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Abstract

A two-dimensional nonlinear and non-equilibrium model of liquid chromatography

is numerically approximated to simulate the dynamics of multi-component mixtures

in a fixed-bed isothermal liquid chromatographic reactor. The mathematical model is

formed by a system of nonlinear convection-diffusion-reaction partial differential equa-

tions coupled with differential and algebraic equations. A semi-discrete high resolution

finite volume scheme is applied to solve the model equations. The scheme is second

order accurate in axial and radial coordinates. The resulting system of ordinary dif-

ferential equations is solved by a second order accurate Runge-Kutta method. The

proposed scheme capably captures narrow peaks and sharp discontinuities in the con-

centration profiles. Radial gradients were not considered in the pervious studies which

are particularly important in the case of non-perfect injections. Several test problems

of heterogeneously catalyzed reversible reactions are carried out. The considered case

studies include three and four-component elution assuming hypothetical injections of
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the reactants in inner or outer sections of the column inlet cross-section. The developed

numerical algorithm and results are useful tools for further improvements in reactive

chromatography.

Introduction

Reactive chromatography, is an attractive separation technique for chemical synthesis. It

combines chemical reactions and chromatographic separations into a single unit for the pro-

duction of high purity products. The technique is successfully employed to significantly

improve the process performance of many multi-functional reactors. It reduces capital in-

vestment, equipment size, cost, energy, pollution and waste, while improves productivity and

purity.1–20

Chromatographic reactors separate reactants and products on the basis of differences in

the selective adsorption of different components. Within a chromatographic reactor, the

conversion of reactants and the separation of components take place simultaneously. In

order to understand the basic concept of a batch reactor, let us consider a reversible reaction

of the type C ⇆ A+B in a single chromatographic column (c.f. Figure 1). In this case,

rectangular pulses of the reactant C are periodically injected into the column packed with a

stationary phase. The reaction occurs at the surface of the catalyst to form the products B

and C. As the reaction is taking place, the components interact with the surface of adsorbent.

Different affinities of the components A, B and C to the stationary phase produce different

migration velocities of these components, leading to their separations. The process enhances

the driving force for the forward reaction, suppresses the backward reaction, overcomes the

chemical equilibrium, and provides high conversion of the reactant C at the column outlet.

Complete conversion could be possible if the residence time of the reactant C in the column

is long enough.

The models of isothermal reactive chromatography can be described by a coupled nonlinear

system of convection-diffusion-reaction type partial differential equations (PDEs) and alge-
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braic or differential equations describing the kinetic phenomena.1,21,22 Due to the nonlinearity

of model equations, numerical solution techniques are required to get accurate solutions.22–25

Modeling and numerical simulation of the production processes have gained immense indus-

trial popularity during the recent years. Numerical solution techniques have a distinctive

advantage over traditional empirical method, as they enable us to understand the physical

meaning of these models. Numerical techniques are helpful in analyzing the response of a

system to different sets of parameters and to optimize several factors, such as productivity,

purity, production rate, and eluent consumption.22

The finite volume schemes have been widely applied to simulate different 1D chromato-

graphic models and were found to be a good choice for the numerical simulation of such

nonlinear convection dominated problems.23,26–28 These schemes were initially introduced

for nonlinear hyperbolic equations and are based on three main features namely, formal inte-

gration, discretization and solution. Such type of schemes are stable and high order accurate

on coarse grids. The schemes resolve sharp variations by avoiding numerical oscillations and

over-predictions in the solutions.24,25,29

This study extends and generalizes our recent study for linear two-dimensional reactive

lumped kinetic model (2D-RLKM) to nonlinear 2D-RLKM.30 Injections of specific profiles

are considered to amplify the effect of possible rate limitations of the mass transfer in the

radial direction. The high resolution finite volume scheme (HR-FVS) of Koren is extended to

solve the current 2D model equations.23,29 The scheme is robust and second order accurate

in axial and radial-coordinates. It has capability to resolves sharp discontinuities of the

elution profiles and avoids numerical dispersion. Several challenging case studies of three-

and four-component elution are carried out. The numerical results are critically evaluated

to elucidate the effects of different kinetic parameters on conversion and separation.

The current 2D reactive model can be useful in various situations namely, i) the injection at

the column inlet is not perfect (i.e. a radial profile is introduced at the column inlet), ii) the

column is not homogeneously packed (which is more probable in the case of larger columns),
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iii) there are radial temperature gradients, which are connected also with radial concentration

gradients. All these scenarios occur in reality. Often they are minor or even negligible, then

1D models are applicable. However, for their relevance and effects the investigation 2D

models are necessary. With our current isothermal nonlinear-reactive model we are able to

study situation i) only by assuming injections in inner cylinders or outer annuli. Situations ii)

and iii) are more complicated and need further model extensions (considering non-constant

column porosities and an energy balance), which are currently under investigation. Thus,

the develop numerical algorithm and results are helpful tools to further develop 2D nonlinear

chromatographic reactors. These results could be used to study the effects of mass transfer

kinetics, reaction kinetics, and axial and radial dispersion coefficients on the elution profiles.

The studied 2D-model and numerical scheme are more general and flexible than the classical

1D-models and numerical schemes.14–16,31 Further, we have provided useful numerical tools

to approximate and apply this model, if required. The latter means if radial dispersion is

rate limiting.

The rest of the paper is organized as follows. In Section 2, the 2D-RLKM model is briefly

introduced. In Section 3, the high resolution finite volume scheme is derived. In Section 4,

different case studies are carried out. Finally, conclusions are drawn in Section 5.

Nonlinear 2D-RLKM

In the case of multi-component nonlinear 2D-RLKM, the mass balances for concentrations

in the liquid phase are coupled with the differential kinetic equations for solid phase con-

centrations. The model assumes that the kinetics of adsorption-desorption are infinitely fast

but the mass transfer kinetics are not. The model lumps the contribution of internal and

external mass transport resistances into a mass transfer coefficient k. In this study, het-

erogeneously catalyzed solid phase reversible reactions are considered. The reactants and

products travel along the column axis in the z-direction by advection and axial dispersion,
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spread along the column radius in the r-direction by radial dispersion, and reactants are

continuously decaying into produce products due to chemical reactions in the solid phase.

The flow rate variations are neglected and the interstitial velocity u is kept constant. The

following particular injection conditions are assumed to intensify the effects of mass trans-

fer rate in the radial-direction. The inlet cross sectional area of the cylindrical column is

divided into two regions by introducing a new parameter r̃, referred as inner-cylindrical and

outer-annular regions (see Figure 1). There are three possibilities for the reactant injection

namely, an inner region injection, an outer region injection, and injection through the whole

cross-section. The injection over the whole cross-section is possible when the radius of the

column, denoted by R, is set equal to the inner zone radius r̃. We must point out that the

case of injecting the sample through the outer annular ring has some similarity with process

of annular chromatography.32 However, during annular chromatography the column rotates.

Under these assumptions, the mass balance equations for concentrations of mixture compo-

nents in the liquid phase can be expressed as21,22,30

∂ci
∂t

+ u
∂ci
∂z

= Dz,i
∂2ci
∂z2

+Dr,i
1

r

∂

∂r

(

r
∂ci
∂r

)

− ki
ǫ

[q∗i − qi] . (1)

The corresponding mass balances for mixture components concentrations in the stationary

phase accounting for solid phase reversible reaction can be expressed as21,22,30

∂qi
∂t

=
ki

(1− ǫ) [q∗i − qi] +

NR
∑

n=1

νi,nr
het
n , i = 1, 2, · · · , Nc . (2)

In the above equations ci(t, z, r) and qi(t, z, r) denote the i-th component solute concen-

trations in the liquid and solid phases, respectively, rhetn is reaction rate in the solid phase

(heterogeneous) and νi,n are stoichiometric coefficients of component i in reaction n, gener-

ally, νi,n = −1 for reactants and νi,n = +1 for products. Moreover, Dz,i and Dr,i represent

the longitudinal and radial dispersion coefficients of i-th component, ǫ ∈ (0, 1) is the exter-

nal porosity, NR is the number of reactions involved and Nc denotes the number of mixture
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components. In addition, t, z and r denote the time, axial and radial coordinates, respec-

tively. For sufficiently large values of ki, for i = 1, 2, ...Nc, the solution of multi-component

2D-RLKM converges to that of multi-component 2D reactive equilibrium dispersive model

(2D-REDM).

For modeling and simulation of preparative chromatography, experimentally determined ad-

sorption equilibrium data has to be represented by suitable mathematical equations. Differ-

ent relations of isotherms are available in the literature.21,22 Here, we consider the commonly

used nonlinear convex Langmuir isotherm22

qi =
aici

1 +
Nc
∑

n=1

bncn

, i = 1, 2, 3, .....Nc , (3)

where ai represents the Henry’s coefficient of i-th component and bn quantifies the nonlinear-

ity of the isotherm. To simply the notations and reduce the number of variables appearing

in the model equations, the following dimensionless quantities are introduced:

x =
z

L
, τ =

ut

L
, ρ =

r

R
, Pez,i =

Lu

Dz,i
, P er,i =

R2u

Dr,iL
κi =

kiL

u
, (4)

where L is the height of the column, Pez,i and Per,i are the dimensionless Peclet numbers

in longitudinal and radial-directions, respectively. Using the above dimensionless variables,

the model equations in Eqs. (1) and (2) can be rewritten as

∂ci
∂τ

=
1

Pez,i

∂2ci
∂x2
− ∂ci
∂x

+
1

Per,i

1

ρ

∂

∂ρ

(

ρ
∂ci
∂ρ

)

− κi
ǫ

(q∗i − qi) , (5)

∂qi
∂τ

=
κi

(1− ǫ)(q∗i − qi) +
L

u

NR
∑

n=1

νi,nr
het
n . (6)

Here, 0 ≤ ρ ≤ 1 and 0 ≤ x ≤ 1. The model equations represented by Eqs. (5)-(6) are
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also subjected to the appropriate initial conditions, as well as inlet and outlet boundary

conditions. The initial conditions for an initially equilibrated column are given as

ci(τ = 0, x, ρ) = ci,init, qi(τ = 0, x, ρ) = q∗i,init, i = 1, 2, 3, .....Nc . (7)

The radial boundary conditions (BCs) at ρ = 0 and ρ = 1 are expressed as30,34

∂ci(τ, x, ρ = 0)

∂ρ
= 0,

∂ci(τ, x, ρ = 1)

∂ρ
= 0 . (8)

In this study, the Danckwert’s BCs are considered at the column inlet.33 For the inner zone

injection, these BCs are expressed as30,34

ci(ρ, x = 0, τ)− 1

Pez,i

∂ci(ρ, x = 0, τ)

∂x
=











ci,inj , if 0 ≤ ρ ≤ ρ̃ and 0 ≤ τ ≤ τinj ,

0 , ρ̃ < ρ ≤ 1 or τ > τinj ,
(9)

while, for the injection through outer annular zone they are given as

ci(ρ, x = 0, τ)− 1

Pez,i

∂ci(ρ, x = 0, τ)

∂x
=











ci,inj , if ρ̃ < ρ ≤ 1 and 0 ≤ τ ≤ τinj ,

0 , 0 ≤ ρ ≤ ρ̃ or τ > τinj ,
(10)

together with the Neumann condition at the outlet of a finite length column

∂ci
∂x

∣

∣

∣

∣

x=1

= 0 . (11)

The symbol ci,inj represents the concentration of injected i-th component, τinj denotes the

dimensionless time of injection, and

ρ̃ = r̃/R . (12)

For injection over the whole inlet cross-section of the column, either ρ̃ = 1 in Eq. (9) or
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ρ̃ = 0 in Eq. (10).

At the column outlet, the following Neumann BCs are used:

∂ci(τ, x = 1, ρ)

∂x
= 0 . (13)

Numerical Schemes

Various numerical procedures have been introduced in the literature for approximating the

one-dimensional chromatographic models.22,23 In this work, the 1D semi-discrete high reso-

lution flux-limiting finite volume scheme (HR-FVS) of Koren is extended to solve the current

two-dimensional system of PDEs.23,29 The scheme is second order accurate in the axial and

radial-coordinates. The resulting system of ordinary differential equations (ODEs) is solved

by using a second-order Runge-Kutta method. Here, the HR-FVS is applied to the PDEs in

Eq. (5) only, while ODEs in Eq. (6) are solved by the considered ODE-solver.

Before applying the proposed numerical scheme to Eq. (5), the first step is to discretize

the computational domain. Let Nx and Nρ be the large integers in x and ρ-directions,

respectively. We assume a Cartesian grid with a rectangular domain [0, 1] × [0, 1] which is

covered by cells Ωjl ≡
[

xj− 1

2

, xj+ 1

2

]

×
[

ρl− 1

2

, ρl+ 1

2

]

for 1 ≤ j ≤ Nx and 1 ≤ l ≤ Nρ. The

representative coordinates in the cell Ωjl are denoted by (xj , ρl). Here

(x1/2, ρ1/2) = (0, 0), xj =
xj−1/2 + xj+1/2

2
, ρl =

ρl−1/2 + ρl+1/2

2
(14)

and

∆xj = xj+1/2 − xj−1/2 , ∆ρl = ρl+1/2 − ρl−1/2 . (15)
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The cell averaged values of wi,j,l(τ) at any time τ are given as

wi,j,l = wi,j,l(τ) =
1

∆xj∆ρl

∫

Ωjl

wi(τ, x, ρ) dxdρ . (16)

Here, w ∈ {c, q, q∗}. Till now, the computational domain is discretized and the corresponding

initial data for τ = 0 are allocated to each mesh interval.

Now, integration of Eqs. (5) and (6) over Ωjl give

dci,j,l
dτ

=−
ci,j+ 1

2
,l − ci,j− 1

2
,l

∆xj
+

1

∆xjPez

[

(

∂c

∂x

)

i,j+ 1

2
,l

−
(

∂c

∂x

)

i,j− 1

2
,l

]

+
1

∆ρlPerρl

[

(

ρ
∂c

∂ρ

)

i,j,l+ 1

2

−
(

ρ
∂c

∂ρ

)

i,j,l− 1

2

]

− κ

ǫ
(q∗i,j,l − qi,j,l) , (17)

dqi,j,l
dτ

=
κ

1− ǫ(q∗i,j,l − qi,j,l) +

NR
∑

n=1

νi,nr
het
n,j,l . (18)

Different approximations of the cell interface concentrations along axial-coordinate generate

different numerical schemes which are discussed below.

First-order scheme: In this case, the values of concentrations at the cell interfaces in Eq.

(17) are approximated as

ci,j+ 1

2
,l = ci,j,l , ci,j− 1

2
,l = ci,j−1,l . (19)

This approximation yields a first-order accurate scheme in the axial-direction. The above

approximations provide a first order accurate scheme in the axial and radial coordinates.

HR-FVS of Koren: The following flux-limiting formula is applied to approximate the cell

interface values ci,j,l+ 1

2

of the concentration in Eq. (17):29

ci,j+ 1

2
,l = ci,j,l +

1

2
ψ
(

θi,j+ 1

2
,l

)

(ci,j,l − ci,j−1,l) , (20)
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where,

θi,j+ 1

2
,l =

ci,j+1,l − ci,j,l + β

ci,j,l − ci,j−1,l + β
, (21)

is the ratio of concentration gradients. Here, division by zero can be avoided by considering

β = 10−10. The limiting function ψ is taken as29

ψ(θi,j+ 1

2
,l) = max

(

0,min

(

2θi,j+ 1

2
,l,min

(

1

3
+

2

3
θi,j+ 1

2
,l, 2

)))

. (22)

Similarly, ci,j− 1

2
,l can be calculated by replacing the index j by j− 1 in the above equations.

Other flux-limiting schemes: Several other flux-limiting schemes are available in the

literature. These schemes are different because each scheme involve different flux-limiting

functions.24,35 In these schemes, a limited right cell boundary flux, Ωj,l is defined as

ci,j+ 1

2
,l = cj,l +

1

2
ϕ
(

ηi,j+ 1

2
,l

)

(ci,j+1,l − ci,j,l) . (23)

The left cell-boundary flux can be approximated in an analogous manner. Here, ηj+ 1

2
,l is

given by the following ratio

ηi,j+ 1

2
,l =

ci,j,l − ci,j−1,l + β

ci,j+1,l − ci,j,l + β
. (24)

A few well known flux limiters are listed in Table 1.

Approximations of axial and radial differential terms: The differential values of the

concentration at the cell interfaces obtained from the approximation of the axial dispersion

term in Eq. (17) are calculated as

(

∂c

∂x

)

i,j± 1

2
,l

= ±
(

ci,j±1,l − ci,j,l
∆xj

)

. (25)

Moreover, the differential cell interface values in the radial dispersion term of Eq. (17) are
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calculated as

(

ρ
∂c

∂ρ

)

i,j,l+ 1

2

= ρl max

(

ci,j,l+1 − ci,j,l
∆ρl

, 0

)

+ ρl+1 min

(

ci,j,l+1 − ci,j,l
∆ρl

, 0

)

. (26)

Similarly, the left interface values can be calculated by lowering the index l by one.

Scheme strategy at the boundaries: The flux-limiting formula given by Eq. (20) is not

applicable to the boundary cells. In that case, the first order scheme is applied to approximate

the cell interface values of the concentration in the boundary cells. In the remaining interior

cells, one of the above mentioned second order accurate HR-FVS schemes can be applied.

ODE-solver: To obtain the second order accuracy in time, a second order total variation

diminishing (TVD) Runge-Kutta scheme is applied to solve Eqs. (17) and (18).36 Denoting

the right-hand side of Eqs. (17) and (18) as  L(w) for w ∈ {c, q}, a second order TVD

Runge-Kutta scheme update w through the following two stages

w(1) = wn + ∆τ  L(wn) , (27a)

wn+1 =
1

2

(

wn + w(1) + ∆τ  L(w(1))
)

, (27b)

where wn is a solution at previous time step τn and wn+1 is updated solution at next time

step τn+1. Moreover, ∆τ represents the time step which is calculated under the following

Courant-Friedrichs-Lewy (CFL) condition

∆τ ≤ 0.5 min

(

∆x,∆x2Pez,∆ρ
2Per,

1− ǫ
κ

)

. (28)

Numerical case studies

In this section several test problems are considered. The case studies include practical ex-

amples of three- and four-component elution considering nonlinear heterogeneous reactions.

The parameters used in these test problems are taken from Tien37 which have been chosen in
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accordance with ranges typically encountered in HPLC applications.22 The axial and radial

dispersion coefficients are taken the same for all mixture components, i.e. Dz,i = Dz and

Dr,i = Dr, for i = 1, 2, · · · , Nc. Moreover, the mass transfer coefficients are also taken the

same for all components, i.e. ki = k. However, the current model equations and the proposed

numerical solution technique allow considering different mass transfer coefficients for each

specie. Thus, different mass transfer coefficients can also be considered for each component

when required.

In the numerical case studies, we tried different combinations of grid points. It was found

that the scheme gives good resolution of profiles on 100× 50 grid points. Thus, we kept the

number of gird points fixed to 100× 50.

Error analysis for single-component non-reactive elution

The purpose of this simple case study is to verify the accuracy and efficiency of the proposed

HR-FVS of Koren against other other flux-limiting HR-FVS given above. Here, radial effects

are neglected by considering a large radial dispersion coefficient, i.e. Dr = 0.5. Thus, the

solution of current 2D-problem is equivalent to the solution of 1D-problem.14 It is further

assumed that the column is partially pre-loaded in the region [0.2, 0.4]× [0, 1] by a sinusoidal

profile. The initial conditions are taken as

c(0, x, ρ) =











sin(π(x− 0.2)/0.2) , 0.2 ≤ x ≤ 0.4 & 0 ≤ ρ ≤ 1,

0, otherwise .
(29)

Nothing is injected at the column inlet, i.e. c(t, 0, ρ) = 0, while the zero Neumann BCs

are considered at the outlet of the column. Moreover, L = 1.0 cm, R = 0.1 cm, a = 1,

u = 1 cm/min, ǫ = 0.5, and k = 50min−1, respectively. The simulation time is taken

to be 0.6min. The L1-error along the axial-coordinate of the column at ρ = 0 and at
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tmax = 0.6min is obtained by considering the following formula

L1-error =
Nx
∑

j=1

|cexact(t = 0.6, xj , ρ = 0)− cNumeric(t = 0.6, xj, ρ = 0)|∆x , (30)

where cexact represents the exact solution and cNumeric denotes the corresponding numerical

solution. Moreover, Nx denotes the number of discretization points in the axial-coordinate

and ∆x represents the axial step-size.

Due to neglected radial effects, the solution has the same value at all discrete points of the

radial-coordinate. Further, k is assumed very large. Thus, the numerical solution obtained is

compared with the following 1D analytical solution given by Koren29 using the same initial

and boundary conditions:

cexact(t, z, ρ = 0) = 0.5 real (iep[erf(α)− erf(β)]) , (31)

where, erf represents the error function and

p = −0.5Dzt
( π

0.2

)2

+ i
π

0.2
(0.2− z − 0.5t) , (32)

α =
−0.2 + z − 0.5t

2
√

0.5Dzt
− iπ

√
0.5Dzt

0.2
, (33)

β =
−0.4 + z − 0.5t

2
√

0.5Dzt
− iπ

√
0.5Dzt

0.2
. (34)

Table 2 gives a comparison of L1-errors of different numerical schemes. The analysis is

performed for different values of axial-dispersion coefficients Dz using Nx × Nr = 100 × 50

grid points. It can be observed that the Koren scheme gives less errors as compared to the

other flux-limiting schemes and has less computational cost. Table 3 displays the L1-error

and the experimental order of convergence (EOC) of the Koren scheme at different mesh

points and for different values of Dz. The EOC of the Koren method is about second order

(see Table 3) and, hence, seems more useful for such models. The computational cost for the
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Minmod limiter is higher than the other flux-limiting schemes. The backward difference (first

order) scheme has minimum computational cost but produces large errors in the solution.

The computational cost of the van-Leer limiter is comparable to the Koren scheme but it

has large errors in the solutions. The remaining two limiters have a higher computational

costs and lower accuracy. With these observations we can conclude that Koren scheme is a

better choice for solving such models.

Three-component reactive elution

In this section, the proposed numerical scheme is applied on the model equations to simulate

three-component reactive elution, i.e. Nc = 3 and NR = 1. Two different case studies for the

nonlinear reaction of type C ⇆ A + B are presented considering either linear or nonlinear

adsorption isotherms. In both cases, the reactant is injected through inner cylindrical core

of the column inlet cross-section. The parameters used in this test problem are taken from

Tien37 who also investigated this problem for the 1D-model.

Case 1a: Reaction of type C ⇆ A+B with linear adsorption isotherm

In this type of reaction, only component 3 (component C), representing the reactant, is

injected to the initially empty column, while component 1 (component A) and component 2

(component B) denote the reaction products. During its propagation though the column, the

reactant C is continuously converting into the products A and B due to the cataltic nature

of the solid bed. At the same time, all three components A, B and C are also separating due

to their different affinities to the solid bed. The component having more interaction with

the solid bed slows down as compared to the component having less interaction. Thus, at

the end of the column separated concentration pulses of each component can be collected.

The model Eqs. (5) and (6) with Nc = 3, NR = 1, and linear equilibrium adsorption isotherms

q∗i = aici for i = 1, 2, 3 are numerically approximated. Only the solid phase (heterogeneous)

reaction with reaction rate rhet is considered, while the homogeneous liquid phase reaction
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is neglected, i.e. rhom = 0. The heterogeneous reaction rate is taken as

rhet = khet
(

q3 −
q1q2
kheteq

)

. (35)

Here, q1, q2 and q3, represent the solid phase concentrations of the products and reactant.

Moreover, khet is the reaction rate constant and kheteq is the chemical equilibrium constant.

The signs of stoichiometric coefficients ν1 and ν2 for the products are taken positive, while

the sign of ν3 for the reactant is taken negative.

The parameters used in this test problems are as follows.37 The column length is L = 25 cm,

column radius R = 1.25 cm, radius of inner zone r̄ = 0.88375 cm, mass transfer coefficient

k = 50min−1, dispersion coefficient Dz = 10−5 cm2/min, Dr = 0.1 cm2/min, porosity

ǫ = 0.25, khet = 5000min−1, kheteq = 0.833mol/l, and adsorption coefficients are a1 = 5,

a2 = 1 and a3 = 3. Moreover, only component 3 with concentration c3,inj = 0.5mol/l is

injected to the reactor through inner cylindrical core for tinj = 10min with fluid velocity

u = 100 cm/min. The 1D and 3D plots of the concentration profiles for c1, c2 and c3 are

generated using 100 × 50 grid points as shown in Figure 2. It can be seen that the Koren

scheme resolves the discontinuous profiles of concentrations. It can also be observed in

Figure 2 that reactant (component C) is moving between the products (components A and

B). This is a very favorable case which diminishes the backward reaction. The effect of radial

dispersion is clearly visible in the 3D plots along τ and ρ coordinates. It can be seen that

concentration of the reactant (component 3) is decreasing and concentrations of the products

(components 1 and 2) are increasing. Conversion of the reactant can be calculated as

XC [%] = 100× nin
C − nout

C

nin
C

, (36)

where, nin
C represents the number of moles of component C injected at the column inlet

and nout
C denotes the number of moles at the column outlet. Figure 3 gives the plot of

conversion with respect to the column length. The figure shows that complete conversion
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of the reactant could be possible if longer column is considered, i.e. if residence time of

the reactant in the column is increased. However, there exist some other parameters (or

variables) which could also be considered to increase the conversion, such as bed diameter,

porosity, inlet concentrations, and etc.

The effects of Per and mass transfer coefficient k on component 1 are shown in Figure 4.

It can be observed from the Figure 4a that the radial effects are more prominent for large

values of Per (or small Dr). For Per = 250 the results of 2D-RLKM reduces to the results

of 1D-RLKM. Figure 4b shows that the profile of component 1 is diffusive for small values of

k and becomes sharper on increasing the value of k. It was further observed that the effect

of Pez on the elution profiles is similar to that of k and its plot is therefore omitted.

Case 1b: Reaction of type C ⇆ A+B with nonlinear isotherm

Here, we extend the previous case of linear isotherm to the case of nonlinear adsorption

isotherms for studying the effect of nonlinearity on the conversion of reactant and separation

of products. The Langmuir isotherms given by Eq. (3) are considered. Two pairs of isotherm

parameters are considered, such as (i) b1 = 1.0 l/mol, b2 = 1.0 l/mol, b3 = 1.0 l/mol and (ii)

b1 = 1.0 l/mol, b2 = 3.0 l/mol, b3 = 2.0 l/mol. The remaining parameters are exactly the

same as used in the above linear isotherm case. Plots of concentration profiles are shown

in Figures 5 and 6. In both cases typical behavior of Langmuir isotherm can be observed.

Once again, the reactant (components C) is decreasing due to its conversion into two products

(components A and B). In the current nonlinear case more reactant is converted into the

products as compared to the linear case. Moreover, the conversion rate is much faster for

the case having larger bi (for i = 1, 2, 3). Figure 7 gives the plot of conversion with respect

to the nonlinearity coefficients bi which are taken same for all components, i.e. b1 = b2 = b3.

It can be observed that conversion of the reactant increases on increasing the values of

nonlinearity coefficients bi. On the other hand, a comparison of Figures 2, 5 and 6 shows

that separation of products is diminished on increasing the values of nonlinearity coefficients
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bi. The remaining observations are similar to those of linear case.

Four-component reactive elution

This section contains a case study of four-component reactive chromatography considering

nonlinear reaction and either linear or nonlinear adsorption isotherms. Reactants are in-

jected through inner cylindrical core of the inlet cross-section. All parameters used in this

test problem are taken from Tien37 which have been considered in accordance with ranges

typically encountered in HPLC applications.22

Case 2a: Reaction of Methyl Formate with linear isotherm

In this test problem, the reaction of type A+ B ⇆ C +D is analyzed. The composition of

reactants in the injected sample and flow-rate of the mobile phase are assumed to be constant.

The general reaction mechanism is Methyl Formate+Water ⇆ Methanoic Acid+Methanol.

In such a reaction, only component 1 (Methyl Formate) is injected as a reactant into a

cylindrical column. The column is initially loaded only with component 2 (Water), while

component 3 (Methanoic Acid) and component 4 (Methanol) are the reaction products. The

parameters of reaction equilibrium, reaction kinetics, and adsorption isotherms are given in

Table 4 for two different temperatures. The volumetric flow-rate is taken as V̇ = 0.1ml/min,

c1,inj = 0.5mol/l, c2,inj = 0 = c3,inj = c4,inj, velocity u = 6.216975 cm/min, porosity ǫ = 0.24,

column length L = 25 cm, column radius R = 1.25 cm, radius of inner zone r̄ = 0.88375 cm,

mass transfer coefficient k = 50min−1, dispersion coefficient Dz = 0.09925 cm2/min and

Dr = 0.035 cm2/min. The injected volume is V = 0.75ml and the time of injection is

tinj = V
V̇

= 0.1333min. The chromatographic column is initially equilibrated with water

only, i.e. c2,init = 55.525mol/l which is also injected to the column continuously, c1,init = 0 =

c3,init = c4,init. The 2D-RLKM (c.f Eqs. (5) and (6)) is considered with linear equilibrium

adsorption isotherms, q∗i = aici for i = 1, 2, 3, 4. The reaction rate of the heterogeneously
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catalyzed Methyl formate is described as

rhet = khet
(

q1q2 −
q3q4
kheteq

)

. (37)

Here, the signs of the stoichiometric coefficients ν1 and ν2 are negative, while the signs of ν3

and ν4 are positive.

The eluted concentration profiles of component 1 (reactant) and reaction products (compo-

nents 3 and 4) are shown in Figures 8 and 9. The reaction is considered at two different

temperatures to further analyze the performance of the chromatographic reactors. The

model parameters mainly depend on the temperature of the column besides porosity. The

concentration profiles are generated using 100 × 50 mesh cells. The total elapsed time at

temperature T = 298K is 84.496 seconds and at temperature T = 318K is 84.078 seconds.

The plots of Figures 8 and 9 depicted that separation of the components 3 and 4 is signifi-

cantly improved at high temperature. Moreover, conversion of the reactant into the product

increases and the retention time reduces at higher temperature. For example, in Figure 9 a

complete conversion of the reactant into products can be observed.

Figure 10 compares the experimental results of Tien37 with our numerical simulations con-

sidering injection over the whole inlet cross-section of the column and large radial-dispersion

coefficient. In this special case, the results of current 2D-model are equivalent to those of

1D-model.14 It can be observed that both numerical and experimental results are in good

agreement. However, we must point out that no experimental results are currently available

characterizing 2D-isothermal reactive liquid chromatography.

Case 2b: Reaction for Methyl Formate with nonlinear isotherm

Here, we extend the previous case study to the nonlinear isotherm given by Eq. (3) for

i = 1, 2, 3, 4. The Langmuir isotherm parameters are chosen as b1 = 1.0 l/mol, b2 = 0 l/mol,

b3 = 1.0 l/mol, and b4 = 1.0 l/mol. The remaining data are the same as in the linear case.
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The numerical results are shown in Figures 11 and 12. Once again the reaction is considered

at two different temperatures, i.e. T = 298K and T = 318K. The elapsed time for the test

problem is 85.182 seconds. Typical behavior of nonlinear Langmuir isotherms can be easily

observed in the elution profiles. In the current four-component reaction, both conversion

and separation are reducing on increasing the extent of nonlinearity.

Conclusion

This paper was based on the numerical approximation of a multi-component two-dimensional

nonlinear and non-equilibrium model of isothermal reactive chromatography. The reaction

rates were assumed to be nonlinear and adsorption isotherms were considered either linear

or nonlinear. A semi-discrete HR-FVS was applied to solve the model equations numeri-

cally. Several practical case studies of three and four-component elution were considered

and analyzed. It as found that the scheme avoids numerical oscillations and resolves the

discontinuous profiles of the concentration profiles. It was further observed that high con-

version can be achieved at high temperatures. Moreover, the retention time was significantly

reduced at higher temperature. The current 2D model and numerical solutions illustrate the

influence of mass transfer, longitudinal dispersion, and radial dispersion coefficients. The

computed results could be very useful for understanding the transport mechanisms, to scale

up physio-chemical parameters, and to optimize experimental conditions.
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Table 1: Different flux limiters used in Eq. (23)

Flux limiter Formula

van Leer (24) ϕ(r) = |r|+r
1+|r|

Superbee (35) ϕ(r) = max (0,min(2r, 1),min(r, 2))
Minmod (35) ϕ(r) = max (0,min(1, r))

MC (24) ϕ(r) = max
(

0,min
(

2r, 1
2
(1 + r), 2

))
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Table 2: Single-component non-reactive elution: L1-error and CPU times of schemes at
100× 50 grid points.

Limiter L1−error CPU (s)
Dz = 10−3 Dz = 10−4 Dz = 10−5 Dz = 10−6 Dz = 10−3

First order 0.0504 0.0630 0.0744 0.0624 9
Koren 0.0009 0.0038 0.0054 0.0055 14

van Leer 0.0037 0.0065 0.0076 0.0077 15
Superbee 0.0043 0.0047 0.0055 0.0056 16
Minmod 0.0071 0.0207 0.0206 0.0207 19

MC 0.0032 0.0031 0.0039 0.0061 15

Table 3: Single-component non-reactive elution: L1-error and EOC of the Koren scheme.

Grid points Dz = 10−3 Dz = 10−4 Dz = 10−5

Nx ×Nρ L1-error EOC L1-error EOC L1-error EOC
20× 50 4.6× 10−3 8.4× 10−3 0.012
40× 50 1.5× 10−3 1.6 2.5× 10−3 1.7 3.7× 10−3 1.7
80× 50 4.9× 10−4 1.6 6.2× 10−4 2.0 8.6× 10−4 2.1
160× 50 1.5× 10−4 1.7 1.6× 10−4 2.0 1.9× 10−4 2.2
320× 50 4.4× 10−5 1.8 4.3× 10−5 1.9 3.8× 10−5 2.3

Table 4: Adsorption and reaction coefficients for Methyl Formate.37

Temperature ai khet kheteq

1 2 3 4 min−1

298K 1.110 1.0 0.723 0.458 5.88× 10−3 0.1134
318K 1.038 1.0 0.768 0.445 41.6× 10−3 0.1449
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Figure 1: Process diagram of a chromatographic reactor of cylindrical geometry.
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Figure 2: Case 1a: Three-component reactive elution profiles with linear isotherm.
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Figure 3: Case 1a: Plot of reactant conversion with respect to column length using linear
isotherm.
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Figure 4: Case 1a: Effects of Per and mass transfer coefficient k on component 1 in three-
component reactive elution using linear isotherm.
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Figure 5: Case 1b: Three-component reactive elution profiles using nonlinear isotherm. Here,
bA = 1.0 l/mol, bB = 1.0 l/mol, and bC = 1.0 l/mol.
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Figure 6: Case 1b: Three-component reactive elution profiles using nonlinear isotherm. Here,
bA = 1.0 l/mol, bB = 3.0 l/mol, and bC = 2.0 l/mol.
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Figure 7: Case 1b: Plot of reactant conversion for various bi in three-component reactive
elution. Here, we have chosen bA = bB = bC .
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Figure 8: Case 2a: Four-component reaction: Elution profiles with linear isotherm at T =
298K.
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Figure 9: Case 2a: Four-component reaction: Elution profiles with linear isotherm at T =
318K.
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Figure 10: Case 2a: Four-component reaction: Comparison of numerical and experimen-
tal results at T = 298K. Here, lines represent numerical solutions and symbols denote
experimental solutions.
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Figure 11: Case 2b: Four-component reaction: Elution profiles with nonlinear isotherm at
at T = 298K.
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Figure 12: Case 2b: Four-component reaction: Elution profiles with nonlinear isotherm at
T = 318K.
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