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Abstract

Advances in nanotechnology lead to an increasing inter-
est in how nanoparticles interact with biomembranes.
Nanoparticles are wrapped spontaneously by biomem-
branes if the adhesive interactions between the parti-
cles and membranes compensate for the cost of mem-
brane bending. In the last years, the cooperative wrap-
ping of spherical nanoparticles in membrane tubules has
been observed in experiments and simulations. For spher-
ical nanoparticles, the stability of the particle-filled mem-
brane tubules strongly depends on the range of the ad-
hesive particle-membrane interactions. In this article, we
show via modeling and energy minimization that elon-
gated and patchy particles are wrapped cooperatively in
membrane tubules that are highly stable for all ranges
of the particle-membrane interactions, compared to indi-
vidual wrapping of the particles. The cooperative wrap-
ping of linear chains of elongated or patchy particles in
membrane tubules may thus provide an efficient route to
induce membrane tubulation, or to store such particles in
membranes.

1 Introduction

Because of their fluidity and flexilibity, biomembranes
can adopt a variety of morphologies [1,[2]. Among these
morphologies are membrane tubules with typical diame-
ters of tens of nanometers. In biological cells, membrane
tubules are stabilized by the adsorption of scaffolding pro-
teins . In reconstituted lipid membrane systems,
membrane tubules have been induced by antimicrobial
peptides , by aqueous phase separation inside vesi-
cles [11}[12], and by nanoparticles [13|[14]. Tubules that
tightly wrap linear aggregates of simian virus 40 particles
have been found to occur both in cellular and reconsti-
tuted membranes . Similar membrane tubules filled
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with spherical nanoparticles have been observed by sev-
eral groups in simulations . For spherical nanopar-
ticles, the stability of these tubules strongly depends on
the range of the adhesive particle-membrane interaction
that causes the tubulation .

In this article, we show that elongated and patchy
nanoparticles can induce particle-filled tubules that are
highly stable for all ranges of the particle-membrane in-
teraction. These membrane tubules arise from the inter-
play of the adhesion energy of the particles and the bend-
ing energy of the membranes. Fig. [I]illustrates segments
of tubules filled (a) with prolate particles and (b) with
patchy triblock Janus particles. Prolate particles have a
rather high mean curvature at their tips and a lower mean
curvature at their sides. The adhesion of membranes to
the tips of prolates therefore costs more bending energy
than adhesion to the sides. The cooperative wrapping
of the prolate particles in the membrane tubule of Fig.
a) is energetically favorable compared to the individual
wrapping of the particles because the tubular membrane
only adheres to the sides of the prolates and not to the
tips. The individual wrapping of the prolate particles, in
contrast, requires membrane adhesion at one of the tips,
which costs additional bending energy. The non-adhering
membrane regions of the tubules in between neighboring
particles adopt a catenoidal shape of zero mean curvature
and, thus, zero bending energy. The triblock Janus parti-
cles of Fig. [I[b) have non-adhesive tips (red) and strongly
adhesive sides (blue), which are covered by the membrane
in the tubule.

How nanoparticles interact with biomembranes has
been investigated with great intensity in the last years.
The focus of these investigations has been largely on the
wrapping of individual nanoparticles by biomembranes,
and on how this wrapping is affected by the size and
shape of the nanoparticles. The wrapping of nanopar-
ticles by membranes can either occur spontaneously from
an interplay of bending and adhesion energies, or can be
assisted by the curvature-inducing proteins and protein
machineries of cellular membranes [20H23]. The sponta-
neous wapping of individual nanoparticles has been ob-
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Figure 1: Minimum-energy shapes of membrane tubules
around (a) prolate particles with aspect ratio r = 1.5 and
(b) triblock Janus particles with strongly adhesive central
surface segment (blue) and non-adhesive tips (red). For
prolate particles, the interplay of the bending and adhe-
sion energies during membrane wrapping can be charac-
terized by the rescaled adhesion energy u = UR?/x where
U is the adhesion energy per area, x is the bending rigidity
of the membranes, and R is the radius of a sphere with the
same surface area as the prolate particle. For the rescaled
adhesion energy u = 3, the more strongly curved tips of
the prolate particles in (a) remain unwrapped. The range
of the particle-membrane interaction here is taken to be
negligibly small compared to the particle dimensions.

served in experiments with lipid vesicles 7 poly-
mersomes , and cells , and has been inves-
tigated in theoretical approaches and simula-
tions .

The cooperative wrapping of prolate or triblock Janus
particles in membrane tubules provides a route to in-
duce membrane tubulation. The membrane tubules filled
with linear chains of such particles are highly stable rela-
tive to the individual wrapping of these particles. Mem-
brane tubules also allow to encapsulate nanoparticles re-
versibly in vesicle membranes. The amount of encapsu-
lated nanoparticles and their release can be controlled by
adjusting the area-to-volume ratio of the vesicles, i.e. by

deflation and inflation of the vesicles induced by changes
in osmotic conditions [57].

2 Model

The spontaneous wrapping of nanoparticles by biomem-
branes results from the interplay of the adhesion energy
FE.q of the particles and the bending energy Ep. of the
membranes. The total energy F is the sum

E = Eye + Faq (1)
of these energies. The bending energy of the membrane
is the integral

Fye = QK/MQ dA (2)
over the area A of the membrane with local mean cur-
vature M and bending rigidity ~ . We focus here on
wrapping scenarios in which the characteristic dimensions
of the particles are much smaller than the inverse spon-
taneous curvature and the characteristic length /x/o of
the membranes where o denotes the membrane tension.
The spontaneous membrane curvature is then negligible,
and the bending energy (2)) dominates over the membrane
tension. The adhesion energy of the particles is

"p
Eoa = /ZV(di)dA
i=1

where V is an adhesion potential that depends on the
local distance d; of the membrane from particle 4, and n,
is the number of particles in contact with the membrane.

®3)

For particles with homogeneous surfaces, the interplay
of bending and adhesion energies during wrapping de-
pends on the size and shape of the particles. The shape
of a prolate particle can be characterized by its aspect
ratio r = b/a where 2b is the distance between the tips of
the particles, and 2a is the smallest distance between the
sides of the particles at the equator. We characterize the
size of a prolate particle by the radius R of the sphere that
has the same surface area as the prolate. The minimum-
energy conformations for the wrapping of prolate particles
depend on the aspect ratio » and on the rescaled adhe-
sion energy u = UR?/k where U is the adhesion energy
per area, i.e. the depth of the adhesion potential V. For
patchy particles with inhomogeneous surface segments,
the wrapping process depends also on the area fraction of
these segments.



3 Results

3.1 Prolate particles with adhesion poten-
tials of negligible range

We first consider the wrapping of single prolate parti-
cles by an initially planar membrane. If the range of the
particle-membrane interaction is negligibly small com-
pared to the typical dimensions of the particle, the mem-
brane around a particle can be divided into a bound mem-
brane segment that is tightly wrapped around a part of
the particle or around the whole particle, and an unbound
membrane segment. Deeply wrapped prolate particles are
oriented perpendicular to the membrane plane as in Fig.
a) in their minimum-energy conformation . In
this orientation, the membrane shape around the parti-
cles is rotationally symmetric, and the unbound mem-
brane segment adopts a catenoidal shape with bending
energy zero for negligible spontaneous curvature ¢, and
tension o of the membrane. The zero bending energy
of the unbound catenoidal segments results from oppo-
sitely equal principal curvatures ¢; = —ca, which lead to
a mean curvature M = (c¢1 + ¢2)/2 = 0. Since the bend-
ing energy and adhesion energy of the unbound catenoidal
membrane segment are zero, the wrapping of the particle
is determined by the interplay of bending and adhesion
in the bound membrane segment.

Fig. [ illustrates how the fraction x of the wrapped
particle area and the minimum total energy depend on
the aspect ratio r for different values of the rescaled ad-
hesion energy u = UR?/x where U is the adhesion en-
ergy per area, R is the radius of a sphere with the same
surface area, and k is the bending energy of the mem-
brane. For a spherical particle with aspect ratio r = 1,
the mean curvature of the bound membrane segment is
M = 1/R where R is the radius of the particle, and
the bending energy is Fp. = 8mxz. The bending en-
ergy Eye is positive and opposes wrapping, while the ad-
hesion energy E.q = —4mR?U x favors wrapping. For
rescaled adhesion energies v > 2 as in Fig. the to-
tal energy E = Epe + Faqa = 4mkx(2 — u) of a spherical
particle with aspect ratio » = 1 is minimal in the fully
wrapped state with = 1. In this fully wrapped state,
the catenoidal membrane neck that connects the wrapped
membrane segment to the surrounding planar membrane
is infinitesimally small.

Prolate particles with aspect ratio » > 1 have a mean
curvature M at their tips that is larger than the mean
curvature 1/R of a sphere with the same surface area, and
a mean curvature at their sides that is smaller than 1/R.
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Figure 2: Individual wrapping of prolate particles for neg-
ligibly small ranges of the particle-membrane interaction:
(a) Minimum-energy membrane profiles for different as-
pect ratios r of the particles at the rescaled adhesion en-
ergy u = 3. (b) Fraction z of the wrapped particle area
and (c) minimum total energy as a function of the aspect
ratio r for different rescaled adhesion energies wu.
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Figure 3: Cooperative wrapping of prolate particles

in membrane tubules for negligibly small ranges of
the particle-membrane interaction: (a) Minimum-energy
membrane profiles around thee central particles in tubules
for different aspect ratios r of the particles at the rescaled
adhesion energy u = 3. (b) Fraction x of the wrapped par-
ticle area and (c) energy gain AFE per particle compared
to individual wrapping as a function of the aspect ratio r
for different rescaled adhesion energies wu.

The mean curvature at the tips increases with the aspect
ratio r. For a given rescaled adhesion energy wu, prolate
particles are fully wrapped for small aspect ratios r <
r1 for which the adhesion energy compensates the local
bending energy cost of wrapping both at the sides and
tips of the particles. For larger aspect ratios r > 71, the
prolate particles are partially wrapped. In the partially
wrapped states of single prolates relevant here, one of
the tips remains unwrapped, which ‘safes’ bending energy
(see Fig.2[a)). The threshold value r1 of the aspect ratio
below which prolate particles are fully wrapped increases
with the rescaled adhesion energy v and attains the values
ry = 1.16 for v = 3, r1 = 1.29 for u = 4, r1 = 1.40 for
u =75, and r1 = 1.49 for u = 6 (see Fig.[2[b)). For aspect
ratios r > r1, the fraction x of the wrapped particle area
decreases because of the increasing bending energy cost
at the tip of the particle. The increase of the minimum
total energy with r shown in Fig. b) results from an
increase of the overall bending energy cost of wrapping
for a given rescaled adhesion energy wu.

How the cooperative wrapping of prolate particles in
tubules depends on the aspect ratio r of the particles is il-
lustrated in Fig. For small aspect ratios r < rq, the par-
ticles are fully wrapped in the tubules, and neighboring
particles are connected by infinitesimally small catenoidal
membrane segments (see profile in Fig. 3f(a) for r = 1).
The energy gain AFE per particle relative to the individ-
ual wrapping is 0 for » < r; because the particles are
fully wrapped both in tubules and as single particles, with
identical total energies. The energy gain AFE is the differ-
ence in total energy for a particle in a tubule and a single
wrapped particle. For aspect ratios r > r1, the particles
are only partially wrapped, and the wrapping in tubules
becomes energetically favorable with negative values of
AE. The energy gain AFE for cooperative wrapping re-
sults from the fact that both tips are unwrapped in the
tubules, which reduces the bending-energy cost of wrap-
ping, compared to individual wrapping for which only one
of the tips is unwrapped (see profiles in Fig. a) and a)
for r > 1).

The fraction z of the wrapped surface area of prolate
particles in tubules is minimal at an aspect ratio 72, which
attains the values ro = 1.62 for v = 3, ro = 1.90 for u = 4,
ro = 2.12 for u = 5, and r2 = 2.30 for u = 6 (see Fig.
b)) The fraction z of the wrapped particle area de-
creases for aspect ratios r with r1 < r < r2, and increases
with increasing aspect ratio for r > ro. For large aspect
ratio r > r2, neighboring particles in the tubes are in di-
rect contact (see profile in Fig. [B[a) for r = 2), and the
unbound membrane segment cannot attain a catenoidal



shape of zero bending energy, because the catenoid does
not ‘fit’ between the particles. For these aspect ratios,
the cooperative wrapping in tubules is determined by the
interplay of the bending energies in both the bound and
unbound membrane segments, and the adhesion energy of
the bound segment. For aspect ratios r with ri < r < ro,
in contrast, neighboring particles in the tubules are not
in direct contact (see profiles in Fig. [3{a) for r = 1.25
and r = 1.5), and the unbound membrane segments are
catenoids.

The energy difference AE per particle between tubu-
lar and individual wrapping is minimal at an aspect ra-
tio 7 larger than ry (see Fig. Bfc)). At these minima,
the cooperative wrapping in tubulus is energetically most
favorable compared to the wrapping as single particles.
The minimal value of AFE slightly decreases with increas-
ing rescaled adhesion energy u, from AE = —3.27x for
u =3 to AE = —3.41k for uw = 6. The location of the
minimum shifts from r = 2.65 for v = 3 to r = 3.54 for
u = 6. For u = 3, the energy gain AFE is only shown for
aspect ratios r < 3.5 because the wrapping of single parti-
cles in the perpendicular orientation becomes unstable for
larger aspect ratios at this rescaled adhesion energy, com-
pared to the unwrapped state with energy 0, or to weakly
wrapped states in which individual prolate particles are
lying with their sides on the membrane [57,/58]. For larger
rescaled adhesion energies u > 4, the total energy in the
perpendicular orientation is negative for aspect ratios up
to r = 5 considered here (see Fig. 2{c)), and thus lower
than the energy zero of the unwrapped state.

3.2 Prolate particles with an adhesion poten-
tial of finite range p

For particles with a characteristic dimensions of tens of
nanometers, the range p of the particle-membrane inter-
action is typically not negligibly small compared to these
particle dimensions. To explore the effect of the potential
range on wapping, we consider here the potential

V(d)=U

(olar-lm) @
2(p+d)?  2(p+d)?

which adopts its minimum value —U at the relative dis-
tance d = 0. The relative distance d = 0 thus corre-
sponds to the equilibrium distance between the particle
surface and a bound membrane site in the absence of other
than adhesive forces. The adhesion potential reflects
Lennard-Jones type interactions between a membrane site
and the whole particle. The parameter p is a character-

istic length that determines the range of the attractive
interactions in the adhesion potential .

Fig. [ illustrates how the wrapping of a single prolate
particle depends on the potential range p and aspect ra-
tio r for the rescaled adhesion energy v = 3. The full
blue lines are for a negligible small potential range p and
correspond to the blue lines in Fig.[2] For finite potential
range p, prolate particles are partially wrapped at all as-
pect ratios r (see Fig. a)). In these partially wrapped
states, one of the particle tips remains unwrapped. For
small values of r close to 1, the fraction x of the wrapped
area decreases with increasing potential range p. For large
values of r, the wrapped area increases with p. The min-
imum total energy E decreases with increasing potential
range p. This decrease of E results from a favorable in-
terplay of bending and adhesion energies in the boundary
region in which the membrane detaches from the parti-
cle [19]. In this boundary region between the bound and
unbound membrane segments, the membrane already ap-
proaches the catenoidal shape of the unbound membrane
segment with zero bending energy, but still gains adhesion
energy due to the finite potential range p. With increas-
ing potential range p, the minimum energy E decreases
because the boundary region between the bound and un-
bound membrane segments becomes wider [19]. Similar
to the wrapping of single particles, the fraction = of the
wrapped area for particles in tubules decreases with in-
creasing potential range p at small values of the aspect
ratio r close to 1 (see Fig.[5[a)). At large values of p, the
wrapped area fraction x increases with p.

The energy difference AE per particle between tubu-
lar and individual wrapping decreases with increasing po-
tential range p for all aspect ratios r (see Fig. [B[b)).
This decrease of AE indicates that cooperative wrapping
becomes more favorable with increasing potential range,
compared to individual wrapping. The energy difference
AFE decreases with p because a particle in the tubule has
two boundary regions between bound and unbound mem-
brane segments, since both tips of the particle are un-
wrapped in the tubule for finite p. In contrast, a single
wrapped particle has only a single boundary region with
favorable interplay between bending and adhesion ener-
gies. For finite potential range p, the energy gain AFE is
nonzero for all aspect ratios r of prolate particles because
the particles then are partially wrapped for all r. Co-
operative wrapping in tubules is energetically favorable
only for partially wrapped particles because the energies
of full wrapping are identical for particles in tubules and
for single particles.
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Figure 4: Individual wrapping of prolate particles for the
particle-membrane interaction potential with charac-
teristic range p: (a) Fraction x of the wrapped particle
area and (b) minimum total enery E as a function of the
aspect ratio r for the rescaled adhesion energy u = 3 and
different values of p. The full blue lines for p = 0 corre-
spond to the blue lines in Fig.[2] The dashed interpolation
lines of the data points for finite p are guides for the eye.

3.3 Triblock Janus particles

The results for prolate particles presented in the previ-
ous sections indicate that the cooperative wrapping in
tubules is energetically favorable if the particles are par-
tially wrapped in their minimum-energy states. Prolate
particles are partially wrapped whenever not wrapping
the more highly curved tips ‘saves energy’, and the co-
operative wrapping in tubules is then favorable because
both tips can remain unwrapped. Cooperative wrapping
in tubules can also be favorable for other particles with
opposing tips or surface segments that ‘resist’ wrapping.
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Figure 5: Cooperative wrapping of prolate particles in
membrane tubules for the particle-membrane interaction
potential @ with characteristic range p: (a) Fraction z
of the wrapped particle area and (b) energy gain AF per
particle compared to individual wrapping as a function of
the aspect ratio r for the rescaled adhesion energy u =3
and different values of p. The full blue lines for p =
0 correspond to the blue lines in Fig. The dashed
interpolation lines of the data points for finite p are guides
for the eye.

This resistance to wrapping can result either (i) from an
increased bending energy cost of wrapping the particle
tips, as in the case of prolate particles or other elongated
particles with more strongly curved tips, or (ii) from low
or vanishing adhesion energies at the opposing tips or
surface segments.

As an example, we consider here spherical triblock
Janus particles with opposing weakly adhesive or nonad-
hesive caps and a more strongly adhesive central surface
segment between these caps. Not wrapping the caps saves
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Figure 6: Minimum-energy profiles of cooperatively
wrapped triblock Janus particles with weakly adhesive
or non-adhesive caps (red) and a rather strongly adhe-
sive central surface segment (blue) for different area frac-
tions y of this segment. In these membrane tubules, the
wrapping degree x of the particles is identical to the area
fraction y of the adhesive central surface segment.

energy if the rescaled adhesion energy wucap at the caps is
smaller than 2, because the bending energy cost of wrap-
ping the caps then is not compensated by the adhesion
energy. In membrane tubules, both caps can remain un-
wrapped, and the overall wrapping degree z is identical to
the area fraction y of the adhesive central surface segment
(see Fig. @ For individually wrapped triblock Janus par-
ticles, the central surface segment is fully covered by the
membrane for sufficiently large adhesion energies of this
segment. However, the individual wrapping of triblock
Janus particle then requires to wrap one of two weakly
adhesive caps, with energy cost 2mk(1 — y)(2 — Ucap) (see
also section 3.1). This energy cost for wrapping a single
cap corresponds to the energy gain for the cooperative
wrapping in tubules, at least for area fractions y of the
adhesive central segment larger than about 0.57 as in Fig.
[6] For such area fractions y, the non-adhering membrane
between neighboring particles adopts a catenoidal shap
with zero bending energy. For smaller area fractions of
the adhesive central segment, catenoids do not fit between
the particles, and the bending energy of the non-adhering
membrane has to be taken into account in the calculation
of the energy gain of cooperative wrapping.

4 Discussion and Conclusions

For prolate particles and triblock Janus particles, the co-
operative wrapping in membrane tubules is highly sta-
ble relative to individual wrapping for all ranges of the
particle-membrane interaction. With increasing interac-
tion range p, the stability of membrane tubules filled
with prolate particles increases. Since typical values of
the bending rigidity x of reconstituted lipid membranes
and of cellular membranes range from 10
kT to 80 kgT, the energy differences AE between tubu-
lar and individual wrapping of prolate particles obtained
from energy minimization are in general large compared
to the thermal energy kpT (see Fig.[3[c)) and [B[b)). For
spherical particles with aspect ratio » = 1, the energy
gain AFE for cooperative wrapping strongly depends on
the range of the particle-membrane interaction, and van-
ishes for negligible interaction range because the particles
then are fully wrapped both in tubules and as individual
particles, with identical minimum energies.

The high stability of particle-filled membrane tubules
implies strongly attractive elastic interactions between
the particles that are mediated by the membrane. In
addition to these membrane-mediated interactions, the
formation of membrane tubules can be affected by direct
interactions between the particles, which are neglected
in our model. In experiments, the direct interactions of
nanoparticles are typically repulsive or only weakly at-
tractive to prevent aggregation in the bulk solution. How-
ever, neighboring particles in tubules need not be in close
contact (see Figs. [fa) and [6]), and repulsive direct in-
teractions only play a role for tubular stability if their
range is comparable to the distance between neighboring
particles in the tubes.

We have focused here on the stability of membrane
tubules and, thus, on equilibrium aspects of the coop-
erative wrapping in tubules. As dynamic processes, the
cooperative wrapping in tubules and the individual wrap-
ping of particles are in competition. It seems reasonable
to assume that particles with large adhesion energies are
first wrapped as single particles as soon as they come in
contact with the membrane. However, these particles are
only partially wrapped in situations in which membrane
tubules are stable, which impedes membrane fission pro-
cesses of the catenoidal membrane neck that connects the
wrapped particle to the surrounding membrane. Such
fission processes in general require fully or nearly fully
wrapped states in which the apposing membranes of the
catenoidal neck are in close contact. In partially wrapped
states, individually wrapped particles are likely to remain



at the membrane, and membrane tubules may eventually
form due to the membrane-mediated interactions between
these particles.
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5 Methods

5.1 Energy minimization for adhesion poten-
tials of negligible range

For particle-membrane interactions with a range that is
negligibly compared to particle dimensions, bound mem-
brane segments tightly adhere to the particle and, thus,
have the same shape as the particle. The shape of a pro-
late particle can be described by

a sin cos ¢
a sinty sin ¢
b cosvy

(9, 9) = 7(9,9) = (4)

with b > a, 0 < ¢ < 27, and 0 < ¥ < w. The aspect
ratio of the prolate is r = b/a. A rotationally symmetric,
bound membrane segment has the bending energy density

Verr? (341 — (r* — 1) cos 21,[))2
K
(1472 — (r2 — 1) cos 2¢)*/?

ebe (V) = (6)

and bending energy Ene = [ ebe(1)) sintp dep, and the ad-
hesion energy density

UR? V8m\/rt —1 — (r2 — 1)2 cos 21
vVrZ —1+r2arcsecr

and adhesion energy Faq = [ €aa(t)sint de, where R is
the radius of a sphere with the same area as the prolate.
A prolate particle is fully wrapped by the membrane if
the total energy density e(1)) = epe(?)) + €ada(?)) is neg-
ative for all ¥. The particle is partially wrapped if e(¢))
is negative at the sides and positive at the tips. For the
individually wrapped prolate particles of Fig. we de-
termine the boundary point 1, between the bound and
unbound segments from the condition e(,) = 0. For
this boundary point, the total energy of an individually
wrapped particle is minimal because the unbound mem-
brane segment adopts a catenoidal shape of zero bending
energy. For cooperatively wrapped prolate particles of
Fig. |3| with aspects ratios 71 < r < r2, the total energy

€ad (W = (7)

is minimal for the two boundary points v, and ™ — ¢, at
which the total energy density e(v) is zero. Particles with
these aspect ratios are partially wrapped, and neighbor-
ing particles in the tubules are connected by catenoidal
membrane segments of zero bending energy. For prolate
particles with aspect ratios r > ra, we use the discrete
energy minimization in cylindrical coordinates described
in the next section to determine the shape of the unbound
membrane segment.

5.2 Energy minimization for adhesion poten-
tials with finite range

For the particle-membrane interaction with a finite
range p, we use a discrete energy minimization to deter-
mine the profiles of the rotationally symmetric membrane
shapes around a single prolate particle and around linear
aggregates of particles in tubules. We use both spherical
and cylindrical coordinates to describe the rotationally
symmetric membrane shapes.

In spherical coordinates, the membrane shapes can be
described by

p() sint cos ¢
p(¢) sin sin ¢
p() cosy

with membrane profile p(¢)) > 0, 0 < ¢ < 27, and 0 <
¢ < 7. In this parametrization, the bending energy
and adhesion energy adopt the form

(6, 9) = 7(¢,9) = (8)

2
B — /M (p(pp” — 2p* = 3p"%) + p'(p* + p°) cot ¥)
(P +p2)* /P +p?
(9)

and
np
Eog = 271'/2 V (di)psin/p? + p2dy (10)
i=1

with p = p(¢), p’ = dp(¥)/dy, and p" = d’p(v)/dy?,
where d; = d; (¢, p(¢)) is the shortest distance of a mem-
brane patch located at ¢ and the surface of particle ¢. For
a prolate particle, this shortest distance is in general not
on the line that connects the membrane patch and the
particle center, and has to be determined numerically.

In cylindrical coordinates, the membrane profiles are
described by the local radial distance r(z) at position z
along the axis of rotation:

r(z) cos ¢
r(z)sin ¢

z

(2, ¢) = (11)

sin 1 dvy



In this parametrization, the bending energy and ad-
hesion energy adopt the form
2

(r(2)r"(2) —r'(2)* — 1)
Fve = K dz
/ r(z) (r'(2)? + 1)5/2

(12)

and
Fat = 27r/ZV(di)r(z)w/1+r’(z)2dz (13)

with d; = di(z,7(2)).
tives with respect to z.

We use cylindrical coordinates to describe the shape
of membrane tubules. Because of the periodicity of the
membrane tubules and symmetry of the particles, we only
consider a tubular membrane segment for half a period of
the membrane profile in our numerical minimization, i.e. a
tubular membrane segment from a maximum of the radial
distance r to the next minimum of r. In this minimiza-
tion, we take into account the adhesion energy of the two
particles adjacent to the minimum of r. To describe the
rotationally membrane shapes around a single prolate, we
use spherical coordinates for the bound membrane seg-
ment that is wrapped around one half of the particle,
and cylindrical coordinates for the remaining bound and
unbound membrane segments. We discretize the profile
functions p(¢) and r(z) of the two parametrizations using
up to 1000 discretization points and express the first and
second derivatives of these functions as finite differences.
The discretization increments At and Az for a single pro-
late are matched by Az = aAv where a is the radius of
the particle’s equator at which we switch the parametriza-
tions. We obtain the minimum-energy shapes then from
a constrained minimization of the total energy with re-
spect to the values p(¢) and r(z) at the discretization
points using the program Mathematica |67].

The primes here indicate deriva-
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