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In this work, we provide an overview of how well-established con-
cepts in the fields of quantum chemistry and material sciences have
to be adapted when the quantum nature of light becomes impor-
tant in correlated matter–photon problems. We analyze model
systems in optical cavities, where the matter–photon interaction
is considered from the weak- to the strong-coupling limit and
for individual photon modes as well as for the multimode case.
We identify fundamental changes in Born–Oppenheimer surfaces,
spectroscopic quantities, conical intersections, and efficiency for
quantum control. We conclude by applying our recently developed
quantum-electrodynamical density-functional theory to sponta-
neous emission and show how a straightforward approximation
accurately describes the correlated electron–photon dynamics. This
work paves the way to describe matter–photon interactions from
first principles and addresses the emergence of new states of mat-
ter in chemistry and material science.

QED chemistry | quantum electrodynamical density functional theory |
adiabatic polariton surfaces | local control | optimized effective potential

Novel experimental possibilities have allowed scientists to
obtain new insights into how photons interact with mat-

ter and how these interactions correlate photonic and particle
degrees of freedom. Such experiments show, for example, an
increase of the conductivity in organic semiconductors through
hybridization with the vacuum field (3), strong shifts of the vibra-
tional frequencies by the coupling of molecular resonators with
a microcavity mode (4), nonclassical single photon–phonon cor-
relations (5), the control of spin relaxations using an optical
cavity (6), the enhancement of Raman scattering from vibro-
polariton states (7, 8), changes of chemical reactivity (9, 10),
single-molecule strong coupling (11), sampling of vacuum fluc-
tuations (12), strong exciton–photon coupling of light-harvesting
complexes (13), strong long-range atom–atom interactions medi-
ated by photons (14), attractive photonic states (15, 16), or super-
radiance for atoms in photonic crystals (17). All these results
indicate the appearance of new states of matter and subsequently
a change in the chemical properties of the matter system (18–21),
if the quantum nature of light becomes important. For exam-
ple, in so-called strong-coupling situations, which are nowadays
of central interest in the fields of circuit quantum electrody-
namics (circuit QED) (22–24) or cavity QED (25, 26). Whereas
the analyses of such experiments are routinely performed with
the help of simplified (few-level) models that are able to cap-
ture the essential physics, for the (quantitative) prediction of
properties of complex multiparticle systems coupled to photons,
methods that can treat such coupled boson–fermion situations
from first principles seem worthwhile (1, 2, 27–31). On the other
hand, the strong coupling to photons can challenge our con-
ventional understanding of electronic structures and allows us
to study the influence of the quantum nature of light on chem-
ical processes.

In this work, we want to highlight the possibilities as well
as the theoretical challenges that arise at the interface of elec-
tronic structure theory and quantum optics. To this end, we dis-
cuss three distinct situations where the photon–matter corre-
lation becomes significant and modifies conventional concepts
of electronic-structure theory and quantum optics. In Cavity
QED—The Molecular Dimer Case we study systems that con-
tain nuclear, electronic, and photonic degrees of freedom explic-
itly. First, we consider a model dimer molecule that contains
two nuclei and two electrons confined to one dimension and is
placed in an optical high-Q cavity. We show how the photons
change the electronic Born–Oppenheimer (BO) surfaces in a
complex way. These changes affect, for example, the bond length
and the absorption spectrum of the molecule (32). Addition-
ally, we show how the ground state of the full system obtains an
electron–nuclear(vibronic)–photon quasiparticle character, the
vibro-polariton. The second model system we study in Cavity
QED—The Trimer Case is the 2D Shin–Metiu model (33, 34),
which consists of three nuclei and a single electron located in an
optical high-Q cavity in resonance to the lowest vibrational exci-
tation. The 2D Shin–Metiu model is a model system for an H 2+

3

molecule featuring a conical intersection in the BO surfaces, and
we show how this intersection can be altered in the case of strong
light–matter interactions. In Local Optimal Control we show how
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the control of electronic systems (35) is modified if we take into
account the coupling to a cavity mode. These extra degrees of
freedom allow us to achieve a predefined target more efficiently
with less external driving, when either the cavity frequency or
the electron–photon coupling is chosen. Additionally the exter-
nal driving of the photonic field by external dipoles allows us to
influence the electron transport to gain efficiency. In Quantum-
Electrodynamical Density-Functional Theory, we consider single-
photon emission and how photon-bound polariton states appear
in multimode cavities, if the matter–photon coupling is increased
to strong coupling. This limit leads, for example, to the break-
down of the Purcell effect (36). For such a strong-coupling situ-
ation we demonstrate the capabilities of the recently developed
density-functional theory for cavity-QED systems (1, 2, 28, 37).
We show the limitations of a semiclassical treatment and that the
first approximate exchange-correlation functional (37) for cavity-
QED systems along the line of the optimized-effective potential
(OEP) approach (38) allows us to accurately treat such situations.

Cavity QED—The Molecular Dimer Case
Let us start with a model that contains all of the major degrees
of freedom of a real system: nuclear, electronic, and photonic.
The model we consider is an artificial one-dimensional molecule
that consists of two nuclei and two electrons. In a traditional
quantum-chemical treatment the photonic degrees of freedom
would be neglected because one assumes the multiparticle sys-
tem to be in free space and the Coulomb interaction∗ is supposed
to describe the major contribution of the interaction due to the
photon field. However, if we put the molecule inside an optical
cavity, we change the photon modes† and find situations where
the photon degrees of freedom play a crucial role. To investigate
this situation, we consider as a first example a molecule inside
a cavity where one of the modes is tuned to the first vibrational
excitation of the dimer system. This mode is the photon degree of
freedom that we will keep in our calculations. We show how this
can affect standard concepts of electronic-structure theory, for
example, the BO surfaces. Schematically, this electron–nuclear–
photon system can be understood as follows.

In Fig. 1, Left the molecule in the cavity is shown. The molecule
is exposed to a single cavity mode, which is given by one of the
cavity frequencies ωα and the matter–photon coupling strength
λα. In Fig. 1, Right we depict a simplified picture of the hybridiza-
tion of the system. We show the BO surface depending on the
nuclear coordinate X in atomic units (Bohr) and indicate the
eigenstates of the molecular system in BO approximation. In
the ground state, the electrons are subject to the ground-state
BO surface, which is shown in dashed-black lines. The harmonic
approximation to this full surface is shown in solid red lines. The
individual harmonic excitations of the nuclear (phonon) subsys-
tem are indicated by the quantum number ν. Because the cavity
mode is tuned in resonance, we find Rabi splitting (41) of the
first vibrational excitation, which is proportional to the matter–
photon coupling constant λα. The first-excited electronic BO
surface is shown in gray dashed lines. This surface has no min-
ima, hence featuring the dissociation of the molecule. In the dis-
sociation limit (X > 5 a.u.), the ground state and the first-excited
BO surfaces merge.

For a detailed investigation in the following, we consider this
system in the dipole approximation and in the length gauge.
In this setup, the general correlated electron–nuclear–photon

∗The Coulomb interaction can be inferred from QED (1, 39), where the longitudinal part
of the photon field is solved explicitly in terms of the longitudinal charge current of the
particles. Thus, this assumption seems well justified whenever the transversal currents
of the particle system are negligible.

†We point out that this setup also changes the interaction due to the longitudinal cur-
rents and hence the Coulomb interaction is modified.

Fig. 1. (Left) Schematic illustration of the dimer in a cavity coupled to a
single-mode field polarized along the x axis. (Right) Exact ground-state BO
surface in black dashed lines, harmonic ground-state BO surface in solid red
lines, and exact first-excited–state BO surface in dashed-dotted gray lines. ν
indicates the phonon excitation, Re marks the BO equilibrium distance, and
λ denotes the Rabi splitting by the phonon–photon hybridization and the
matter–photon interaction strength. The photon wavevector kz, the mag-
netic field By , and the displacement field Dx build a triad (40).

Hamiltonian consisting of ne electrons, nn nuclei, and np photon
modes can be written as a sum of the electro-nuclear Hamilto-
nian Ĥen and the photon Hamiltonian Ĥp (2, 28, 37, 42),

Ĥ = Ĥen + Ĥp [1]

Ĥen = T̂e + T̂N + Ŵee + ŴNN + ŴeN [2]

Ĥp =
1

2

np∑
α=1

[
p̂2
α + ω2

α

(
q̂α +

λα
ωα
· eR

)2
]

[3]

R =

Nn∑
I=1

ZI XI −
Ne∑
i=1

xi , [4]

where ZI specifies the nuclear charges. The kinetic energy is
given by T̂ =−

∑
i=1 ~

2~∇2
xi /2mi , for electrons and nuclei with

mass mi , respectively. Further, instead of the bare Coulomb
interaction, we use a soft Coulomb interaction (43) for Ŵ
as routinely done for one-dimensional model systems; that

is, Ŵ =
∑

i,j>i ZiZj/4πε0

√
(xi − xj )2 + 1, with resulting neg-

ative (positive) prefactor for the electron–nuclear (electron–
electron/nuclear–nuclear) interaction. In the following, for the
specific dimer systems, the uppercase variables X1 and X2 denote
the nuclear coordinates, whereas the lowercase variables x3 and
x4 denote the electronic coordinates, and q̂α =

√
~

2ωα

(
â†α + âα

)
defines the photon displacement coordinate, using the photonic
creation and annihilation operators (28, 37). The photon dis-
placement operator is connected to the electric displacement
field operator D̂α =ωαλαq̂α, where λα is the transversal polar-
ization vector times the dipole-approximation coupling strength

λα. Using gα =
√

~ωα
2
λα, we can connect to typical strong-

coupling calculations as, for example, in ref. 32. We describe
only the two valence electrons explicitly. To this end, we choose
for the nuclear masses M1 =mp and M2 =mp , where mp is the
proton mass and with nuclear charges Z1 = 1.2, and Z2 = 0.8.
The electron masses correspond to the electron mass me ; that
is, m3 =m4 =me . In the photon Hamiltonian Ĥp , we consider
the electron–nuclear–photon coupling in dipole approximation,
where R is the full dipole operator that contains both the
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electronic and nuclear contributions. The complete many-body
problem including two electrons, two nuclei, and one photon
mode is a five-dimensional problem. To reduce the computational
complexity, we perform a coordinate transformation into a center-
of-mass frame such that the center-of-mass motion can be sep-
arated and we are left with a four-dimensional problem for the
internal degrees of freedom (44). For details on the transforma-
tion and the real-space grid used to perform the numerical calcula-
tion, we refer the reader to Supporting Information, Relative Jacobi
Coordinates for Four-Body Systems. For clarity, we use the original
Euclidean coordinates in all formulas throughout this paper with
the exception of the nuclear relative coordinate X = X1−X2. The
cavity frequency ωα is chosen to be in resonance to the first vib-
rionic transition ω12; hence ωα =ω12 = 0.01216 a.u. The dipole
moment of this transition has a value of d12 = 0.01869 a.u.

The Hamiltonian in Eq. 1 contains besides the (softened)
Coulomb interactions two new interaction terms: the explicit
dipolar matter–photon coupling

∑
α ωαq̂α (λα · eR) and the

quadratic dipole self-energy term
∑
α (λα · eR)2/2. The dipole

self-energy term is due to the length-gauge transformation (42)
that explicitly mixes the electronic and photonic degrees a second
time (the first time being the Coulomb gauge condition), such
that the electric field Êα in Eq. 3 becomes D̂α/ε0+λαλα ·eR/ε0.
It thus describes how the polarization of the matter system acts
back on the photon field. This term is usually neglected and only
rarely considered (42, 45–47). It is a clear relevant beyond two-
levels effect, because in that case the dipole self-energy term
reduces to a constant energy offset in the case of a two-level
approximation, such as the Jaynes–Cummings model (37, 41).
Additionally, recent experiments have arrived at the same con-
clusion, that is, the particular importance of such a dipole self-
energy term in the strong-coupling regime (48). Furthermore,
in an unconfined cavity-free 3D setup, it is usually neglected
in the intermolecular region, where it cancels the intermolec-
ular Coulomb interaction (40, 49, 50), or in the limit of dilute
atomic gases and infinite quantization volume (42). However, in
the intramolecular region in a cavity, which is the focus of the
present study, this term has to be taken into account as becomes
obvious from Fig. 2.

In Fig. 2A we show the exact eigenenergies of the cavity sys-
tem obtained by exact diagononalization (51) as a function of

A B

Fig. 2. (A) The eigenenergies for different values of the matter–photon
interaction strength λ. (B) The bond length 〈X〉. In both plots, black cir-
cles correspond to the ground-state |g〉, blue squares to the lower polariton
state |LP〉, red down-pointing triangles to the upper polariton state |UP〉,
green up-pointing triangles to the second lower polariton state |LP2〉, and
stars in cyan plots to the second upper polariton state |UP2〉. In B we denote
the bond-length values by shaded colored circles without considering the R2

term of Eq. 1.

Fig. 3. Calculated absorption spectra for the dimer in a cavity of Fig. 1 for
different values of the matter–photon coupling strength g/ω. The first two
peaks correspond to the lower polariton (LP) peak and the upper polariton
(UP) peak. In Inset, we quantify the Rabi splitting ΩR as a function of the
coupling constant. (See text for details.)

the matter–photon coupling strength λα.‡ The general harmonic
trend is given by the self-polarization interaction term. In black,
we plot the ground-state energy, in red/blue (cyan/green), we plot
the first (second) upper and lower polariton states. The matter–
photon coupling induces the Rabi splitting in the energy, as illus-
trated in Fig. 1. With increasing λα, we find an increasing Rabi
splitting. The bond-length 〈X〉 of the individual states is plotted
in Fig. 2B . For this plot the same color code as in Fig. 2A applies
and additionally, we plot the bond-length values in shaded colors
of the states, if we neglect the dipole self-energy term in Eq. 1.
We find that the full matter–photon coupling of Eq. 1 intro-
duces large changes in the bond length. Here the bond length is
reduced from 1.63 a.u. to 1.55 a.u. by around 5% for the ground
state. In contrast, if we neglect the dipole self-energy term in
Eq 1, we find an increasing bond length with increasing electron–
photon coupling and the system is stable (bound) only up to
gα/ωα = 0.9. This finding is a clear indication of the importance
of the usually neglected dipole self-energy term in the strong-
coupling limit and agrees with recent experimental findings (48).
Large changes in the chemical landscape of the system under
strong light–matter coupling have also been observed experimen-
tally, leading to, for example, the reduction of the chemical reac-
tivity (9, 10).

Next, we show how a spectroscopic quantity of our electron–
nuclear–photon model is influenced by strong matter–photon
coupling. To this end we determine the ground-state absorp-
tion spectrum using a sum-over-states expression (32) explained
in Supporting Information, Absorption Spectrum. In Fig. 3 we
show spectra for different values of the matter–photon coupling
strength λα. For increasing coupling, we find clear signatures
of a strong Rabi-splitting ΩR = (E3 − E2)/ωα, where E3 and
E2 are the eigenvalues of Eq. 1. In the spectra, we explicitly
denote the LP and the UP peak, which become clearly visible in
the strong-coupling limit. Additionally, higher lying excitations
also show Rabi splitting; for example, the second peak shows
a threefold splitting. In Fig. 3, Inset, we show that in the range
of the used parameters, the Rabi splitting goes up to 0.3. For
the matter–photon coupling strength, we choose values between

‡We emphasize that the light-matter coupling strength λα refers to an effective inter-
action strength. Whereas the fundamental light-matter coupling strength in free space
is fixed, in a cavity the effective coupling strength can be altered, by, for example,
using different molecules with different dipole coupling elements or in ensemble exper-
iments different density of molecules.

3028 | www.pnas.org/cgi/doi/10.1073/pnas.1615509114 Flick et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615509114/-/DCSupplemental/pnas.201615509SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615509114/-/DCSupplemental/pnas.201615509SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615509114/-/DCSupplemental/pnas.201615509SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/cgi/doi/10.1073/pnas.1615509114


IN
A

U
G

U
RA

L
A

RT
IC

LE
CH

EM
IS

TR
Y

Fig. 4. Upper row shows the ground state and first-excited 2D CBO surface
for g/ω= 0.0. Lower row shows the surfaces in the strong-coupling limit
for g/ω= 1.56. The dashed lines indicate the direction of the normal modes
featuring dissociation of the system. The x indicates the equilibrium bond
length.

0 ≤ gα ≤ 1.6ωα. Recent experiments, as in for example, refs.
4 and 48, report Rabi splittings from 0.1 to 0.25 and as seen in
Fig. 3, Inset a value of gα = 1.6ωα corresponds to a Rabi split-
ting of around 0.3.

Cavity BO Approximation
To highlight the effect that the photons can have on quantum-
chemical concepts, we compare the exact calculations done
with the above Hamiltonian to a BO calculation that takes
the photons into account. This cavity-BO (CBO) approxima-
tion is introduced in Supporting Information, General CBO
for Correlated Electron–Photon Systems and Supporting Infor-
mation, CBO for Four-Body Systems. In the CBO approxima-
tion, the electronic Hamiltonian Ĥe ({X} , {qα}) parametrically
depends on all nuclear coordinates {X} and photon displace-
ment coordinates {qα}. This parametrical dependency is inher-
ited to the multidimensional potential energy surfaces (PES)
Vj ({X} , {qα}) =Ej ({X} , {qα}) + Vnn ({X}) + 1/2

∑
α ω

2
αq

2
α,

where Ej are the eigenvalues of the electronic CBO Hamilto-
nian. Such a procedure reduces in the case of λα = 0 to the usual
BO approximation (52). For more details, we refer the reader
to Supporting Information, General CBO for Correlated Electron–
Photon Systems and Supporting Information, CBO for Four-Body
Systems. In Fig. 4 we explicitly show different CBO surfaces.
These surfaces are 2D surfaces and depend for the dimer sys-
tem on the nuclear coordinate X and the photon displacement
coordinate qα. In Fig. 4, Left the surfaces are the ground-state
surfaces, whereas in Fig. 4, Right we plot the first-excited–state
surfaces. In Fig. 4, Upper row, we plot the surfaces for vanishing
matter–photon coupling. Both surfaces show along the x axis the
behavior as in Fig. 1, whereas along the y axis we find a harmonic
potential that is associated with the photon coordinate. These
surfaces show that we can easily distinguish between the photon
and nuclear degrees of freedom. In Fig. 4, Lower row we show the
surfaces in the strong-coupling limit. Here, we find that new nor-
mal coordinates appear that are true polaritonic degrees of free-
dom. The normal coordinates have now photonic and nuclear
degrees of freedom.

In Fig. 5A we explicitly show different CBO surfaces in a cut
along the photon-coordinate qα = 0. In black, we plot the ground-
state surfaces and in red the first-excited–state surfaces. We find
that for increasingλα the polarization term introduces a harmonic
(parabolic) barrier, which alters the BO surfaces significantly.

The lowest surface in Fig. 5 corresponds to the cavity-free
limit. This surface has a flat tail for large X. We see that

tuning λα allows us to shape the BO surfaces harmonically,
which has in particular implications on the tail of the surface.
In general, changes in the BO surfaces alter the chemistry of
the system, with implications on various quantities, for exam-
ple, the bond length, tunneling barriers, or transition rates. For
instance, because the nuclear coordinate X in Fig. 5 is also a
measure for the nuclear bond length, we find that increasing
the value of λα shifts the bond length to smaller values. As in
the exact calculation, the opposite trend would be found if we
neglected the polarization contribution to the matter–photon
coupling. In Fig. 5 in red, we show the first-excited–state sur-
faces. Whereas these surfaces feature the dissociation of the
molecule in the cavity-free case, we find a local minimum of
the surfaces for strong matter–photon coupling λα. We empha-
size, however, that along the new normal-coordinate direction
indicated in Fig. 4 the system is dissociating, as in the field-
free case for qα = 0. Because in the strong-coupling limit
the photonic and nuclear degrees of freedom are highly cor-
related, the dissociation also corresponds to an excitation in
the photonic degree of freedom. Next we assess the quality of
the CBO approximation and plot the overlap of the cavity-BO–
approximated wave functions with the exact wave functions in
Fig. 5B. Whereas for small values of λα the CBO approximation
has the same quality as the cavity-free electronic BO approx-
imation, we observe lower overlaps for strong matter–photon
interaction. The overlap of the CBO UP state with the exact cor-
related state drops to 0.994% in the strong-coupling limit. Fol-
lowing the usual trend known from the standard BO approxima-
tion, the quality of higher-lying states, which here are the UP
and the LP states, is lower than the quality of the ground state.
However, the high accuracy in the overlaps demonstrates the
usefulness of the BO concept also for electron–nuclear–photon
problems.

Cavity QED—The Trimer Case
The second system that we analyze is a 2D generalization (34)
of the Shin–Metiu model (33). The Shin–Metiu model has been
analyzed heavily in the context of correlated electron-nuclear
dynamics (53), exact forces in nonadiabatic charge transfer (54),
and nonadiabatic effects in quantum reactive scattering (55), to
mention a few. The 2D generalization of the Shin–Metiu model
consists of three nuclei and a single electron. Two of three nuclei
are fixed in space. Therefore, this system serves as a model sys-
tem for an H 2+

3 molecule that has been confined to two spa-
tial dimensions. In our case, we furthermore place the system

A B

Fig. 5. (A) The ground-state and first-excited CBO surface for different
values of the matter–photon interaction strength λ. (B) The overlap of the
exact states with the CBO states. Black circles correspond to the ground-state
|g〉, blue circles to the LP state |LP〉, and red circles to the UP state |UP〉.
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Fig. 6. CBO potential energy surfaces for the 2D Shin–Metiu model at qα =

0. Increasing matter–photon coupling strength shifts the conical intersection,
depending on the photon field polarization to larger (smaller) y values for
polarization in the y (x) direction. The plots use parameters as in ref. 34.

into an optical cavity, where it is coupled to a single electromag-
netic mode. As a Hamiltonian for our system we consider the
electron-nuclear part as given in ref. 34 and couple to the photon
Hamiltonian Ĥp from Eq. 3. The dipole operator that enters the
photon Hamiltonian in Eq. 3 is given by R = Rn − re , where
Rn is the nuclear coordinate and re the electronic coordinate.
For more details, we refer the reader to Supporting Information,
Shin–Metiu Model in a Cavity.

Fig. 6 shows the CBO surfaces calculated with qα = 0. In all
calculations, we tune the matter–photon coupling strength λ
from the weak-coupling regime to the strong-coupling regime.
In Fig. 6, Left, we choose the value gα/ωα = 0 and in the case of
λ = 0, we find a conical intersection between the first-excited–
state surface and the second-excited–state surfaces as reported
in ref. 34. In Fig. 6, Center, we tune the matter–photon coupling
strength to the strong-coupling limit with gα/ωα = 2.25 and the
photon polarization in the x direction. The matter–photon cou-
pling alters the PES significantly for qα = 0 and shifts the posi-
tion of the conical intersection to smaller y values. The oppo-
site trend can be found if the photon field is polarized in the
y direction. As shown in Fig. 6, Right, for strong coupling with
gα/ωα = 2.25, the conical intersection is shifted to larger y val-
ues. These changes of the CBO surfaces have an immediate
effect on chemical properties of molecular systems, for exam-
ple, the nonadiabatic coupling matrix elements (56) that are rou-
tinely calculated in nonadiabatic dynamics. These changes in the
nonadiabatic coupling terms will affect dramatically the electron-
nuclear dynamics and can influence chemical reactions. To con-
clude the first three sections, we have seen how the photonic
degrees of freedom alter chemical properties of molecular model
systems. Besides showing the hybrid character of the ground state
and the Rabi splitting of the polaritonic states from first princi-
ples, we have identified changes in the BO surfaces that explain,
for example, photon-mediated changes in bond length or conical
intersections.

Local Optimal Control
Whereas in the first part of this article we have shown how the
coupling to photons can alter properties of multiparticle systems,
in the second part we investigate which consequences the inter-
action with photons has in the context of quantum control the-
ory. In quantum control theory we are usually interested in find-
ing an external, classical electromagnetical field, for example, a
specific laser pulse, that forces an electronic system to behave
in a previously specified way. Roughly speaking, such control
can be done either by driving the system into a predefined state
with side conditions such as a minimal external field, that is,

optimal control theory (35, 57, 58), or by prescribing how an
observable is supposed to change in time and space, that is, local
control theory (59–62). Both approaches can be combined to
give local-optimal control theory (62, 63). We use such a hybrid
method here. Because quantum control algorithms even for
purely electronic systems are numerically very expensive, we fur-
ther simplify and consider the simplest yet nontrivial model sys-
tem of an electron coupled to photons, the extended Rabi model
(1, 37, 41, 64),

Ĥ = −t0σ̂x + ωâ†â +

√
ω

2

(
â† + â

)
σ̂z

+ j (t)
(
â† + â

)
+ v(t)σ̂z , [5]

where σ̂x and σ̂z denote the corresponding Pauli matrices. The
Hamiltonian contains as internal parameters the kinetic energy
matrix element t0 that yields an amplitude for the electron to hop
between the sites, the photon mode frequency ω that determines
the energy of a single photon in the mode, and the electron–
photon coupling strength λ that fixes the strength of the inter-
action. Further, Eq. 5 contains two external variables, which
allow us to control the system: the external potential v(t) (cor-
responding to the usual external laser pulse), which couples to
the electron and introduces a potential shift between the sites,
and the external dipole j (t), which couples to the photon mode.
The external dipole allows us to pump the cavity mode. In our
calculations, we choose a resonant setup for the three inter-
nal parameters, t0 = 2.5, ω= 5, and we vary between λ= 0 (no
coupling) and from the weak- to the strong-coupling limit with
λ= (0.25, 0.5, 1.0).

In the following, we use the above model to control
charge-transfer processes, which are an important topic in the
electronic-structure community and have significant implications
for, for example, photovoltaics (65, 66). Similar models have
already been used in the same context (67). To see how the cou-
pling to photons changes the charge transfer is motivated also by
a recent experiment (3), where the coupling of an organic semi-
conductor to photon modes has increased the conductivity by an
order of magnitude. To model such a charge-transfer reaction,
we put most of the charge (why not all will become clear a little
later) on one site of our model system and we choose a final time
T = 12.57 a.u. at which the charge expectation values are inter-
changed. In terms of the site-basis functions, this setup amounts
to |ψ(0)〉 = |0.99, 0.01〉 → |ψ(T )〉 = |0.01, 0.99〉, where the full
initial electron–photon wave function is |Ψ0〉 = |ψ(0)〉 ⊗ |0〉;
that is, the photon mode is initially in the vacuum state. In terms
of the charge differences, this initial state means we go from
σz (0) = 0.98 to σz (T ) =−0.98. As a further condition we want
to have a minimal external forcing on the electron, which defines
the penalty function P by P =

∫ T

0
dt v(t)2. The setup is, how-

ever, different from usual optimal control, because we allow the
pair (v(t), j (t)) to vary to achieve our goal. Clearly, in the case of
no coupling (λ= 0) a change in j (t) will not have any influence
on the electronic wave function (because the problem decouples)
and so we choose j (t) = 0. In this case finding the minimum v(t)
can be based on an explicit expression of the local control the-
ory (68). The exact expression provides us with a control field
for every prescribed path σz (t) provided the denominator does

Table 1. Results of the local control optimization for the
extended Rabi model

g =
√
ω
2 λ 0 0.25 0.5 1.0

v(t) = j(t) = 0 : σz(T) 0.980 −0.979 0.975 0.969
v(t) 6= 0, j(t) = 0 : P 0.3015 0.0008 0.8145 3.2473
v(t) 6= 0, j(t) 6= 0 : P — 0.0008 0.8113 2.4084
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A B

Fig. 7. Results for local optimal control. (A) Density evolution σz(t) for
λ= 0 in black, λ= 0.25 in blue, λ= 0.5 in green, and λ= 1.0 in red and the
corresponding evolution of v(t) in B. Note that v(t) for λ= 0.25 has been
multiplied by the factor 20.

not go to zero. To avoid such a situation at the initial and the
final time we have chosen the initial and final states to be not
fully localized. In our approach we use a set of basis functions
σi(t) =C cos ((2i − 1)ωt) consistent with the initial and
final state to expand σz (t) =

∑N
i=1 ciσi(t) with

∑N
i=1 ci = 1,

over which the penalty function P is minimized, that is,
min {ci}

∫ T

0
dt v([σz ]; t)2. In all calculations we use N = 11. Note

that such an expansion is simple only in the case of physi-
cal observables such as the charge difference σz (t), whereas in
terms of time-dependent wave functions |Ψ(t)〉 this expansion is
extremely demanding. The possibility to restrict to a simple and
finite basis of charge paths σi(t) is one advantage of this local
optimal control approach. The other advantage is that the charge
transfer is guaranteed to be achieved at the final time. The min-
imization is then performed by the quasi-Newton method (69).
Extending the number of basis functions would lead to an even
further-optimized value of the penalty function P but does not
lead to qualitative differences in the discussion of the obtained
results.

In the case of λ 6= 0, we do not have a simple analytical
expression for v(t) and the electronic part of the wave func-
tion will depend also on the choice of external dipole j (t).
To find the corresponding v([σz , j ]; t) for a given density path

A B C

Fig. 8. Results for local optimal control. (A–C) Density evolution of σz(t)
(A) for λ = 0 in black, λ = 0.25 in blue, λ = 0.5 in green, and λ = 1.0 in
red and the corresponding evolution of v(t) (B) and j(t) (C). Note that v(t)
and j(t) for λ = 0.25 have been multiplied by the factor of 20.

Fig. 9. Time evolution of the spontaneous-photon emission process. Shown
is the expectation value of the absolute of the intensity-field operator
〈Ê2(t)〉 in the exact simulation (gray), the OEP approximation (red), and the
semiclassical approximation (green) at time T = 100 a.u., 600 a.u., 1,200 a.u.,
and 2,200 a.u. Inset shows the dipole moment 〈σz(t)〉. We emphasize that
the OEP yields a constant total energy for this setup and the approximate
OEP intensity observable is determined via a postprocessing step.

σz (t) =
∑N

i=1 ciσi(t) and dipole j (t) =
∑M

k=1 dk jk (t), where
we choose jk (t) = sin (kωt), we use a fixed-point method (1, 2,
27, 61).§ Now we can vary over a space of electronic ci and pho-
tonic dk coordinates, that is, min

{ci ,dk}

∫ T

0
dt v([σz , j ]; t)

2, where we

choose M = 11. We first briefly review the trivial cases, where no
external potentials, that is, v(t) = j (t) = 0, are applied to the sys-
tem. Table 1 shows the values for σz (T ) for all four cases of the
electron–photon coupling strength λ. Whereas σz (0) is given by
the initial state and thus equals 0.980 in all examples, they vary
strongly in their free final state σz (T ). Analyzing these values
already gives us the first hint, how to optimize electron–photon
problems to our favor. If there is no electron–photon coupling
(λ = 0), the final value for v(t) = 0 is σz (T ) = 0.98. In contrast,
if we choose the coupling strength of λ= 0.25, the free evolu-
tion without any external potential already yields a final state
very close to the desired value −0.98. Thus, we can conclude
from this observation that already tuning the electron–photon
coupling strength λ allows us to use the electron–photon cou-
pling. Additionally, we can suggest that a local control optimiza-
tion for λ= 0.25 coupling strength can be very efficient, because
the external potential has to improve the outcome only a little. In
contrast, for all other values of λ we see that the external poten-
tial has to modify the evolution more strongly.

The resulting external potentials of the local control optimiza-
tions with fixed j (t) = 0 are shown in Fig. 7. For the case of λ= 0,
we find a rather regular oscillation in v(t) and σz (t). The evolu-
tion of σz (t) for the case of λ= 0.25 is very close to the optimal
evolution of λ = 0, but has a very small value of v(t), due to
the optimal utilization of the electron–photon interaction. For
the cases of λ= 0.5 and λ= 1.0 the electron–photon interac-
tion is stronger, and thus the system reacts stiffer with respect
to the external potential v(t). This strong coupling leads to a
higher penalty function as shown in Table 1. For these two exam-
ples, we further find a nonsymmetric optimal solution of v(t).
This solution can be explained by the fact that requesting a final
value of σz (T ) =−0.98 does not give restrictions on the final

§We point out that due to the simple connection between j(t) and q(t) = 〈â†+â〉 via the
(one-mode) Maxwell’s equation ∂2

t q(t) + ω2q(t) =−2ω(λσz(t) + j(t)), we can directly
consider an expansion in terms of the external dipole instead of q(t). This expansion
is convenient because we do not care in this example about the mode occupation but
about keeping j(t) relatively small and choose an expansion accordingly.
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Fig. 10. Time evolution of the single-photon emission process. (Upper)
Expectation value of the dipole-moment operator 〈σ̂z(t)〉 in the exact simu-
lation (black), the OEP approximation (red), and the semiclassical mean-field
approximation (green). (Lower) The difference ∆σz(t) of OEP approxima-
tion (red) and the semiclassical mean-field approximation (green) from the
exact propagation for different time intervals of the full evolution.

photon state. Here, we find excitations of the photonic ampli-
tude. We now turn our focus to the optimization where we lift
the restriction on j (t). In Fig. 8, and the last row in Table 1,
we show the optimization for the case of j (t) 6= 0. Here we find
that the additional degree of freedom allows us to control the
system more efficiently. In particular, the example of λ= 1 shows
the effectiveness of the scheme. Here, we are able to lower the
penalty function significantly from 3.2473 for j (t) = 0 to 2.4084
for j (t) 6= 0. Our local optimal control results for this simple
model show how the coupling to photons can induce charge
transfer reactions with only little external forcing on the electron.
Although it is not surprising that in a resonant setup the reaction
is driven mainly by the coupling to the mode, the optimal-control
analysis shows that controlling the photonic part of the electron–
photon wave function via j (t) directly allows a reduction of the
applied external potential v(t) that acts on the electron. This
finding indicates the possibility to optimize charge-transfer reac-
tions in a cavity by specifically populating certain cavity modes
via an external dipole or current. Such an approach is different
from the usual control approaches where one controls the elec-
tronic systems via an external laser only.

Fig. 11. Time evolution of the single-photon emission process. Shown is
the expectation value of the absolute of the electric-field operator 〈Ê(t)〉
in the exact simulation (gray), the OEP approximation (red), and the semi-
classical approximation (green) at time T = 100 a.u., 600 a.u., 1,200 a.u., and
2,200 a.u.

Quantum-Electrodynamical Density-Functional Theory
The last section of this paper is dedicated to quantum-electro-
dynamical density-functional theory (QEDFT). It allows for
numerically feasible ab initio simulations of correlated matter–
photon systems. The basic idea is that instead of solving for
the (usually infeasible) correlated electron–photon wave func-
tion one solves a set of self-consistent (in practice approximate)
equations of motion for specific reduced quantities. For details
on the method we refer to refs. 1, 2, 27, 28 and 37. All avail-
able implementations of QEDFT (1, 2, 37) are based on the
electron density as basic variable. However, a consistent treat-
ment of the quantized electric and magnetic field beyond the
dipole coupling is possible by using QEDFT based on the charge
current and full vector potential of the photon field (1). In this
article, we consider the performance of QEDFT for an approx-
imation based on the OEP scheme (37) for the case of single-
photon emission and bound electron–photon states. The OEP
approximation uses the ground-state Lamb shift as an orbital
functional for the DFT scheme. For more details, we refer the
reader to ref. 37. We compare the semiclassical (mean-field)
and the OEP approximation to the exact numerical treatment
beyond the rotating-wave approximation (RWA) (41) for a sim-
ple model.

In contrast to the previous models we now consider many
photon modes that couple to our particle system. To that end
we apply the model Hamiltonian introduced in ref. 70 but go
beyond the RWA. We consider electronic two-level systems cou-
pled to M = 400 modes. To be able to treat the photon field con-
sisting of M modes numerically exactly we truncate the Fock
space and consider only the vacuum state, the M one-photon
states, and the

(
M 2 + M

)
/2 two-photon states in a (1D) cav-

ity of volume (length) V . The Hamiltonian we use is given
by (70)

Ĥ = −t0σ̂x +
∑
α

ωαâ
†
αâα +

∑
α

ωαλαq̂α (deg σ̂z ) , [6]

where q̂α is as in Eq. 3 and the wave vectors kα =ωα/c =απ/V .
We fix the position of the two-level subsystems at x =V /2
and hence we can deduce the coupling constants from the

photon modes λα(x ) =
√

2
~ ε0 V

sin(kαx ) at this position. At
this position the even modes decouple from the system (70)
and only the odd modes have to be considered. Hence in
the following α= {1...200}. The quantized electric field is

Fig. 12. Time evolution of the single-photon emission process. Shown is
the expectation value of the absolute of the intensity-field operator 〈Ê2(t)〉
in the exact simulation (gray), the OEP approximation (red), and the semi-
classical approximation (green) at time T = 100 a.u., 600 a.u., 1,200 a.u., and
2,200 a.u.
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then given by Ê(x ) =
∑
α ωαλα(x )q̂α, whereas the quantity

that is linked more closely to the quantum nature of the
light field is the intensity observable (70) that is given by
〈Ê2(x , t)〉=

∑
α,β ωαωβλα(x )λβ(x ) 〈q̂α(t)q̂β(t)〉 and is consid-

ered in normal ordering to eliminate the vacuum-state contri-
butions (70). As parameters for the two-level system, we use a
one-dimensional hydrogen atom with a soft-Coulomb poten-
tial. We consider the first two levels of such a system and
use the parameters as in ref. 71. Thus, t0 = 0.197, deg = 1.034,
V = 12.5µm, and λα = (−1)α+10.0103. In the following, we dis-
cuss two different initial states. The setup (1) features the initial
state |Ψ(t0)〉 = |e〉 ⊗ |0〉, where |e〉 = 1/

√
2(|s1〉 − |s2〉) is the

excited state of the bare electronic Hamiltonian of Eq. 6, |s1〉 and
|s2〉 refer to the individual sites of the two-site model, and |0〉 indi-
cates the photon field in the vacuum state. During time evolution
the electronic excitation will decay to the ground state and hereby
emit a single photon via spontaneous emission (70). This setup
corresponds to the classical textbook case, except that we treat
our system beyond the RWA. In the second case (2), the setup
to analyze the single-photon emission process consists of a fac-

torizable initial state |Ψ(t0)〉 =
(√

1
500
|s1〉+

√
499
500
|s2〉
)
⊗ |0〉.

We start by discussing the dipole moment of the system, that is,
〈σz (t)〉. The QEDFT reformulation of Eq. 6 has the basic func-
tional variables (〈σ̂z (t)〉 , {〈q̂α(t)〉}) (1), which makes this quan-
tity specifically simple to determine. In Fig. 9, Inset, we show the
time evolution of 〈σz (t)〉. We find that in the exact propagation
the dipole moment σz (t) = 0; that is, the deexcitation from the
excited state to the ground state of the atom is a dipole-free transi-
tion. This transition implies that also the electric field observable
in this process is zero for all times (E(x , t) = 0). However, as
shown in Fig. 9 and Movie S1, the intensity of the spontaneous
emission for this process is nonzero (70). At the initial time, we
find two sharp wave fronts appearing, which travel to the bound-
aries, are reflected at the cavity mirrors, and excite the atom
again. The semiclassical approximation and the OEP approxima-
tion for this setup correctly reproduce the (trivial) dipole moment
and electric field, which are the basic variables. However, sim-
ple approximations to the intensity evolution that use the σz (t)
and d12(t) of the QEDFT systems for the expression in Support-
ing Information, Functional Dependency of E2(x,t) fail in cor-
rectly describing the intensity evolution. Because σz (t) is equal
to zero for all times, the exact functional for the intensity has
to provide the correct time evolution of the observable exclu-
sively through the dependence on the initial state. Whereas the
semiclassical approximation to the intensity evolution yields a
zero intensity evolution, the OEP observable determined from
the expression in Supporting Information, Functional Dependency
of E2(x,t) via postprocessing of the calculated OEP quantities
gives emission with an infinite emission time. This deviation is
one of the drawbacks of an implicit functional reformulation of
quantum physics, where we do not know the explicit forms of all
observables but are often dependent on simple approximations.
That these approximations can be useful, though, will become
clear in the next case. For this example, the time-dependent evo-
lution of the dipole moment for the two-site model is shown in
Fig. 10, Upper. Here, we find an initial exponential decay of the
dipole oscillation that is the single-photon emission of the atom.
After t = 1,800 a.u., we find the reabsorption of the emitted pho-
ton and the dipole moment starts to oscillate again. The exact
simulation is shown in black. Our approximate QEDFT propa-
gation based on the OEP approximation, shown in red, is very
close to the exact results as can be seen in Fig. 10, Lower. The
mean-field approximation also performs qualitatively correctly.
It is capable of reproducing the emission process and also the

reabsorption of the photon. However, it misses some quantita-
tive features. The emission time is too long, which means that
the photon in the exact simulation is emitted faster. The same
can be seen for the reabsorption of the photon. Here, the mean-
field dipole moment evolution is broader than the exact and the
OEP approximation.

In Fig. 11 (Movie S2), we plot the absolute value of the expec-
tation value of the electric-field operator. We observe after T =
100 a.u. a wave packet with a sharp front traveling toward the
boundaries of the cavity. After T = 1,200 a.u. the wave packets
are reflected by the boundary and they travel back to the atom,
where they are reabsorbed and then reemitted into the field
again. This process generates a second maximum in the wave
packet that can be observed in the third column of Fig. 11. The
shapes of the wave packet in the OEP approximation, shown in
red, nicely agree with the exact shapes, shown in gray. The mean-
field approximation is again qualitatively accurate, but in partic-
ular the second maximum is too broad due to the wrong decay
time of the two-level system.

In Fig. 12 (Movie S3), we plot the absolute value of 〈Ê2(t)〉
with the same color coding as before. Here, whereas the OEP
develops unphysical oscillations in the wavefront after reflection
at the mirrors, it is able to reproduce a remaining photon inten-
sity at the position of the atom. This effect is beyond a semiclas-
sical and a two-photon effect, which is also missed by the RWA
(70). Because in the semiclassical approximation the matter sys-
tem and the photon system completely decouple, no intensity
remains at the position of the atom. In the exact and also the
OEP approximation, however, the systems are still correlated,
leading to the remaining intensity. Indeed, this intensity is due to
the hybrid ground state of the correlated electron–photon system
and hence corresponds to a bound electron–photon state. This
comparison allows us to conclude that we successfully identified
important beyond semiclassical effects that can be described by
a QEDFT approximation.

Summary and Conclusion
In this paper we have illustrated how long-standing concepts of
quantum chemistry have to be adapted if the electron–photon
interaction is considered in the quantum limit. We have reported
the adapted concept of CBO surfaces that we calculated for
a dimer system and the Shin–Metiu model. This concept is
accurate for static calculations from the weak- to the strong-
coupling limit and can be used to predict chemical quantities
such as bond length, nonadiabatic coupling terms, or absorp-
tion spectra. In all examples, we compared the approximate
solutions to the numerical exact solutions. In a local control
scheme, we have shown how we can use the electron–photon
interaction to our favor to modify chemical reactions more effi-
ciently. The additional degree of freedom in the photon subsys-
tem offers promising possibilities. In the last section, we have
shown how a density-functional approach can be superior to
the semiclassical approach for bound polariton states. These
states appear in optical cavities and require a correct descrip-
tion of the correlated electron–photon interaction. This work on
the interface of quantum optics and material science impacts
both research fields and can lead to new applications in chem-
istry and material science, such as new photonic devices or laser
technologies.
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