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Efforts to identify meaningful functional imaging-based biomarkers are limited by the ability to reliably characterize
inter-individual differences in human brain function. Although a growing number of connectomics-based measures are
reported to have moderate to high test-retest reliability, the variability in data acquisition, experimental designs, and
analytic methods precludes the ability to generalize results. The Consortium for Reliability and Reproducibility (CoRR) is
working to address this challenge and establish test-retest reliability as a minimum standard for methods development in
functional connectomics. Specifically, CoRR has aggregated 1,629 typical individuals’ resting state fMRI (rfMRI) data
(5,093 rfMRI scans) from 18 international sites, and is openly sharing them via the International Data-sharing
Neuroimaging Initiative (INDI). To allow researchers to generate various estimates of reliability and reproducibility, a
variety of data acquisition procedures and experimental designs are included. Similarly, to enable users to assess the
impact of commonly encountered artifacts (for example, motion) on characterizations of inter-individual variation,
datasets of varying quality are included.
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Background & Summary
Functional connectomics is a rapidly expanding area of human brain mapping1–4. Focused on the study
of functional interactions among nodes in brain networks, functional connectomics is emerging as a
mainstream tool to delineate variations in brain architecture among both individuals and populations5–8.
Findings that established network features and well-known patterns of brain activity elicited via task
performance are recapitulated in spontaneous brain activity patterns captured by resting-state fMRI
(rfMRI)3–6,9–12, have been critical to the wide-spread acceptance of functional connectomics applications.

A growing literature has highlighted the possibility that functional network properties may explain
individual differences in behavior and cognition4,7,8—the potential utility of which is supported by studies
that suggest reliability for commonly used rfMRI measures13. Unfortunately, the field lacks a data
platform by which researchers can rigorously explore the reliability of the many indices that continue to
emerge. Such a platform is crucial for the refinement and evaluation of novel methods, as well as those
that have gained widespread usage without sufficient consideration of reliability. Equally important is the
notion that quantifying the reliability and reproducibility of the myriad connectomics-based measures
can inform expectations regarding the potential of such approaches for biomarker identification13–16.

To address these challenges, the Consortium for Reliability and Reproducibility (CoRR) has
aggregated previously collected test-retest imaging datasets from more than 36 laboratories around the
world and shared them via the 1000 Functional Connectomes Project (FCP)5,17 and its International
Neuroimaging Data-sharing Initiative (INDI)18. Although primarily focused on rfMRI, this initiative has
worked to promote the sharing of diffusion imaging data as well. It is our hope that among its many
possible uses, the CoRR repository will facilitate the: (1) Establishment of test-retest reliability and
reproducibility for commonly used MR-based connectome metrics, (2) Determination of the range of
variation in the reliability and reproducibility of these metrics across imaging sites and retest study
designs, (3) Creation of a standard/benchmark test-retest dataset for the evaluation of novel metrics.

Here, we provide an overview of all the datasets currently aggregated by CoRR, and describe the
standardized metadata and technical validation associated with these datasets, thereby facilitating
immediate access to these data by the wider scientific community. Additional datasets, and richer
descriptions of some of the studies producing these datasets, will be published separately (for example, A
high resolution 7-Tesla rfMRI test-retest dataset with cognitive and physiological measures19). A list of all
papers describing these individual studies will be maintained and periodically updated at the CoRR
website (http://fcon_1000.projects.nitrc.org/indi/CoRR/html/data_citation.html).

Methods
Experimental design
At the time of submission, CoRR has received 40 distinct test-retest datasets that were independently
collected by 36 imaging groups at 18 institutions. All CoRR contributions were based on studies approved
by a local ethics committee; each contributor’s respective ethics committee approved submission of de-
identified data. Data were fully deidentified by removing all 18 HIPAA (Health Insurance Portability and
Accountability)-protected health information identifiers, and face information from structural images
prior to contribution. All data distributed were visually inspected before release. While all samples
include at least one baseline scan and one retest scan, the specific designs and target populations
employed across samples vary given the aggregation strategy used to build the resource. Since many
individual (uniformly collected) datasets have reasonably large sample sizes allowing stable test-retest
estimates, this variability across datasets provides an opportunity to generalize reliability estimates across
scanning platforms, acquisition approaches, and target populations. The range of designs included is
captured by the following classifications:

● Within-Session Repeat.

o Scan repeated on same day
o Behavioral condition may or may not vary across scans depending on sample

● Between-Session Repeat.

o Scan repeated one or more days later
o In most cases less than one week

● Between-Session Repeat (Serial).

o Scan is repeated for 3 or more sessions in a short time-frame that is believed to be developmentally stable

● Between-Session Repeat (Longitudinal developmental).

o Scan repeated at a distant time-point not believed to be developmentally equivalent. There is no exact
definition of the minimum time for detecting developmental effects across scans, though designs typically
span at least 3–6 months
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● Hybrid Design.

o Scans repeated one or more times on same day, as well as across one or more sessions

Table 1 presents an overview of the specific samples included in CoRR (Data Citations 1–31). The vast
majority included a single retest scan (48% within-session, 52% between-session). Three samples employed
serial scanning designs, and one sample had a longitudinal developmental component. Most samples
included presumed neurotypical adults; exceptions include the pediatric samples from Institute of
Psychology at Chinese Academy of Sciences (IPCAS 2/7), University of Pittsburgh School of Medicine
(UPSM) and New York University (NYU) and the lifespan samples from Nathan Kline Institute (NKI 1).

Data Records
Data privacy
Prior to contribution, each investigator confirmed that the data in their contribution was collected with
the approval of their local ethical committee or institutional review board, and that sharing via CoRR was
in accord with their policies. In accord with prior FCP/INDI policies, face information was removed from
anatomical images (FullAnonymize.sh V1.0b; http://www.nitrc.org/frs/shownotes.php?release_id= 1902)
and Neuroimaging Informatics Technology Initiative (NIFTI) headers replaced prior to open sharing to
minimize the risk of re-identification.

Distribution for use
CoRR data sets can be accessed through either the COllaborative Informatics and Neuroimaging Suite
(COINS) Data Exchange (http://coins.mrn.org/dx)20, or the Neuroimaging Informatics Tools and
Resources Clearinghouse (NITRC; http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html). CoRR
datasets at the NITRC site are stored in .tar files sorted by site, each containing the necessary imaging data
and phenotypic information. The COINS Data Exchange offers an enhanced graphical query tool, which
enables users to target and download files in accord with specific search criteria. For each sharing venue, a
user login must be established prior to downloading files. There are several groups of samples which were
not included in the data analysis as they were in the data contribution/upload, preparation or correction
stage at the time of analysis: Intrinsic Brain Activity, Test-Retest Dataset (IBATRT), Dartmouth College
(DC 1), IPCAS 4, Hangzhou Normal University (HNU 2), Fudan University (FU 1), FU 2, Chengdu Huaxi
Hospital (CHH 1), Max Planck Institute (MPG 1)19, Brain Genomics Superstruct Project (GSP) and New
Jersey Institute of Technology (NJIT 1) (see more details on these sites at the CoRR website). Table 1
provides a static representation of the samples included in CoRR at the time of submission.

Imaging data
Consistent with its popularity in the imaging community and prior usage in FCP/INDI efforts, the NIFTI
file format was selected for storage of CoRR imaging datasets, independent of modalities such as rfMRI,
structural MRI (sMRI) and dMRI. Tables 2–4 (available online only) provide descriptions of the MRI
sequences used for the various modalities for each of the imaging data file types.

Phenotypic information
All phenotypic data are stored in comma separated value (.csv) files. Basic information such as age and
gender has been collected for each site to facilitate aggregation with minimal demographic variables.
Table 5 (available online only) depicts the data legend provided to CoRR contributors.

Technical Validation
Consistent with the established FCP/INDI policy, all data contributed to CoRR was made available to
users regardless of data quality. Justifications for this decision include the lack of consensus within the
functional imaging community on criteria for quality assurance, and the utility of ‘lower quality’ datasets
for facilitating the development of artifact correction techniques. For CoRR, the inclusion of datasets with
significant artifacts related to factors such as motion are particularly valuable, as it enables the
determination of the impact of such real-world confounds on reliability and reproducibility21,22.
However, the absence of screening for data quality in the data release does not mean that the inclusion of
poor quality datasets in imaging analyses is routine practice for the contributing sites. Figure 1 provides a
summary map describing the anatomical coverage for rfMRI scans included in the CoRR dataset.

To facilitate quality assessment of the contributed samples and selection of datasets for analyses by
individual users23, we made use of the Preprocessed Connectome Project quality assurance protocol
(http://preprocessed-connectomes-project.github.io), which includes a broad range of quantitative
metrics commonly used in the imaging literature for assessing data quality, as follows. They are
itemized below:

● Spatial Metrics (sMRI, rfMRI)

o Signal-to-Noise Ratio (SNR)24. The mean within gray matter values divided by the standard deviation
of the air values.

www.nature.com/sdata/

SCIENTIFIC DATA | 1:140049 | DOI: 10.1038/sdata.2014.49 3



Site N Age Range (Mean) % Female Retest Period DOI

Within Session—Single Retest

IPCAS (Liu)—Frames of Reference [IPCAS 4] 20 21–28 (23.1) 50 44 min http://dx.doi.org/10.15387/fcp_indi.corr.ipcas4

IPCAS (Zuo)—Intrasession [IPCAS 7] 74 6–17 (11.6) 57 8 min http://dx.doi.org/10.15387/fcp_indi.corr.ipcas7

NYU (Castellanos) [NYU 1] 49 19.1–48 (30.3) 47 60 min http://dx.doi.org/10.15387/fcp_indi.corr.nyu1

Southwest (Chen)—Stroop [SWU 3] 24 18–25 (20.4) 34 90 min http://dx.doi.org/10.15387/fcp_indi.corr.swu3

Southwest (Chen)—Emotion [SWU 2] 27 18–24 (20.9) 33 32 min http://dx.doi.org/10.15387/fcp_indi.corr.swu2

Site N Age Range (Mean) % Female # Retests (Mean) Retest Period Range (Mean Interval) DOI

Within Session—Multiple Retest

Beijing Normal (Zang) [BNU 3] 48 18–30 (22.5) 50 2 (2) 0–8 min (4 min) http://dx.doi.org/10.15387/fcp_indi.corr.bnu3

Berlin (Margulies) [BMB 1] 50 19.9–59.7 (30.8) 52 1 or 3 (1.4) 10–25min (8.3 min) http://dx.doi.org/10.15387/fcp_indi.corr.bmb1

IPCAS (Wei) [IPCAS 5] 22 18–19 (18.3) 0 1 or 2 (1.5) 10–40 min (30 min) http://dx.doi.org/10.15387/fcp_indi.corr.ipcas5

Site N Age Range (Mean) % Female Retest Period Range (Mean) DOI

Between Sessions—Single Retest

IACAS (Jiang) [IACAS 1] 28 19–43 (26.4) 55 20–343 Days (75.2 Days) http://dx.doi.org/10.15387/fcp_indi.corr.iacas1

Munich (Blautzik)—Yearly [LMU 3] 25 59–88 (69.8) 36 315–463 Days (399.6 Days) http://dx.doi.org/10.15387/fcp_indi.corr.lmu3

Beijing Normal (He) [BNU 1] 57 19–30 (23) 47 33–55 Days (40.9 Days) http://dx.doi.org/10.15387/fcp_indi.corr.bnu1

Beijing Normal (Liu) [BNU 2] 61 19.3–23.3 (21.3) 46 103–189 Days (160.5 Days) http://dx.doi.org/10.15387/fcp_indi.corr.bnu2

IPCAS (Zuo)—Tai Chi [IPCAS 8] 13 50–62 (57.6) 46 367–810 Days (516 Days) http://dx.doi.org/10.15387/fcp_indi.corr.ipcas8

Nanjing (Lu) [JHNU 1] 30 20–40 (23.3) 30 0–900 Days (202.6 Days) http://dx.doi.org/10.15387/fcp_indi.corr.jhnu1

Southwest (Qiu) [SWU 4] 235 17–27 (20) 49 121–653 Days (302.1 Days) http://dx.doi.org/10.15387/fcp_indi.corr.swu4

NKI (Milham) [NKI 1] 24 19–60 (34.4) 75 14 Days (14 Days) http://dx.doi.org/10.15387/fcp_indi.corr.nki1

IPCAS (Jiang) [IPCAS 2] 35 11–15 (13.3) 65 7–59 Days (33.6 Days) http://dx.doi.org/10.15387/fcp_indi.corr.ipcas2

MRN (Mayer, Calhoun) [MRN 1] 54 10–53 (24.9) 50 7–158 Days (109 Days) http://dx.doi.org/10.15387/fcp_indi.corr.mrn1

Site N Age Range (Mean) % Female # Retests (Mean) Retest Period Range (Mean Interval) DOI

Between Sessions—Multiple Retest

Hangzhou (Weng) [HNU 1] 30 20–30 (24.4) 50 9 (9) 3–40 Days (3.65 Days) http://dx.doi.org/10.15387/fcp_indi.corr.hnu1

Pittsburgh (Luna) [UPSM 1] 100 10.1–19.7 (15.1) 48 1 or 2 (1.23) 473–1,404 Days (521 Days) http://dx.doi.org/10.15387/fcp_indi.corr.upsm1

Munich (Blautzik)—Young Adult [LMU 1] 27 20–29 (24.3) 48 4 or 5 (4.7) 120–600 min (120min) http://dx.doi.org/10.15387/fcp_indi.corr.lmu1

Munich (Blautzik)—Aging [LMU 2] 40 20–79 (50.8) 45 3 (3) 150–450 min (150min) http://dx.doi.org/10.15387/fcp_indi.corr.lmu2

Xuanwu (Li, Lu) [XHCUMS 1] 25 36–62 (52.05) 36 4 (4) 12–197 Days (77.6 Days) http://dx.doi.org/10.15387/fcp_indi.corr.xhcums1

Within + Between Sessions Within Between

Site N Age Range
(Mean)

%
Female

# Retests
(Mean)

Retest Period Range (Mean
Interval)

Retest Period Range (Mean
Interval)

DOI

IPCAS (Zuo)—3 Day [IPCAS 6] 2 21 & 25 50 44 (44) 10–22min (11.3 min) 83–3,298 min (210min) http://dx.doi.org/10.15387/fcp_indi.corr.ipcas6

IBATRT (La Conte) [IBA TRT 1] 36 19–48 (26.8) 51 1 or 3 (1.4) 10 min (10 min) 51–183 Days (115.4 Days) http://dx.doi.org/10.15387/fcp_indi.corr.ibatrt1

IPCAS (Fu) [IPCAS 1] 30 18–24 (20.9) 30 3 (3) 29 min (29 min) 5–24 Days (13.9 Days) http://dx.doi.org/10.15387/fcp_indi.corr.ipcas1

IPCAS (Liu)—Conflict Adaptation
[IPCAS 3]

36 17–25 (21) 34 1 or 3 (1.3) 40 min (40 min) 1-2 Days (1.4 Days) http://dx.doi.org/10.15387/fcp_indi.corr.ipcas3

NYU (Di Martino) [NYU 2] 187 6.47–55.03 (20.2) 38 1, 2, 3, or 5
(1.6)

9–132 min (25.5 min) 1–203 Days (85.9 Days) http://dx.doi.org/10.15387/fcp_indi.corr.nyu2

Utah (Anderson)—Longitudinal [Utah
1]

26 8–39 (20.2) 0 2 (2) 0 min (0 min) 733–1,187 Days (928.4 Days) http://dx.doi.org/10.15387/fcp_indi.corr.utah1

Southwest (Chen)—Attentional Blink
[SWU 1]

20 19–24 (21.5) 30 5 (5) 20 min (20 min) 20–2,900min (1,460 min) http://dx.doi.org/10.15387/fcp_indi.corr.swu1

Montreal (Bellec) [UM 1] 80 55–84 (65.4) 27 3 (3) 1 min (1 min) 74–194 Days (111.4 Days) http://dx.doi.org/10.15387/fcp_indi.corr.um1

Utah Single [Utah 2] 1 39 0 100 (100) 1 min (1 min) 0–4 Days (1.75 Days) http://dx.doi.org/10.15387/fcp_indi.corr.utah2

Wisconsin (Birn) [UWM 1] 25 21–32 (24.9) 44 2 (2) 30 min (30 min) 56–314 Days (110.4 Days) http://dx.doi.org/10.15387/fcp_indi.corr.uwm1

Table 1. CoRR sites and experimental design.

www.nature.com/sdata/

SCIENTIFIC DATA | 1:140049 | DOI: 10.1038/sdata.2014.49 4



o Foreground to Background Energy Ratio (FBER)
o Entropy Focus Criteria (EFC)25. Shannon’s entropy is used to summarize the principal directions

distribution.
o Smoothness of Voxels26. The full-width half maximum (FWHM) of the spatial distribution of image

intensity values.
o Ghost to Signal Ratio (GSR) (only rfMRI)27. A measure of the mean signal in the ‘ghost’ image (signal

present outside the brain due to acquisition in the phase encoding direction) relative to mean signal
within the brain.

o Artifact Detection (only sMRI)28. The proportion of voxels with intensity corrupted by artifacts
normalized by the number of voxels in the background.

o Contrast-to-Noise Ratio (CNR) (only sMRI)24. Calculated as the mean of the gray matter values minus
the mean of the white matter values, divided by the standard deviation of the air values.

● Temporal Metrics (rfMRI)

o Head Motion
▪ Mean framewise displacement (FD)29. A measure of subject head motion, which compares the motion
between the current and previous volumes. This is calculated by summing the absolute value of
displacement changes in the x, y and z directions and rotational changes about those three axes. The
rotational changes are given distance values based on the changes across the surface of a 50 mm radius
sphere.

▪ Percent of volumes with FD greater than 0.2 mm
▪ Standardized DVARS. The spatial standard deviation of the temporal derivative of the data (D referring
to temporal derivative of time series, VARS referring to root-mean-square variance over voxels)29,
normalized by the temporal standard deviation and temporal autocorrelation (http://blogs.warwick.ac.
uk/nichols/entry/standardizing_dvars).

o General
▪ Outlier Detection. The mean fraction of outliers found in each volume using 3dTout command in the
software package for Analysis of Functional NeuroImages (AFNI: http://afni.nimh.nih.gov/afni).

▪ Median Distance Index. The mean distance (1-spearman’s rho) between each time-point’s volume and
the median volume using AFNI’s 3dTqual command.

▪ Global Correlation (GCOR)30. The average of the entire brain correlation matrix, which is computed as
the brain-wide average time series correlation over all possible combinations of voxels.

Imaging data preprocessing was carried out with the Configurable Pipeline for the Analysis of
Connectomes (C-PAC: http://www.nitrc.org/projects/cpac). Results for the sMRI images (spatial metrics)
are depicted in Supplementary Figure 1, for the rfMRI scans in Supplementary Figure 2 (general spatial
and temporal metrics) and Supplementary Figure 3 (head motion). For both sMRI and rfMRI, the battery
of quality metrics revealed notable variations in image properties across sites. It is our hope that users will
explore the impact of such variations in quality on the reliability of data derivatives, as well as potential
relationships with acquisition parameters. Recent work examining the impact of head motion on

Figure 1. Summary map of brain coverage for rfMRI scans in CoRR (N= 5,093). The color indicates the

coverage ratio of rfMRI scans.
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reliability suggests the merits of such lines of questioning. Specifically, Yan and colleagues found that
motion itself has moderate test-retest reliability, and appears to contribute to reliability when low, though
it compromises reliability when high31–33. Although a comprehensive examination of this issue is beyond
the scope of the present work, we did verify that motion does have moderate test-retest reliability in the
CoRR datasets (see Figure 2) as previously suggested. Interestingly, this relationship appeared to be
driven by the lower motion datasets (mean FDo0.2mm). Future work will undoubtedly benefit from
further exploration of this phenomena and its impact of findings.

Beyond the above quality control metrics, a minimal set of rfMRI derivatives for the datasets were
calculated for the datasets included in CoRR to further facilitate comparison of images across sites:

o Fractional Amplitude of Low Frequency Fluctuations (fALFF)34,35. The total power in the low frequency
range (0.01–0.1 Hz) of an fMRI image, normalized by the total power across all frequencies measured
in that same image.

o Voxel-Mirrored Homotopic Connectivity (VMHC)36,37. The functional connectivity between a pair of
geometrically symmetric, inter-hemispheric voxels.

o Regional Homogeneity (ReHo)38–40. The synchronicity of a voxel’s time series and that of its nearest
neighbors based on Kendall’s coefficient of concordance to measure the local brain functional
homogeneity.

o Intrinsic Functional Connectivity (iFC) of Posterior Cingulate Cortex (PCC)41. Using the mean time
series from a spherical region of interest (diameter= 8 mm) centered in PCC (x=− 8, y=− 56,
z= 26)42, functional connectivity with PCC is calculated for each voxel in the brain using Pearson’s
correlation (results are Fisher r-to-z transformed).

To enable rapid comparison of derivatives, we: (1) calculated the 50th, 75th, and 90th percentile scores
for each participant, and then (2) calculated site means and standard deviations for each of these scores
(see Table 6 (available online only)). We opted to not use increasingly popular standardization
approaches (for example, mean-regression, mean centering +/− variance normalization) in the
calculation of derivative values, as the test-retest framework provides users a unique opportunity to
consider the reliability of site-related differences. As can be seen in Supplementary Figure 4, for all the
derivatives, the mean value or coefficient of variation obtained for a site was highly reliable. In the case of
fALFF, site-specific differences can be directly related to the temporal sampling rate (that is, TR; see
Figure 3), as lower TR datasets include a broader range of frequencies in the denominator—thereby
reducing the resulting fALFF scores (differences in aliasing are likely to be present as well). This note of
caution about fALFF raises the general issue that rfMRI estimates can be highly sensitive to acquisition
parameters7,13. Specific factors contributing to differences in the other derivatives are less obvious (it is

Figure 2. Test-retest plots of in-scanner head motion during rfMRI. Total 1019 subjects who have at least two

rfMRI sessions are selected. The green line indicates the correlation between the two sessions within the lower

motion datasets (mean FDo0.2 mm). The blue line indicates the correlation for the higher motion datasets

(mean FD >0.2 mm).
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important to note that the correlation-based derivatives have some degree of standardization inherent to
them). Interestingly, the coefficient of variation across participants also proved to be highly reliable
for the various derivatives; while this may point to site-related differences in the ability to detect
differences across participants, it may also be some reflection of the specific populations obtained at a site
(or the sample size). Overall, these site-related differences highlight the potential value of post-hoc
statistical standardization approaches, which can be used to handle unaccounted for sources of variation
within-site as well43.

Finally, in Figure 4, we demonstrate the ability of the CoRR datasets to: (1) replicate prior work
showing regional differences in inter-individual variation for the various derivatives that occur at
‘transition zones’ or boundaries between functional areas (even after mean-centering and
variance normalization), and (2) show them to be highly reproducible across imaging sessions
in the same sample. It is our hope that this demonstration will spark future work examining inter-
individual variation in these boundaries and their functional relevance. These surface renderings
and visualizations are carried out with the Connectome Computation System (CCS) documented at
http://lfcd.psych.ac.cn/ccs.html and will be released to the public via github soon (https://github.com/
zuoxinian/CCS).

To facilitate replication of our work, for each of Figures 1–3 and Supplementary Figures 1–4, we
include a variable in the COINS phenotypic data that indicates whether or not each dataset was included
in the analyses depicted. We also included this information in the phenotypic files on NITRC.

Usage Notes
While formal test-retest reliability or reproducibility analyses are beyond the scope of the present data
description, we illustrate the broad range of potential questions that can be answered for rfMRI, dMRI
and sMRI using the resource. These include the impact of:

● Acquisition parameters7,38,44

● Image quality13

● Head motion7,30,38,43,45

● Image processing decisions13,30,38,43,46–48 (for example, nuisance signal regression for rfMRI, spatial
normalization algorithms, computational space)

● Standardization approaches43

● Post-hoc analytic choices13,49,50

● Age51–53

Of note, at present, the vast majority of studies do not collect physiological data, and this is reflected in
the CoRR initiative. With that said, recent advances in model-free correction (for example, ICA-FIX54,55,
CORSICA56, PESTICA57, PHYCAA58,59) can be of particular value in the absence of physiological data.

Figure 3. Individual differences in fALFF and the temporal sampling rate (TR). Median fALFF values across

each individual whole brains are plotted against the corresponding TR for each site. Different colors indicate

labels of different sites.
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Additional questions may include:

● How reliable are image quality metrics?
● How does reliability and reproducibility impact prediction accuracy?
● How do imaging modalities (for example, rfMRI, dMRI, sMRI) differ with respect to reproducibility

and reliability? And within modality, are some derivatives more reliable than others?
● Can reliability and reproducibility be used to optimize imaging analyses? How can such optimizations

avoid being driven by artifacts such as motion?
● How much information regarding inter-individual variation is shared and distinct among imaging

metrics?
● Which features best differentiate one individual from another?

One example analytic framework that can be used with the CoRR test-retest datasets is
Non-Parametric Activation and Influence Reproducibility reSampling (NPAIRS60). By combining
prediction accuracy and reproducibility, this computational framework can be used to assess the relative
merits of differing image modalities, image metrics, or processing pipelines, as well as the impact of
artifacts61–63.

Open access connectivity analysis packages that may be useful (list adapted from http://RFMRI.org):

● Brain Connectivity Toolbox (BCT; MATLAB)64

Figure 4. Test-retest plots of individual variation-related functional boundaries. Detection of functional

boundaries was achieved via examination of voxel-wise coefficients of variation (CV) for fALFF, PCC, ReHo

and VMHC maps. For the purpose of visualization, coefficients of variation were rank-ordered, whereby the

relative degree of variation across participants at a given voxel, rather than the actual value, was plotted to

better contrast brain regions. Ranking coefficients of variation (R-CV) efficiently identified regions of greatest

inter-individual variability, thus delineating putative functional boundaries.
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● BrainNet Viewer (BNV; MATLAB)65

● Configurable Pipeline for the Analysis of Connectomes (C-PAC; PYTHON)66

● CONN: functional connectivity toolbox (CONN; MATLAB)67

● Connectome Computation System (CCS; SHELL/MATLAB)13,38,39

● Dynamic Causal Model (DCM; MATLAB) as part of Statistical Parameter Mapping (SPM)68,69

● Data Processing Assistant for Resting-State FMRI (DPARSF; MATLAB)70

● Functional and Tractographic Connectivity Analysis Toolbox (FATCAT; C) as part of AFNI71,72

● Seed-based Functional Connectivity (FSFC; SHELL) as part of FreeSurfer73

● Graph Theory Toolkit for Network Analysis (GRETNA; MATLAB)74

● Group ICA of FMRI Toolbox (GIFT; MATLAB)75

● Multivariate Exploratory Linear Optimized Decomposition into Independent Components
(MELODIC; C) as part of FMRIB Software Library (FSL)76,77

● Neuroimaging Analysis Kit (NIAK: MATLAB/OCTAVE)78

● Ranking and averaging independent component analysis by reproducibility (RAICAR; MATLAB)79,80

● Resting-State fMRI Data Analysis Toolkit (REST; MATLAB)81
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