy (see Section 6). We found
empirically that using two energy functions resulted in better pose estima-
tion and recovery from failures than using a single energy with all terms. In
the following, we give more details on the individual components.
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Spatial Alignment We measure the alignment of the input density func-
tion Md and our scene model Ms based on the following alignment energy:

Ea(X )=

∫
Ω

[(
Mdh(x)−Mh(x)

)2
+
(
Mdo(x)−Mo(x)

)2
]
dx . (7.3)

It measures the alignment between the two input and two model density
distributions at every point in space x ∈ Ω. Note, this 3D formulation leads
to higher accuracy results (see Section 8) than a 2.5D [27] formulation.

Semantic Alignment In addition to the alignment of the distributions, we
also incorporate semantic information in the label energy Elabel. In contrast
to [27], we incorporate uncertainty based on the best class probability. We
use the following least-squares objective to enforce semantic alignment:

Es(X ) =
Ns∑
i=1

Nd∑
j=1

αi,j · ||µi − µj||22 . (7.4)

Here, µi and µj are the mean of the ith model and the jth image Gaussian,
respectively. The weights αi,j switch attraction forces between similar parts
on and between different parts off:

αi,j =

{
0 if (li 6= lj) or (di,j > rmax)

(1− di,j
rmax

) · pi else
. (7.5)

Here, di,j = ||µi − µj||2 is the distance between the means. li is the part
label of the most likely class, pi its probability and rmax a cutoff value. We
set rmax to 30cm. li can be one of 8 labels: 6 for the hand parts, 1 for object
and 1 for background. We consider all model Gaussians, independent of
their occlusion weight, to facilitate fast pose recovery of previously occluded
regions.

Anatomical Plausibility The articulated motion of the hand is subject
to anatomical constraints. We account for this by enforcing soft-constraints
on the joint angles Xh of the hand:

Ep(X ) =
∑
xi∈Xh


0 if xli ≤ xi ≤ xui
‖xi − xli‖

2 if xi < xli
‖xui − xi‖

2 if xi > xui

. (7.6)

Here, Xh are the DOFs corresponding to the hand, and xli and xui are the
lower and upper joint limit that corresponds to the ith DOF of the kinematic
chain.

15



Temporal Smoothness We further improve the smoothness of our track-
ing results by incorporating a temporal prior into the energy. To this end,
we include a soft constraint on parameter change to enforce constant speed:

Et(X ) = ‖∇X −∇X (t−1)‖2
2 . (7.7)

Here, ∇X (t−1) is the gradient of parameter change at the previous time step.

Contact Points We propose a novel contact point objective, specific to
the hand-object tracking scenario:

Ec(X ) =
∑

(k,l,td)∈T

(
||µk − µl||2 − t2d

)2

. (7.8)

Here, (k, l, td) ∈ T is a detected touch constraint. It encodes that the finger-
tip Gaussian with index k should have a distance of td to the object Gaussian
with index l. We detect the set of all touch constraints T based on the last
pose Xold. A new touch constraint is added if a fingertip Gaussian is closer
to an object Gaussian than the sum of their standard deviations. We then
set td to this sum. This couples hand pose and object tracking leading to
more stable results. A contact point is active until the distance between the
two Gaussians exceeds the release threshold δR. Usually δR > td to avoid
flickering.

Occlusion Handling No measurements are available in occluded hand re-
gions. We stabilize the hand movement in such regions using a novel occlusion
prior:

Eo(X ) =

Nh∑
i=0

∑
j∈Hi

(1− f̂i) · ||xj − xoldj ||22 . (7.9)

Here, Hi is the set of all DOFs that are influenced by the i-th Gaussian.
The global rotation and translation is not included. The occlusion weights
f̂i ∈ [0, 1] are computed similar to fi (0 occluded, 1 visible). This prior is
based on the assumption that occuded regions move consistently with the
rest of the hand.
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8 Experiments and Results

We evaluate and compare our method on more than 15 sequences spanning
3 public datasets, which have been recorded with 3 different RBG-D cameras.
Additional live sequences (see Fig. 8.5 and supplementary materials) show
that our method handles fast object and finger motion, difficult occlusions
and fares well even if two hands are present in the scene. Our method sup-
ports commodity RGB-D sensors like the Creative Senz3D, Intel RealSense
F200, and Primesense Carmine. We rescale depth and color to resolutions of
320×240 and 640×480 respectively, and capture at 30 Hz. Furthermore, we
introduce a new hand-object tracking benchmark dataset with ground truth
fingertip and object annotations.

Comparison to the State-of-the-Art We quantitatively and qualita-
tively evaluate on two publicly available hand-object datasets [37, 38] (see
Fig. 8.5 and also supplementary material). Only one dataset (IJCV [37])
contains ground truth joint annotations. We test on 5 rigid object sequences
from IJCV. We track the right hand only, but our method works even when
multiple hands are present. Ground truth annotations are provided for 2D
joint positions, but not object pose. Our method achieves a fingertip pixel
error of 8.6px, which is comparable (difference of only 2px) to that reported
for the slower method of [37]. This small difference is well within the uncer-
tainty of manual annotation and sensor noise. Note, our approach runs over
60 times faster, while producing visual results that are on par (see Fig. 8.5).
We also track the dataset of [38] (see also Fig. 8.5). While they solve a dif-
ferent problem (offline in-hand scanning), it shows that our real-time method
copes well with different shaped objects (e.g. bowling pin, bottle, etc.) under
occlusion.

New Benchmark Dataset With the aforementioned datasets, evaluation
of object pose is impossible due to missing object annotations. We therefore
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(a) We achieve low errors on each of
the 6 sequences in our new benchmark
dataset

(b) Tracking consistency of the
best, worst and average case

Figure 8.1. Quantitative hand-object tracking evaluation on ground truth data.
The object contributes a higher error

introduce, to our knowledge, the first dataset1 that contains ground truth
for both fingertip positions and object pose. It contains 6 sequences of a
hand manipulating a cuboid (2 different sizes) in different hand-object con-
figurations and grasps. We manually annotated pixels on the depth image
to mark 5 fingertip positions, and 3 cuboid corners. In total, we provide
3014 frames with ground truth annotations. As is common in the litera-
ture [25, 33, 27, 23, 32], we use the average 3D Euclidean distance E between
estimated and ground truth positions as the error measure (see supplemen-
tary document for details). Occluded fingertips are excluded on a per-frame
basis from the error computation. If one of the annotated corners of the
cuboid is occluded, we exclude it from that frame. In Fig. 8.1a we plot the
average error over all frames of the 6 sequences. Our method has an average
error (for both hand and object) of 15.7 mm. Over all sequences, the aver-
age error is always lower than 20 mm with standard deviations under 12 mm.
Average error is an indicator of overall performance, but does not indicate
how consistent the tracker performs. Fig. 8.1b shows that our method tracks
almost all frames with less than 30 mm error. Rotate has the highest error,
while Pinch performs best with almost all frames below 20 mm. Table 8.1
shows the errors for hand and object separately. Both are in the same order
of magnitude.

Ablative Analysis Firstly, we show that the articulated 3D Gaussian mix-
ture alignment formulation is superior (even for tracking only hand) to the
2.5D formulation of [27]. On the Dexter dataset [28], [27] report an average
fingertip error of 19.6 mm. In contrast, our method (without any hand-
object specific terms) is consistently better with an average of 17.2 mm
(maximum improvement is 5 mm on 2 sequences). This is a result of the

1http://handtracker.mpi-inf.mpg.de/projects/RealtimeHO/
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Table 8.1. Average error (mm) for hand and object tracking in our dataset

Fingertips Object Combined (E)
Rigid 14.2 13.5 14.1
Rotate 16.3 26.8 18.0

Occlusion 17.5 11.9 16.4
Grasp1 18.1 15.3 17.6
Grasp2 17.5 15.7 17.2
Pinch 10.3 13.9 10.9

Overall (mm) 15.6 16.2 15.7

Figure 8.2. Top row: Input depth, an object occludes the hand. Middle row:
Result of our approach (different viewpoint). Our approach succesfully tracks the
hand under heavy occlusion. Bottom row: Result of [27] shows catastrophic failure
(object pixels were removed for fairness)

continuous articulated 3D Gaussian mixture alignment energy, a generaliza-
tion of ICP, which considers 3D spatial proximity between Gaussians.

Figure 8.3. Ablative analysis

Secondly, we show that the aver-
age error on our hand-object dataset is
worse without viewpoint selection, se-
mantic alignment, occlusion handling,
and contact points term. Fig. 8.3 shows
a consistency plot with different compo-
nents of the energy disabled. Using only
the data term often results in large er-

rors. The errors are even larger without viewpoint selection. The semantic
alignment, occlusion handling, and contact points help improve robustness
of tracking results and recovery from failures. Fig. 8.2 shows that [27]
clearly fails when fingers are occluded. Our hand-object specific terms are
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(a) Rotate sequence from our dataset (b) Grasp2 sequence from our dataset

(c) Real-time tracking results with various object shapes and different users

(d) Results on the IJCV dataset [37]. Notice how our method tracks the hand
even if multiple hands are in view. Tracked skeleton in green and object in light
blue

Figure 8.4. (a, b) show tracking results on our dataset. (c) shows real-time results
with different object shapes and colors. (d) shows results on a public dataset
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Figure 8.5. Subset of tracked frames on the dataset of [38]. Our method can
handle objects with varying sizes, colors, and different hand dimensions.
Here we show how even a complex shape like a bowling pin can be approximated
using only a few tens of Gaussians

more robust to these difficult occlusion cases while achieving real-time per-
formance.

Runtime Performance All experiments were performed on an Intel Xeon
E5-1620 CPU with 16 GB memory and an NVIDIA GTX 980 Ti. The stages
of our approach take on average: 4 ms for preprocessing, 4 ms for part classi-
fication, 2 ms for depth clustering, and 20-30 ms for pose optimization using
two proposals. We achieve real-time performance of 25-30 Hz. Multi-layer
random forests ran on the GPU while all other algorithm parts ran multi-
threaded on a CPU.

Figure 8.6. Occlusion error and recovery

Limitations Although we demon-
strated robustness against reason-
able occlusions, situations where
a high fraction of the hand is oc-
cluded for a long period are still
challenging. This is mostly due to
degraded classification performance under such occlusions. Misalignments
can appear if the underlying assumption of the occlusion heuristic is vio-
lated, i. e. occluded parts do not move rigidly. Fortunately, our discriminative
classification strategy enables the pose optimization to recover once previ-
ously occluded regions become visible again as shown in Fig. 8.6. Further
research has to focus on better priors for occluded regions, for example grasp
and interaction priors learned from data. Also improvements to hand part
classification using different learning approaches or the regression of dense
correspondences are interesting topics for future work. Another source of er-
ror are very fast motions. While the current implementation achieves 30 Hz,
higher frame rate sensors in combination with a faster pose optimization will
lead to higher robustness due to improved temporal coherence. We show
diverse object shapes being tracked. However, increasing object complexity
(shape and color) affects runtime performance. We would like to further
explore how multiple complex objects and hands can be tracked.
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9 Conclusion

We have presented the first real-time approach for simultaneous hand-object
tracking based on a single commodity depth sensor. Our approach combines
the strengths of discriminative classification and generative pose optimiza-
tion. Classification is based on a multi-layer forest architecture with view-
point selection. We use 3D articulated Gaussian mixture alignment tailored
for hand-object tracking along with novel analytic occlusion and contact han-
dling constraints that enable successful tracking of challenging hand-object
interactions based on multiple proposals. Our qualitative and quantitative
results demonstrate that our approach is both accurate and robust. Addi-
tionally, we have captured a new benchmark dataset (with hand and object
annotations) and make it publicly available. We believe that future research
will significantly benefit from this.
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Appendix A

In this document we take a deeper look at our articulated Gaussian mix-
ture alignment strategy and show more qualitative results of our live capture
setup that allows to track hand-object interactions at frame rate. In addi-
tion, we provide details on our benchmark dataset and the error metric used
in the ground truth evaluation. Finally, we give the gradients of all com-
ponents of our objective function. For further results, i.e. influence of the
different components and video footage of live tracking sessions, we refer to
the supplemental video.

A.1 Alignment Objective

In this section, we take a deeper look at the design of our alignment objective
Ea and explore its connection to point set registration methods that are
based on Gaussian mixtures [11]. Note, the alignment objective is just a
small component of our complete energy function that also includes novel
contact and occlusion handling constraints. Let us assume the model as well

Figure A.1. Live tracking results for three different subjects.
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as the input depth data are represented each as a Gaussian mixture:

M(x) =
∑
i∈M

wiG(x|µi, σi), I(x) =
∑
i∈I

wiG(x|µi, σi) .

Here, the set M contains the indices of all model Gaussians and the set I of
all image Gaussians, respectively. Each Gaussian is isotropic with standard
deviation σi ∈ R and mean µi ∈ R3. For simplicity let us assume all mixing
weights to be one (wi = 1). We then define an `2-dissimilarity measure
between the two Gaussian mixtures, also see [11] for more details:

Ea =

∫
Ω

[M(x)− I(x)]2 dx .

The expansion of Equation A.1 splits the objective in three distinct parts:

Ea =

∫
Ω

[M(x)− I(x)]2 dx

=

∫
Ω

[
M(x)2 − 2M(x)I(x) + I(x)2

]
dx

=

∫
Ω

M(x)2 dx︸ ︷︷ ︸
(a)

−2

∫
Ω

M(x)I(x)dx︸ ︷︷ ︸
(b)

+

∫
Ω

I(x)2dx︸ ︷︷ ︸
(c)

.

Note, (c) is constant in the presented tracking scenario, since we only
optimize for the positions of the model Gaussians. The terms (a) and (b) are
integrals over products of Gaussian Mixtures. Let us first consider (b):∫

Ω

M(x)I(x)dx =

∫
Ω

(∑
i∈M

G(x|µi, σi)
)(∑

j∈I

G(x|µj, σj)
)
dx

=

∫
Ω

[∑
i∈M

∑
j∈I

G(x|µi, σi)G(x|µj, σj)
]
dx

=
∑
i∈M

∑
j∈I

[ ∫
Ω

G(x|µi, σi)G(x|µj, σj)
]
dx︸ ︷︷ ︸

Si,j

.

Since Si,j is the integral over a product of Gaussians, it has a closed form
expression [30]:

Si,j =
(2π)

3
2 (σ2

i σ
2
j )

3
2

(σ2
i + σ2

j )
3
2

exp

(
−
||µi − µj||22
2(σ2

i + σ2
j )

)
.

Its gradient can be easily derived in closed form; the same holds for (a).
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Figure A.2. We are able to track complex shapes like a toy car. Our contact
points term (contacts are circled in blue) makes fingers hold the car even in the
presence of severe occlusion.

A.2 Live Tracking Results

Our real-time approach uses the color and depth data from a single Creative
Senz3D time-of-flight (TOF) sensor. Note, we also support other depth
sensors like the Intel RealSense, Kinect and Primesense Carmine. The used
color and depth resolutions are 640 × 480 and 320 × 240, both captured at
30 Hz. We show compelling live tracking results for three different subjects
in a close interaction range of 15 to 100 cm away from the camera, see
Fig. A.1. In addition, Fig. A.2 presents a tracking result of a complex object
(toy car). Tracking is robust even if hands closely interact with objects due
to the proposed contact and occlusion constraints. Our approach is robust
even if a second hand is visible. This enables interesting and new interaction
possibilities as shown in Fig. A.1. For additional live footage, we refer to the
supplemental video.

A.3 Error Measure

We provide a new benchmark with 3014 frames (6 sequences) with ground
truth annotations to evaluate hand-object tracking methods, see Fig A.3. For
each frame, we annotated 8 distinct landmarks (5 fingertip positions and 3
corners of the object). If a location is not visible, the corresponding landmark
is set to be invalid and is not considered in the error measure. For the object
(cuboid), the 3 landmarks span a coordinate system along the cuboid’s two
dominant axes. This uniquely defines the cuboid with respect to an axis of
symmetry. For evaluation, we employ the following error metric to compare
our tracking results with the ground truth annotations:

E =
1

|V|+ 1M

[∑
i∈V

||Xi −Gi||+
1M

3

∑
m∈M

||Xm −Gm||

]
,
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Figure A.3. The six sequences of our novel ground-truth hand-object benchmark.

where V denotes the set of all un-occluded fingertip positions in the ground
truth, M denotes matched cuboid corners, and X and G denote estimated
and ground truth positions, respectively. The indicator function 1M is 1
if |M| = 3 and 0 otherwise. Fingertip positions are compared with the
corresponding landmarks based on the distance in 3D Euclidean space. To
this end, the 2D annotations are back-projected based on depth and inverse
camera intrinsics. Matched cuboid corners refers to corners in the estimated
cuboid that are closest to the ground truth. If one of the cuboid corners
is occluded, then the set M is empty as the cuboid cannot be uniquely
positioned.

A.4 Gradients

Here, we give analytical expressions for the gradients of all energy terms.
The used mathematical notation is defined in the main document.

Spatial Alignment Term Ea:

∂Ea

∂xk
=
∑
i∈M

∑
j∈M

[
Si,j ·

(
−

µi − µj

σ2
i + σ2

j

)
·
(∂µi

∂xk
−
∂µj

∂xk

)]
− 2 ·

∑
i∈M

∑
j∈I

[
Si,j ·

(
−

µi − µj

σ2
i + σ2

j

)
· ∂µi

∂xk

]
.
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Semantic Alignment Term Es:

∂Es

∂ xk
= 2 ·

∑
i∈M

∑
j∈I

αi,j · (µi − µj) ·
∂µi

∂ xk
.

Anatomical Plausibility Regularizer Ep:

∂Ep

∂xk
=


0 if xlk ≤ xk ≤ xuk
2 · (xk − xuk) if xk > xuk
2 · (xk − xlk) if xk < xlk .

Temporal Smoothness Regularizer Et:

∂Et

∂xk
= 2 · (x(t)

k − 2x
(t−1)
k + x

(t−2)
k ) .

Contact Points Term Ec:

∂Ec

∂xk
=

∑
(j,l,td)∈T

4 · (||µj − µl||22 − t2d) · (µj − µl) ·
(∂µj

∂xk
− ∂µl

∂xk

)
.

Object Occlusion Term Eo:

∂Eo

∂xk
= 2 ·

∑
i∈Hi

(1− f̂i) · (xk − xoldk ) .
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H. Seidel

MPI Informatics building model as data for your
research

MPI-I-2009-4-003 M. Fuchs, T. Chen, O. Wang,
R. Raskar, H.P.A. Lensch, H. Seidel

A shaped temporal filter camera

MPI-I-2009-4-002 A. Tevs, M. Wand, I. Ihrke, H. Seidel A Bayesian approach to manifold topology
reconstruction

MPI-I-2009-4-001 M.B. Hullin, B. Ajdin, J. Hanika,
H. Seidel, J. Kautz, H.P.A. Lensch

Acquisition and analysis of bispectral bidirectional
reflectance distribution functions

MPI-I-2008-RG1-001 A. Fietzke, C. Weidenbach Labelled splitting

MPI-I-2008-5-004 F. Suchanek, M. Sozio, G. Weikum SOFIE: a self-organizing framework for information
extraction

MPI-I-2008-5-003 G. de Melo, F.M. Suchanek, A. Pease Integrating Yago into the suggested upper merged
ontology


