Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Monitoring electron-photon dressing in WSe2

MPG-Autoren
/persons/resource/persons22028

Rubio,  Angel
Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, CFM CSIC-UPV/EHU, 20018 San Sebastián, Spain;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science and Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1609.03218.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

De Giovannini, U., Hübener, H., & Rubio, A. (2016). Monitoring electron-photon dressing in WSe2. Nano Letters, 16(12), 7993-7998. doi:10.1021/acs.nanolett.6b04419.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-5785-3
Zusammenfassung
Optical pumping of solids creates a non-equilibrium electronic structure where electrons and photons combine to form quasiparticles of dressed electronic states. The resulting shift of electronic levels is known as the optical Stark effect, visible as a red shift in the optical spectrum. Here we show that in a pump-probe setup we can uniquely define a non-equilibrium quasiparticle bandstructure that can be directly measurable with photoelectron spectroscopy. The dynamical photon-dressing (and undressing) of the many-body electronic states can be monitored by pump-probe time and angular resolved photoelectron spectroscopy (tr-ARPES) as the photon-dressed bandstructure evolves in time depending on the pump-probe pulse overlap. The computed tr-ARPES spectrum agrees perfectly with the quasi-energy spectrum of Floquet theory at maximum overlap and goes to the the equilibrium bandstructure as the pump-probe overlap goes to zero. Additionally, we show how this time-dependent non-equilibrium quasiparticle structure can be understood to be the bandstructure underlying the optical Stark effect. The extension to spin-resolved ARPES can be used to predict asymmetric dichroic response linked to the valley selective optical excitations in monolayer transition metal dichalcogenides (TMDs). These results establish the photon dressed non-equilibrium bandstructures as the underlying quasiparticle structure of light-driven steady-state quantum phases of matter.