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    Chapter 20   

 Systematic Localization and Identifi cation of SUMOylation 
Substrates in Knock-In Mice Expressing Affi nity-Tagged 
SUMO1                     

     Marilyn     Tirard      and     Nils     Brose      

  Abstract 

   Protein SUMOylation is a posttranslational protein modifi cation that is emerging as a key regulatory process 
in neurobiology. To date, however, SUMOylation in vivo has only been studied cursorily. Knock-in mice 
expressing His 6 -HA-SUMO1 from the  Sumo1  locus allow for the highly specifi c localization and identifi ca-
tion of endogenous SUMO1 substrates under physiological and pathophysiological conditions. By making 
use of the HA-tag and using wild-type mice for highly stringent negative control samples, SUMO1 targets 
can be specifi cally localized in and purifi ed from cultured mouse nerve cells and mouse tissues.  
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1      Introduction 

  SUMOylation   is a reversible, highly dynamic posttranslational protein 
modifi cation [ 1 ]. The consequences of SUMOylation depend on 
the target protein, and include alterations of protein localization, 
enzymatic activity, solubility, stability, or interactions [ 2 – 4 ]. In 
view of  this   broad functional relevance of SUMOylation, immense 
efforts have focused over the past two decades on the biochemical 
enrichment of  SUMO   targets using anti-SUMO antibodies [ 5 ], 
heterologous expression of tagged SUMOs [ 6 ,  7 ],  Ubc9   fusion-
dependent SUMOylation [ 8 ], or SUMO-interaction motif 
domains [ 9 ,  10 ]. Combined with mass  spectrometric   identifi cation 
of candidate proteins, these studies have provided a huge resource 
of information on SUMO substrates—often including the identifi -
cation of relevant modifi ed lysine residues—and established pro-
tein SUMOylation as a crucial posttranslational protein modifi cation 
that operates in every eukaryotic cell to regulate its growth, prolif-
eration, differentiation, and function [ 7 ,  11 – 13 ]. 
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 Unfortunately, however, the analysis of endogenous 
SUMOylation in complex tissues and organisms, such as mouse 
brain, liver, or heart, has remained challenging. This is a substantial 
concern, not least because growing evidence indicates an important 
role of SUMOylation in human diseases that can partly be modeled 
in genetically modifi ed mice, particularly in neurodegenerative dis-
orders. Consequently, several mutant mouse models have been 
developed to  study   SUMOylation in vivo [ 14 – 21 ]. However, most 
methods described so far focus on enriching SUMOylated protein 
species for further proteomic analysis, and only few methods are 
available to combine the specifi c localization of endogenously 
SUMOylated protein species with their enrichment. As a conse-
quence, the exact subcellular distribution of endogenous SUMO 
targets in cells—especially in neurons—is highly debated. 

 To allow for the precise analysis of the localization of endoge-
nous  SUMO1   targets and their stringent enrichment, we generated 
His 6 -HA-SUMO1 knock-in (KI) mice that express His 6 -HA-
SUMO1 from the endogenous  Sumo1  locus, so that overexpression 
artifacts can be largely excluded [ 15 ]. Additionally, these KI mice 
facilitate the localization and enrichment of SUMO1 substrates 
because anti-HA antibodies usually have higher epitope affi nities 
than anti-SUMO1 antibodies and thus provide better signal-to-noise 
ratios. Further, cells or tissues from wild-type (WT) mice provide 
highly stringent negative controls when compared to KI material, 
which boosts the confi dence in corresponding results. Finally, the 
His 6 -HA-SUMO1 line can be crossed into any disease model, thus 
providing the opportunity to study SUMO1 conjugation in a pleth-
ora of disease-relevant processes. These are clear advantages of the 
His 6 -HA-SUMO1 KI mice over other tools that make them a very 
useful model system for the analysis of SUMOylation. 

 Our own research focus is on SUMOylation in neurons for 
which we used the His 6 -HA-SUMO1 KI model and WT controls. 
We thus describe step-by-step methods to (1) enrich SUMO1 sub-
strates from His 6 -HA-SUMO1 KI mouse brain for subsequent 
proteomic analysis, based on an anti-HA immunopurifi cation pro-
tocol, and to (2) study SUMO1 localization in mouse neurons and 
brain sections. These methods are generally applicable and can be 
easily adapted to other cell types and tissues. The KI mice can be 
obtained from us freely, based on an MTA.  

2    Materials 

      Radioimmunoprecipitation assay (RIPA) buffer, 150 mM NaCl, 
20 mM Tris–HCl pH 7.4 (at 4 °C), 1 % (w/v) Triton X-100, 0.5 % 
(w/v) Na-deoxycholate, 0.1 % (w/v) sodium dodecyl sulfate 
(SDS).  RIPA   should be made fresh and cooled at 4 °C.  Protease   
inhibitors (see below) are added shortly before lysis.  

2.1   Immuno-
precipitation  
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  Laemmli SDS-polyacrylamide gel electrophoresis (PAGE) sample 
buffer, 50 mM Tris–HCl pH 6.8, 2 % SDS (w/v), 0.1 % (w/v) 
bromophenol blue, 10 % (v/v) glycerol, 10 mM dithiothreitol 
(DTT, added freshly).  

  Glycine elution buffer, 0.1 M glycine-HCl pH 2.  
  Bead storage buffer, 20 mM Tris–HCl pH 7.5 (at 4 °C), 100 mM 

NaCl, 0.1 mM ethylenediaminetetraacetic acid (EDTA), 
0.09 % (w/v) NaN 3 .  

  Protease  inhibitors  : Aprotinin dissolved in water as a 500 μg/ml 
stock solution and used at a fi nal concentration of 0.5 μg/ml, 
leupeptine dissolved in water as a 1 mg/ml stock solution and 
used at a fi nal concentration of 1 μg/ml, phenylmethylsulfonyl 
(PMSF) dissolved in isopropanol as a 17.4 mg/ml stock solu-
tion and used at a fi nal concentration of 17.4 μg/ml,   N - 
ethylmaleimide (NEM)   dissolved in DMSO as a 1 M stock 
solution and used at a fi nal concentration of 20 mM.  

  Ultrasonic homogenizer (e.g., Bandelin Sonopuls HD2200, 
tapered tip KE76).  

  100 % (w/v) methanol.  
  100 % (w/v) chloroform.  
  HA peptide (custom made).  
  Chromatography  columns   (10 ml reservoir).  
  Peristaltic pump.     
  Anti-HA beads.  
  50 ml Falcon tubes.  
  1.5 ml Eppendorf tubes.  
  Porcelain mortar and pestle.  
  Liquid N 2 .  
  Precast gels (e.g., Invitrogen 4–12 % BisTris).  
  Eppendorf Thermomixer.  
  Benchtop centrifuge (e.g., Eppendorf 5416, fi xed-angle rotor).  
  Ultracentrifuge (e.g., Beckmann Coulter Optima L-70, rotor 

50.2Ti).  
  Shaker.     

      1× PBS, 137 mM NaCl, 2.7 mM KCl, 10 mM Na 2 HPO 4 , 1.8 mM 
KH 2 PO 4 , pH 7.4.  
  Blocking  and   antibody buffer, 1× PBS, 5 % (v/v) goat serum, 0.3 % 

(w/v) Triton X-100.  
   Slides   (ThermoScientifi c, SuperFrost Plus).  
  Mounting medium containing DAPI.  

2.2   Immunostaining  
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  Cover slips.  
  Anti-HA antibody.  
  Secondary goat anti-mouse Alexa-Fluo 555 antibody.      

3    Methods 

   The following procedure has been optimized for mouse brain but 
can also be used in order to enrich SUMOylated protein species 
from other  mouse tissues   such as heart or liver. Detergent extrac-
tion conditions can be altered depending on the tissue and target 
proteins to be recovered. 

       1.    Kill mice by cervical dislocation.   
   2.    On ice, quickly remove brains from His 6 -HA-SUMO1 KI and 

WT mice and remove brainstem.   
   3.    Flash-freeze brains in liquid N 2 .   
   4.    Grind each brain to fi ne  powder   using a precooled porcelain 

pestle and a precooled porcelain mortar fi lled with liquid N 2 .   
   5.    Transfer frozen  powder   to a 50 ml Falcon tube.   
   6.    Once all liquid N 2  has evaporated, add 10 ml of fresh, ice-cold 

RIPA buffer supplemented with protease  inhibitors  .   
   7.    Triturate samples by pipetting up and down until complete 

dissolution of the powder.   
   8.    Sonicate samples on ice for 15 s, 8-pulsed cycles, 75 % of power.   
   9.    Ultracentrifuge samples (100,000 ×  g , 1 h, 4 °C). Carefully 

remove supernatants for further use.   
   10.    During ultracentrifugation, sediment 0.5 ml of anti-HA beads 

into a plastic chromatography column and wash with 10 ml of 
RIPA buffer to equilibrate the beads.      

       1.    Put the supernatant obtained after ultracentrifugation into a 
50 ml Falcon tube and add fresh  NEM   to a fi nal concentration 
of 20 mM. Take a small aliquot and keep on ice for later analy-
sis (Input sample, INP).   

   2.    For effi cient depletion of SUMOylated protein species from 
the lysates, pump samples over the column for 12 h at a fl ow 
rate of 1 ml/min in the cold room ( see   Note    1  ).   

   3.    After 12 h, take an aliquot of the lysate and keep on ice for later 
analysis (fl ow-through sample, FT).   

   4.    Drain the column of lysate until the meniscus of the lysate 
almost reaches the column bed (do not let column run dry). 
Then wash the beads with 40 ml of RIPA containing fresh 
protease  inhibitors   and  NEM  . Once all the washing buffer has 
passed through the column, start with the elution.      

3.1   Immuno-
precipitation  

3.1.1  Preparation 
of Brain Lysate 
and Chromatography 
Column

3.1.2  Immunoaffi nity 
Binding and Washing 
of the Column

Marilyn Tirard and Nils Brose



295

       1.    Take 3 mg of lyophilized HA-peptide from −20 °C and let it 
warm up to room temperature for 30 min.   

   2.    Add 600 μl of water to make a stock solution of 5 mg/ml. Mix 
well until peptides are completely dissolved.   

   3.    Add 5.4 ml of RIPA to make  elution   buffer at a peptide con-
centration of 0.5 mg/ml. Keep at room temperature.   

   4.    Carefully resuspend the washed beads in the column with 
RIPA buffer and transfer them to a fresh 2 ml Eppendorf tube.    
Pellet the beads by centrifuging gently (1000 ×  g , 3 min, room 
temperature). Carefully remove with a 1 ml pipet all buffer on 
top of beads.   

   5.    Add 1.5 ml of elution buffer to each bead aliquot and shake 
(1400 rpm) in the Thermomixer at 30 °C.   

   6.    Pellet the beads by centrifugation (1000 ×  g , 3 min, room tem-
perature), transfer the fi rst eluate to a fresh tube, and keep on 
ice.   

   7.    Add another 1.5 ml of elution buffer to the beads and repeat 
elution as described above. A syringe with a 24 G needle can 
be used to remove all the eluate without taking beads.   

   8.    Pool both eluates and centrifuge at maximum speed (23,100 ×  g , 
5 min, room temperature) to remove eventual residues of 
beads. Again, a syringe with a 24 G needle can be used to 
remove all the eluate without taking beads.   

   9.    From here onwards, eluates can be precipitated and separated 
on SDS-PAGE ( see  Subheading  3.1.4 ) or eluates can be further 
submitted to Ni- NTA   chromatography ( see   Note    2  ).      

    All steps are performed at the bench at room temperature.

    1.    Prepare 300 μl aliquots of pooled eluate in 1.5 ml Eppendorf 
tubes.   

   2.    Add 400 μl of methanol and vortex for 10 s.   
   3.    Add 200 μl of chloroform and vortex for 10 s.   
   4.    Add 400 μl of  distilled   water and vortex for 10 s.   
   5.    Centrifuge (5000 ×  g , 3 min, room temperature).   
   6.    Remove upper phase but  leave   interphase undisturbed as it 

contains proteins.   
   7.    Add 400 μl of methanol and vortex for 10 s.   
   8.    Centrifuge (23,100 ×  g , 5 min, room temperature).   
   9.    Remove supernatant and leave pellet undisturbed.   
   10.    Let the pellet dry at room temperature (~10 min).   
   11.    Pool all pellets in a fi nal volume of 50 μl of Laemmli SDS- 

PAGE sample buffer.      

3.1.3  Elution

3.1.4  Precipitation 
of Proteins from Eluates

In vivo Analysis of SUMOylation using His6-HA-SUMO1 Knock-In Mice
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       1.    After elution, resuspend beads in PBS and transfer back to the 
column.   

   2.    Drain the PBS and add 20 bead volumes of glycine elution 
buffer.   

   3.    Immediately re-equilibrate the beads with 20 bead volumes of 
PBS.   

   4.    For storage, drain equilibration buffer and add 20 bead volumes 
of storage buffer, close the column tightly, and keep at 4 °C.   

   5.    Beads can be reused 3–4 times for Western  blot   purposes ( see  
 Note    3  ).      

       1.     Western blotting  
    The effi ciency of the anti-HA  affi nity purifi cation   is deter-

mined by Western blotting (Fig.  1 ). In this example, proteins 
containing an HA tag were effi ciently bound to the matrix as 
revealed by a reduced anti-HA signal in the fl ow-through (FT) 
fraction as compared to the input fraction (INP). Anti-HA sub-
strates were enriched in eluate  fractions   of the His 6 -HA- 
SUMO1 sample (EL KI) but not the WT sample (EL WT). 
Putative SUMO1-conjugated protein candidates are validated 
by a Western blotting approach as well. For example, 
SUMOylated forms of RanGAP1 and KAP1 were enriched in 
eluates from KI as compared to WT (Fig.  2 ).

3.1.5  Bead Recovery

3.1.6  Analysis of Purifi ed 
Proteins

WB: SUMO1 Coomassie

Free SUMO1 

RanGAP1 

WT KI
EL

WT KI
EL

WB: Actin 

WB: HA

170
130

95
72

55

43
34
26
17

kDa 

EL
WT KI

INP
WT KI

FT
WT KI

  Fig. 1    Anti-HA  affi nity purifi cation   of HA-SUMO1 conjugates from P10 wild-type 
(WT)    and His 6 -HA-SUMO1 KI mouse brain (KI). Input (INP), fl ow-through (FT), and 
eluate fractions (EL) were analyzed by SDS-PAGE followed by either Coomassie 
staining ( right ) or  Western blotting   ( left ) using anti-HA and anti-SUMO1 antibodies       
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        2.     Mass    Spectrometry    
 A possible follow-up procedure  for   proteomic analysis is 

described elsewhere [ 22 ]. Coomassie staining of SDS-PAGE 
gels loaded with HA peptide eluate fractions from WT mice 
reveals binding of contaminant proteins to the beads, but 
increased levels of protein material corresponding to enriched 
His 6 -HA-SUMO1 targets are seen in eluate fractions from 
His 6 -HA-SUMO1 KI mouse brain (Fig.  1 ).       

     As regards the immunostaining of His 6 -HA-SUMO1-conjugated pro-
teins, we focus on the specifi c features of the KI mouse model. We only 
provide a summary of general routine techniques such as perfusion 
fi xation of mice, neuron culture, and fi xation of cultured neurons, and 
refer to the published literature for more details [ 23 ,  24 ].

    1.      PFA     fi xation of mouse brain  
 His 6 -HA-SUMO1 KI mice and WT littermate are fi rst briefl y 

anesthetized using isofl urane and then deeply anesthetized using 
Avertin. Mice are transcardiacally perfused with 4 % cold PFA in 
0.1 M PB. Brains are then post-fi xed for 1 h in 4 % PFA in 0.1 M 
PB at 4 °C and then placed in 30 % sucrose in 0.1 M PB. Brains 
are then frozen either on dry ice or directly in the cryostat prior 
to cutting 30 μm thick sections ( see   Note    4  ). Sections are kept in 
PBS with 0.09 % azide at 4 °C until further use.   

   2.     Primary neuron culture  
 Hippocampal or cortical neurons from His 6 -HA-SUMO1 KI 

and WT littermates are prepared form newborn animals.    Brain 
regions of interest (hippocampi or cortex) are carefully dissected 
out and digested for 45 min in a papain solution (25 units/ml) at 

3.2   Immunostaining  

3.2.1  Sample 
Preparation

  Fig. 2    Western blot analysis of the SUMO1 substrates RanGAP1 and KAP1 after 
anti-HA  immunoaffi nity purifi cation   from WT and His 6 -HA-SUMO1 KI adult mice 
brain. Input material (from WT) and anti-HA peptide eluates of HA-immunopurifi ed 
samples from WT and His 6 -HA-SUMO1 KI were analyzed by Western blot using 
either anti-RanGAP1 ( top ) or anti-KAP1 ( bottom ) antibodies       
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37 °C with gentle shaking. Papain is then inactivated by incubating 
the samples in stop solution containing 2.5 mg/ml bovine serum 
albumin, 2.5 % (wt/vol) ovalbumin, and 10 % (vol/vol) fetal 
bovine serum for 15 min at 37 °C with gentle shaking. Hippocampi 
or cortex pieces are then triturated in neurobasal  medium   comple-
mented with B27. Neurons are then plated on poly- l -lysine-coated 
cover slips at a density of 13,000 cells per cm 2 . After 14 days 
in vitro, neurons are fi xed on ice for 10 min using 4 % PFA in PBS 
with gentle shaking. Cover slips are then washed three times with 
PBS and kept in PBS at 4 °C until used.    

         1.    Incubate brain section or cover slip with neurons in 200 μl of 
blocking/permeabilization buffer for 1 h at room temperature 
with gentle shaking ( see   Note    5  ).   

   2.    Remove blocking solution and incubate samples either overnight 
at 4 °C (brain sections) or for 2 h at room temperature (neurons 
on cover slips) with 200 μl blocking/permeabilization solution 
containing anti-HA primary antibody at a fi nal dilution of 1:1000.   

   3.    Carefully remove the primary antibody buffer and slowly add 
0.5 ml of PBS. Shake gently for 10 min at room temperature.   

   4.    Repeat the washing step described above (3) at least three times.   
   5.    Remove washing buffer and incubate samples with 200 μl 

blocking/permeabilization solution containing Alexa-goat 
anti-mouse 555 at a fi nal dilution of 1:2000 for 2 h (brain sec-
tions) or for 1 h (neurons on cover slips) at room temperature 
with gentle shaking.   

   6.    Carefully remove the buffer with primary antibodies and add 
0.5 ml of PBS. Shake gently for 10 min at room temperature.   

   7.    Repeat the washing step described above (3) at least three times.      

       1.     Mounting free - fl oating sections 

   (a)    Fill up a large glass petri dish with PBS and carefully trans-
fer  brain   sections into it using a thin brush.   

  (b)     Submerge   the glass slide below the brain section.   
  (c)    With a thin brush, mount and fl atten the brain section on 

the slide.   
  (d)    Slowly remove the slide with the brain section from the 

PBS solution.   
  (e)    Let sample dry for a few minutes by holding the slide 

vertically.   
  (f)    Add a small drop of mounting medium to the partially 

dried brain section without touching.   
  (g)    Cover with a cover slip slowly, avoiding air bubble formation.   

3.2.2  Immuno-labeling 
HA

3.2.3  Mounting 
and Imaging
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  (h)    Let dry overnight at 4 °C. Imaging can proceed on the 
next day.    

      2.     Mounting cover slips 

   (a)     Place   a small drop of mounting medium on a slide.   
  (b)    Carefully and slowly reverse the cover slip of stained  neu-

rons   onto the drop of mounting medium, avoiding air 
bubble formation.   

  (c)    Leave overnight at 4 °C to dry. Imaging can proceed on 
the next day.    

         Image acquisition is performed as described [ 15 ]. Briefl y, confocal 
laser-scanning microscope Leica SP2 or SP5 was used to acquire serial 
confocal images. Settings (gain and offset) were kept constant for a 
given staining and genotypes to allow for fl uorescence intensity com-
parison. High-resolution analysis of anti-HA labeling of His 6 -HA-
SUMO1 brain sagittal sections (Fig.  3 ) or cultured neurons (Fig.  4 ) 
revealed a strong nuclear and nuclear envelope labeling of cells as 
compared to WT. Line scanning through cell bodies and dendrites of 
triple-labeled CA3 hippocampal neurons using anti-HA, anti-MAP2, 
and anti-Synapsin 1 antibodies showed that extra nuclear His 6 -HA-
SUMO1 conjugates are not localized at synapses (Fig.  3 , white arrow), 
an observation that was further confi rmed by double  immunostaining   
of primary hippocampal neurons using anti-HA and anti-Synapsin 1 
(Fig.  4 , white arrow).

3.2.4  Imaging

  Fig. 3    Localization of His 6 -HA-SUMO1 conjugates in the cytosol and the nucleus of CA3 hippocampal  neurons   
of His 6 -HA-SUMO1 mice. Sagittal brain sections from KI ( a ) and WT ( b ) mice were stained using antibodies to 
HA ( red ), Synapsin 1 ( green ; presynaptic terminals), and MAP2 ( blue ; neuronal dendrites). The  white line  shows 
the orientation of the scan used to generate the image stacks shown in side view on the  right  and  bottom . 
Scale bar, 10 μm. The white arrows indicate that extra nuclear His6 -HA-SUMO1 conjugates are not localized 
at synapses       
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4               Notes 

     1.    For higher enrichment of His 6 -HA-SUMO1 targets, it is 
recommended to use a chromatography-based procedure 
instead of a batch adsorption protocol.   

   2.    A two-step purifi cation ( nickel-nitrilotriacetic acid (Ni-NTA)   
combined with anti-HA  affi nity purifi cation  )  successfully   enriches 
His 6 -HA-SUMO1 substrates for Western  blot   analysis as com-
pared to WT but does not yield enough material for routine pro-
teomics analysis, independently of whether the Ni-NTA 
chromatography is performed before or after anti-HA affi nity 
chromatography. The reason for this is the loss of proteins when 
changing between biological and denaturing buffers. Additionally, 
single Ni-NTA chromatography to enrich His 6 -HA- SUMO1 
substrates from His 6 -HA-SUMO1 KI and WT leads to major 
nonspecifi c binding [ 16 ]. Therefore, we recommend performing 
the Ni-NTA chromatography as a second purifi cation step. A 
detailed description of our Ni-NTA chromatography protocol 
from mouse brain is described elsewhere [ 25 ].   

   3.    When a mass  spectrometric   comparative analysis of WT and 
His 6 -HA-SUMO1 KI material is planned, a fresh batch of 
beads should be used.   

   4.    Isopentane freezing of mouse brains did not result in proper 
staining of RanGAP1 at the nuclear pore complex.   

   5.    We do not recommend using digitonine for the permeabiliza-
tion of neurons, as in our hands it does not prevent the strong 
labeling of the nuclear envelope and leads to poor labeling of 
neuronal synapses with antibodies to synaptic markers.         

  Fig. 4    Localization of His 6 -HA-SUMO1 conjugates in the cytosol and nucleus of His 6 -HA-SUMO1 KI neurons. 
Images of KI ( left ) and WT control ( right panel ) primary hippocampal neurons are shown. Neurons were stained 
using antibodies to HA ( red ) and Synapsin 1 ( green ; presynaptic terminals). Scale bar, 10 μm. The white arrow 
indicates that extra nuclear His 6  -HA-SUMO1 conjugates are not localized at synapses       
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