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In this letter we extend the so-called typicality approach, originally formulated in statistical
mechanics contexts, to SU(2) invariant spin network states. Our results do not depend on the
physical interpretation of the spin-network, however they are mainly motivated by the fact that
spin-network states can describe states of quantum geometry, providing a gauge-invariant basis for
the kinematical Hilbert space of several background independent approaches to quantum gravity.
The first result is, by itself, the existence of a regime in which we show the emergence of a typical
state. We interpret this as the prove that, in that regime there are certain (local) properties of
quantum geometry which are “universal”. Such set of properties is heralded by the typical state, of
which we give the explicit form. This is our second result. In the end, we study some interesting
properties of the typical state, proving that the area-law for the entropy of a surface must be satisfied
at the local level, up to logarithmic corrections which we are able to bound.

I. INTRODUCTION

In recent years, quantum statistical mechanics and
quantum information theory have played an increasingly
central role in quantum gravity. Such interplay has
proved particularly insightful both in the context of the
holographic duality in AdS/CFT [1–5], as well as for the
current background independent approaches to quantum
gravity, including loop quantum gravity (LQG) [6, 7], the
related covariant path-integral spin-foam formulation [8],
and group field theory [9].

Interestingly, the different background independent ap-
proaches today share a microscopic description of space-
time geometry given in terms of discrete, pre-geometric
degrees of freedom of combinatorial and algebraic na-
ture, based on spin-network Hilbert spaces [10–13]. In
this context then, entanglement has provided a new tool
to characterise the quantum texture of space-time in
terms of the structure of correlations of the spin networks
states.

Along this line, several recent works have considered
the possibility to use specific features of the short-range
entanglement in quantum spin networks (area law, ther-
mal behaviour) to select quantum geometry states which
may eventually lead to smooth spacetime geometry clas-
sically [14–18]. This analysis typically concentrated on
states with few degrees of freedom, leaving open the ques-
tion of whether a statistical characterisation may reveal
new structural properties, independent from the inter-
pretation of the spin network states.

This letter proposes the use of the information theoret-
ical notion of quantum canonical typicality, as a statisti-
cal tool to characterise universal local features of quan-
tum geometry, going beyond the physics of states with
few degrees of freedom.

In quantum statistical mechanics, canonical typicality
states that almost every pure state of a large quantum
mechanical system is such that its reduced density matrix
over a sufficiently small subsystem is approximately in
the canonical state descibed by a thermal distribution à

la Gibbs [19–21].
However, most interestingly, such a statement goes be-

yond the thermal behaviour. For a generic closed system
in a quantum pure state, not described by an eigenstate
of some hamiltonian, but still subject to some global con-
straint, the resulting canonical description will not be
thermal, but generally defined in relation to the set of
constraints considered [22]. Again, in this case, some spe-
cific properties of the system emerge at the local level,
regardless of the nature of the global state. These prop-
erties depend on the physics encoded in the choice of the
global constraints.

Within this generalised framework, we exploit the no-
tion of typicality to study whether and how “universal”
statistical features of the local correlation structure of a
spin-network state emerge in relation with the choice of
the constraints defining the reduced canonical state of
the system.

We focus our analysis on the space of the N -valent
SU(2) invariant intertwiners, which are the building
blocks of the spin network states. In LQG, such inter-
twiners can be thought of dually as a region of 3d space
with an S2 boundary [11].

We reproduce the typicality statement in the full space
of N -valent intertwiners with fixed total area and we in-
vestigate the statistical behaviour of the canonical re-
duced state, dual to a small patch of the S2 boundary,
in the large N limit. Eventually, we study the entropy
of such a reduced state and its area scaling behaviour in
different thermodynamic regimes.

The content of the letter is organised as follows. Sec-
tion II introduces the statement of canonical typicality in
a formulation particularly suitable for the spin network
Hilbert space description. Section III shortly reviews the
notion of state of quantum geometry in terms of spin
network basis in the kinematic Hilbert space of LQG.
In Section IV we reformulate the statement of quantum
typicality in this context. We derive the notion of canon-
ical reduced state of the N -valent intertwiner spin net-
work system in Section V and we prove the existence
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of a regime of typicality for such system in Section VI.
The entropy of the typical state and its thermodynam-
ical interpretation are investigated in Section VII. We
conclude in Section VIII with a short discussion of our
results. Technical details are given in the Appendices.

II. THE STATEMENT OF TYPICALITY

In quantum statistical mechanics, canonical typicality
states that a typical state of a small subsystem is well
approximated by the canonical ensemble. For a random
pure state from an energy shell (E , E + δE),

|φ〉 =
∑
n

cn|En〉 En ∈ (E , E + δE) (1)

the corresponding reduced density matrix ρSφ = trE |φ〉〈φ|
for a sufficiently small subsystem S (whose complement
is denoted as E) satisfies

ρSφ ' ΩS (2)

where ΩS = trE [ρmicro] is the reduction of the micro-
canonical density matrix ρmicro defined for the same en-
ergy shell. The system is assumed to be large while the
shell width δE very small compared with E , but much
larger than typical level spacings. In this sense, despite
being a purely kinematic statement, canonical typicality
can be used as a tool to explain the emergence of statis-
tical ensembles [23].

The thermal form of the canonical state for the system
is determined, in the standard statistical setting, by the
energy constraints imposed on the state of the full sys-
tem. However, the statement of canonical typicality is
more general as it does not refer to the hamiltonian and
thus applies universally to all systems.

For a generic closed system (small system S and suffi-
ciently large environment E) in a quantum pure state,
subject to a completely arbitrary global constraint R,
thermalization results from entanglement between the
system and the environment [22].

This can be realized quantum mechanically by restrict-
ing the allowed states of the system and environment to
a subspace HR of the total Hilbert space:

HR ⊆ HE ⊗HS (3)

where HS and HE are the Hilbert spaces of the system
and environment, with dimensions dS and dE respec-
tively. In this setting, given an arbitrary pure state from
φ ∈ HR, the reduced state ρS ≡ TrE [|φ〉 〈φ|] will almost
always be very close to the canonical state ΩS .

The canonical state of the system,

ΩS ≡ TrE [IR]. (4)

is obtained by tracing out the environment from micro-
canonical (maximally mixed) state IR, defined as

IR ≡
1R
dR

(5)

where 1R is the projection operator onto HR, and
dR = dimHR. This corresponds to assigning a priori
equal probabilities to all states of the universe consistent
with the constraints R.

Concretely, such a behaviour can be stated as a theo-
rem [22], showing that for an arbitrary ε > 0, the distance
between the reduced density matrix of the system ρS(φ)
and the canonical state ΩS is given probabilistically by

Vol [φ ∈ HR |D(ρS(φ),ΩS) ≥ η]

Vol [φ ∈ HR]
≤ η′ (6)

where the trace-distance D is a metric 1 on the space of
the density matrices [24], while

η′ = 4 Exp

[
− 2

9π3
dRε

2

]
, η = ε+

1

2

√
dS
deff
E

, (7)

with the environment effective dimension defined as

deff
E ≡

1

TrE

[
(TrSIR)

2
] ≥ dR

dS
. (8)

The bound in Eq. (6) states that the fraction of the vol-
ume of the states which are far away from the canonical
state ΩS more than η decreases exponentially with the
dimension of the “allowed Hilbert space” dR = dimHR
and with ε2 =

(
η − 1

2

√
dS
deffE

)2

. This means that, as the

dimension of the Hilbert space dR grows, there is a huge
fraction of states which is concentrated around the canon-
ical state.

The proof of the result relies on the concentration of
measure phenomenon. The key argument of the above
result consists in the Levy-lemma, which we report for
completeness in Appendix A.

The goal of the paper is to reproduce this argument
for a peculiar class of high dimensional quantum systems,
the quantum spin network states. These states provide a
gauge-invariant basis for the kinematical Hilbert space of
several different background independent approaches to
quantum gravity, including loop quantum gravity, spin-
foam gravity and group field theories.

III. STATES OF QUANTUM GEOMETRY

In loop quantum gravity, the spin network states pro-
vide a kinematical description of quantum geometry, in
terms of superpositions of graphs Γ labelled by group or
Lie algebra elements representing holonomies of the grav-
itational connection and their conjugate triad [6, 11].

1 We use the definition D(ρ1, ρ2) = 1
2

√
(ρ1 − ρ2)†(ρ1 − ρ2).



3

These states are constructed as follows. To each edge
e ∈ Γ, one associates SU(2) irreducible representations
(irrep) labelled by a half-integer je ∈ N/2 called spin.
The representation (Hilbert) space is denoted V je and
has a dimension dje = 2je + 1. To each vertex v of
the netwwork, one attaches an intertwiner Iv, which is
SU(2)-invariant map between the representation spaces
V je associated to all the edges e meeting at the vertex v,

Iv :
⊗

e ingoing

V je →
⊗

e outgoing

V je (9)

One can alternatively consider Iv as a map from
⊗e∈vV je → C ' V 0 and call the intertwiner an invariant
tensor or a singlet state between the representations at-
tached to all the edges linked to the considered vertex.
Once the je’s are fixed, the intertwiners at the vertex v
actually form a Hilbert space, which we will call

Hv ≡ Intv[
⊗
e

V je ] (10)

A spin network state |Γ, {je}, {Iv}〉 is defined as the
assignment of representation labels je to each edge and
the choice of a vector |{Iv}〉 ∈ ⊗vHv for the vertices.
The spin network state defines a wave function on the
space of discrete connections SU(2)E/SU(2)V ,

φ{je},{Iv}[ge] = 〈he|Iv〉 ≡ tr
⊗
e

Dje(he)⊗
⊗
v

Iv (11)

where we contract the intertwiners Iv with the (Wigner)
representation matrices of the group elements ge in the
chosen representations je.

Therefore, upon choosing a basis of intertwiners for
every assignment of representations je, the spin networks
provide a basis of the space of wave functions associated
to the graph Γ,

HΓ = L2[SU(2)E/SU(2)V ] =
⊕
{je}

⊗
v

Hv. (12)

Such discrete and algebraic objects provide a descrip-
tion of the fundamental excitations of quantum space-
time. From a geometrical point of view, classically, given
a cellular decomposition of a three-dimensional manifold,
a spin-network graph with a node in each cell and edges
connecting nodes in neighbouring cells is said to be dual
to this triangulation. Therefore, each edge of the graph
is dual to a surface patch intersecting the edge and the
half-integer defines the area of such patch. Analogously,
vertices of a spin network can be dually thought of as
chunks of volume.

In the following, we will focus on a fundamental build-
ing block of a spin network graph, the Hilbert space of a
single intertwiner with N legs.

IV. THE SPIN NETWORKS SETTING

Along with the approach of Section II, we consider a
large quantum system given by a simple example of spin

network state. Our system consists in a collection of N
edges, represented by N independent edges states. The
Hilbert space of the system is the direct sum over {ji}’s of
the tensor product of N irreducible representations V ji ,

H =
⊕
{ji}

N⊗
i=1

V ji . (13)

This set of independent edges plays the role of the “uni-
verse”. Notice that, despite its extreme simplicity, this
system has a huge Hilbert space. The single representa-
tion space V j has finite dimension dji = 2ji+1.However,
dj is summed over all {ji}’s. Therefore each Wilson line
state (edge) lives in an infinite dimensional Hilbert space.
In the following, we will always consider a cut-off in the
value of the SU(2) representation labelling the edge,

⊕
{ji}

→
ji≤Jmax⊕
{ji}

, with Jmax � 1. (14)

This will allow us to deal with a very large but finite
dimensional space.

Now, we want to divide the universe into system
and environment. We do so simply by defining two
subsets of edges E and S, with {1, · · · , k} ∈ S and
{k + 1, · · · , N} ∈ E, such that k � N . Consequently,
we can write the universe Hilbert space as the tensor
product H = HE ⊗HS .

The next step toward typicality consists in restricting
the allowed states of the system and environment to a
subspace of the total Hilbert space.

A. Constrained system

We define the constrained subspace by restricting to
the space of SU(2) invariant states in H. This choice
reduces the universe Hilbert space to the collection of
the SU(2)-invariant linear spaces

HN =
⊕
{ji}

InvSU(2)[

N⊗
i=1

V ji ],

spanned by N -valent intertwiner states. Invariance under
SU(2) is the the first constraining ingredient defining our
subsystem.

The Hilbert space of the N -valent intertwiners natu-
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j1j2

. . .

. . .

jN

ji

Figure 1. The N -legged intertwiner system describes a closed
2-sphere pierced by N edges. The N (oriented) edges are
dual to the elementary N surfaces comprising the surface of
the sphere. The intertwiner contains information on how the
elementary surfaces, dual to the links, are combined together
to form a surface boundary of the space region dual to the
node [6, 7].

rally decomposes into subspaces of constant total area2

HN =
⊕
{ji}

InvSU(2)[

N⊗
i=1

V ji ] (15)

=
⊕
J∈N

⊕
{ji|

∑
l ji=J}

InvSU(2)[

N⊗
i=1

V ji ] =
⊕
J

H(J)
N

We further constrain our system by considering only
the invariant tensor product Hilbert space, with total spin
fixed to J = J0 (see Fig. 1).

Eventually, the constrained Hilbert space is given by

HR ≡ H(J0)
N =

⊕
{ji|

∑
l ji=J0}

InvSU(2)

[
n⊗
i=1

V ji

]
⊆ H.

(16)

It was proven in [26] that each subspace H
(J)
N of N -

valent intertwiners with fixed total area J carries an irre-
ducible representation of U(N). This remark will prove
of fundamental importance in the forthcoming argument.
In this context, one can interpret the total area as the to-
tal area dual to the set of N legs of the intertwiner. In
the semiclassical limit, one can then think of this system
dually as a closed surface with area J0 � l2P , the Planck
scale.

2 The choice of a linear area spectrum j × l2P is favoured by the
forthcoming approach involving the U(N) structure of the inter-
twiner space.

B. A basis for the bipartite space

Once the constrained space has been defined, we need
a proper basis for the bipartite universe to define the re-
duced states of the system and environment under study.
Following the notation in [27], it is useful to look first at
the decomposition of the tensor product space in Eq. (13)
in direct sums of irreducible representations, for fixed
{ji}’s ⊗

i

V ji =
⊕
q

V q ⊗ d{ji}q , (17)

where d
{ji}
q is the degeneracy space of states with spin

q, depending on the {ji}’s. Here one can define a basis

vectors of d
{ji}
q , |αq〉, with the αq label running from 1

to dSq = dim d
{ji}
q .

Analogously, the product space HE ⊗ HS would de-
compose as

HE ⊗HS =
⊕
q,r

(V q ⊗ V r)⊗ (d{jS}q ⊗ d{jE}r ).

In this decomposition, due to the SU(2) invariance,
the constrained Hilbert space is written as a single direct
sum over q = r,

HE,SN ≡
⊕
q

(d{jS}q ⊗ d{jE}q ). (18)

The expression above corresponds to unfolding the in-
tertwiner state (spin-0 state) on a graph with two vertices
associated with two non gauge invariant tensors inter-
twining the edges in E and S separately, together with
an internal edge linking these two vertices and carrying
a representation q.

Then for fixed {ji}’s, a suitable basis for such decom-
position is given by the vectors [27]

|q, ηq, σq〉 = (19)

1√
2q + 1

q∑
m=−q

(−1)q−m|q,−m, ηq〉E ⊗ |q,m, σq〉S .

When we turn on the constrained sum over the {ji}’s,
the constrained Hilbert space decomposition reads

HJ0N ≡
⊕
JS≤J0

⊕
| ~JS |

 JS⊕
{jS}

d
| ~JS |,{jS}
k ⊗

J0−JS⊕
{jE}

d
| ~JS |,{jE}
N−k

 .

(20)

where we use the short notation ⊕(J0) to indicate the
sum over configurations {jE , jS} satisfying the constraint∑
i ji = J0.
Each subspace now has fixed total area JS , (JS − J0)

and closure defect | ~JS |. Again we can describe each sub-
space in terms of a U(N) irreducible representation cor-
responding to intertwiners states between the k, (N − k)
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boundary edges and a fictious extra link carrying the clo-

sure defect | ~JS |.
Now, we can use a coupling scheme in which we first

couple all the irreps within the system and the enviro-
ment, respectively and then we couple the system with
the enviroment. We start with vectors∣∣∣{jE , jS}; ηE , σS ; | ~JE |, | ~JS |; | ~JT | = MT = 0

〉
(21)

where ηE and σS are the recoupling quantum numbers
necessary to write SU(2) irreps into a coupled basis.
However, we want the environment and the system to
be decoupled. Using the Clebsh-Gordan coefficients〈

j1,m1; j2,m2

∣∣∣{j1, j2}; | ~JT | = 0,MT = 0
〉

= (22)

= δj1;j2δ−m1;m2

(−1)j1−m1

√
2j1 + 1

generally written here for two SU(2) irreps, we wrote
each one of these vectors in a semi-decoupled basis in
which all the spins within the system and within the envi-
ronment, respectively, are coupled, but the environment
and the system are not. The semi-decoupled basis reads

∑
MS ,ME

(−1)|
~JE |−ME√

2| ~JS |+ 1

∣∣∣{jE}; ηE ; | ~JE |,ME

〉
E

(23)

⊗
∣∣∣{jS};σS ; | ~JS |,MS

〉
S
δ−ME ,MS

δ| ~JS |,| ~JE |,

V. REDUCED STATE OF THE SYSTEM

The maximally mixed state on HR is defined as the
only state compatible with the constraint and with the
“a priori equal probabilities” principle. This is formally
given by

ER ≡
1

dR
1R =

1

dR
PR, (24)

where now the PR operator projects states of ⊗lHjl onto
the SU(2) gauge invariant subspace with fixed total spin
number. Using the semi-decoupled basis introduced in
the previous paragraph, we can write the projector as

PR =

(J0)∑
{jE ,jS}

∑
ηE ,σS

∑
| ~JS |,MS ,M ′S

(−1)MS+M ′S

dJS
·

·
∣∣∣{jE , jS}; ηE , σS ; | ~JS |,−MS ; | ~JS |,MS

〉
(25)

⊗
〈
{jE , jS}; ηE , σS ; | ~JS |,−M ′S ; | ~JS |,M ′S

∣∣∣
The dimension of the constrained Hilbert space dR ≡

dim(HR) counts the degeneracy of the N -valent inter-
twiners with fixed total spin J0. Given the equivalence

between the space H(J0)
N of N -valent intertwiners with

fixed total area
∑
i ji = J0 (including the possibility of

trivial SU(2) irreps) and the irreducible representation
of U(N) formalism for SU(2) intertwiners [26], dR can
be calculated as the dimension of the equivalent maxi-
mum weight U(N) irrep with Young tableaux given by
two horizontal lines with equal number of cases J0,

dR =
1

J0 + 1

(
N + J0 − 1

J0

)(
N + J0 − 2

J0

)
(26)

A. The Canonical state

The canonical reduced state is defined as the partial
trace of ER over the environment,

ΩS ≡ TrE ER

The easiest way to perform the partial trace is to use
the coupled basis for the environment, i.e. the set of

quantum numbers
(
{jE}, ηE , | ~JE |,ME

)
. This gives

ΩS =
1

dR

(J0)∑
{jE ,jS}

∑
ηE ,σS

∑
| ~JS |,| ~JE |,MS

δ| ~JS |,| ~JE |

dJS∣∣∣{jS}, σS , | ~JS |,MS

〉〈
{jS}, σS , | ~JS |,MS

∣∣∣ (27)

In order to evaluate the canonical weight, we need to
single out the sums over the environment quantum num-
bers. The constrained sum can be written as3

(J0)∑
{jE ,jS}

→
∑

JS≤J0/2

(JS)∑
{jS}

(J0−JS)∑
{jE}

(28)

Therefore, by summing over the environment quantum
numbers, we get

ΩS =
∑

JS≤J0/2

∑
σS ,| ~JS |,MS

JS∑
{jS}

D(N−k)(| ~JS |, J0 − JS)

dJS dR
·

(29)

·
∣∣∣{jS}, σS , | ~JS |,MS

〉〈
{jS}, σS , | ~JS |,MS

∣∣∣
The canonical weight, given by

D(N−k)(| ~JS |, J0 − JS) ≡
(J0−JS)∑
{jE}

∑
ηE

∑
| ~JE |

δ| ~JS |,| ~JE |,

counts the degeneracy of the space
⊕J0−JS
{jE} D

| ~JS |,{jE}
N−k ,

defined by a fixed value of the environment total area

3 Given k � N − k, the bound JS ≤ J0/2 enforces the condition
JE ≥ JS .
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j1

. . .
. . .

jN

ji

jk

jk+1

. . .

Figure 2. A local patch of the 2d sphere (in red), associated
to a subset of intertwined links {j1, · · · , jk} defining the “sys-
tem”. The “environment” is identified with the complemen-
tary 2d-surface associated to the set of links {jk+1, · · · , jN},
with N � k.

JE = J0 − JS and a fixed total spin (closure defect)

| ~JE | = | ~JS |, as described in Eq. (20). This dimension
can be calculated again by using the U(N) formalism, in
terms of the dimension of the corresponding non trivial
U(N) irreps [26],

dimRl1,l2N =
l1 − l2 + 1

l1 + 1

(
N + l1 − 1

l1

)(
N + l2 − 2

l2

)
(30)

In our notation, for the environment we have l1 + l2 =

2JE while | ~JE | = l1−l2
2 . Then, for each subspace with

given fixed quantum numbers of the system, we have

D(N−k)(| ~JE |, JE) ≡ 2| ~JE |+ 1

JE + | ~JE |+ 1
·

·
(

(N − k) + JE + | ~JE | − 1

JE + | ~JE |

)(
(N − k) + JE − | ~JE | − 2

JE − | ~JE |

)
(31)

We define WE ≡ D(N−k)(| ~JS |, J0 − JS), and WS ≡
D(k)(| ~JS |, JS), the dimension for the system degeneracy

space with fixed area JS and closure defect | ~JS |, derived
from the equivalent U(N) representation as for the case
of the environment in Eq. (31).

In these terms, we can easily check that the reduced
state is correctly normalised4

Tr[ΩS ] =
1

dR

∑
JS≤J0/2

∑
| ~JS |

WSWE = 1. (32)

The canonical weight WE encodes all the information
about the local structure of correlations of the reduced

4 Notice that the sum over MS canceled the factor dJS
in Eq. (30).

intertwiner state. The specific form of this factor tells us
about the physics of the system, defined by the specific
choice of constraints: the gauge symmetry and the fixed
total area constraints. Given the global constraint, the
split in system and environment breaks the gauge symme-
try. System and environment can share both total area
and total spin. This is why, beside the expected depen-
dence on the total area of the system JS , the canonical
weight carries some interesting extra information on the

local closure defect | ~JS |.

VI. TYPICALITY OF THE REDUCED STATE

With the explicit form of the canonical weight at
hands, we can now investigate the distance of the canon-
ical state from a randomly chosen pure state in HR.

Concretely, following the approach described in Section
(II), we want to show that for the overwhelming majority
of intertwiner states |I〉 ∈ HR ⊆ HE ⊗ HS , the trace
distance D(ρS ,ΩS) between the reduced density matrix
of the system ρS = TrE(|I〉〈I|) and the canonical state
ΩS = TrE ER is extremely small. This amounts to prove
two statements: the first one is that the Hilbert space
average of such trace distance is itself quite small in the
regime in which we are interested in

E [D(ρS ,ΩS)]� 1 , (33)

where E indicates the Hilbert space average performed
using the unique unitarily invariant Haar measure
[21, 24]. The second one is that the fraction of states for
which such distance is higher than a certain ε is expo-
nentially vanishing in the dimension of the Hilbert space.

Now, following [22], one can simply recast the condi-
tion in Eq. (6) with the following bound on the averaged
distance,

0 ≤ E [D(ρS ,ΩS)] ≤

√
dS
deff
E

≤ dS√
dR

(34)

Therefore, the first step toward the statement of typ-
icality in our context amounts to show that the size of
the constrained space is much larger than the size of the
system [22].

A. Evaluation of the bound

The Hilbert space of the system consists in the tensor
product Hilbert space of the set of irreps V ji with a given
cutoff Jmax. We assume Jmax ≥ J0, in order to be sure

that H(J0)
N will always carry an irreducible representation

of U(N). Each SU(2) representation space has dimen-
sion dj = 2j + 1. Therefore, considering the set k edges
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comprising the system, we have

dS ≡ dim(HS) =
∏
i∈S

Jmax∑
ji=0,1/2,...

(2ji + 1) = (35)

=

 Jmax∑
ji=0,1/2,...

k

= (2Jmax + 1)
k

(Jmax + 1)
k

Analogously, for the environment we will get dE =

(2Jmax + 1)
N−k

(Jmax + 1)
N−k

.
Next, given in Eq. (26), we can focus on the sec-

ond inequality in Eq. (34) and define the regime where
E [||ρS − ΩS ||1]� 1.

Consider the ratio

d2
S

dR
=

(2Jmax + 1)2k(Jmax + 1)2k

1
J0+1

(
N+J0−1

J0

)(
N+J0−2

J0

) . (36)

Using Stirling’s approximation, lnn! = n lnn − n +
O(lnn), one can generally prove that in the regime n, k �
1 (with n− k � 1)

log

(
n

k

)
∼ nH

(
k

n

)
, (37)

where H(x) ≡ −x log x− (1− x) log(1− x).
Moreover, using

(
n
k

)
≤

(
n−1
k

)
in Eq. (36), for

Jmax, N, J0 � 1, the leading order is given by

d2
S

dR
.

e2kJ4k
maxJ0

e2(N+J0−1)H(
J0

N+J0−1 )
(38)

In the standard context of statistical mechanics, in per-
forming the thermodynamic limit, we have the condi-
tion that the density of particles must be finite otherwise
the energy density would diverge: N,V → +∞ with
N
V < +∞. Analogously here, with the area is playing
here the role of the energy, as we will discuss in Section
VII, the correct way of performing the thermodynamic
limit consists in taking N, J0 →∞ with J0

N ≡ j0 < +∞,
where j0 is the average spin of the intertwiner.

Eq. (38) is exponentially decreasing both in the total
number of links N and in the total area J0, while only
polynomially increasing in Jmax. The only condition we
need to be sure is fulfilled is Jmax ≥ J0.

Therefore, writing the cut-off as Jmax = elog Jmax we
have

d2
S

dR
∼ e2kJ0 e

4k log Jmax−2(N+J0−1)H
(

J0
N+J0−1

)
(39)

In order to understand if our bound goes to zero in the
thermodynamic limit N, J0 � 1 , we need to study when
the exponent of the previous equation becomes negative,

(N + J0 − 1)H

(
J0

N + J0 − 1

)
> 2k log Jmax. (40)

When N, J0 � 1 this quantity behaves as

(N + J0)H

(
J0

N + J0

)
> 2k log Jmax (41)

which can be written in average spin as

N

k
(1 + j0)H

(
1

1 + j0

)
> 2 log Jmax. (42)

Studying the function (1 + x)H( 1
1+x ) we see that it is

monotonically increasing and always non-negative. 5

For x� 1 we have (1 + x)H( 1
1+x ) ∼ −x log x. Hence,

in the regime for which j0 � 1 we have

N

k
(1 + j0)H

(
1

1 + j0

)
∼ N

k
j0 log

1

j0
=

=
N

k

J0

N
log

N

J0
=
J0

k
(logN − log J0) (43)

Defining the relative order of magnitude between N
and J0 as log N

J0
= α and assuming α ≥ 2, we obtain that

in the regime N ≥ e2J0 the following condition is enough
to guarantee an exponential decreasing of the bound

J0

k
> log Jmax. (44)

We now look at the opposite regime, j0 � 1. Consid-
ering that in the regime x→∞ we have (1+x)H( 1

1+x ) ∼
log x, the condition for an exponential decreasing be-
comes

N

k
log j0 > 2 log Jmax (45)

The last condition tells us that the average distance
between a random state and the canonical state is ex-
tremely small as long as the fraction of links which de-
fines our system is small enough with respect to the rest
of the system.

Contrarily to the case j0 � 1, where N and J0 play a
similar role in the evaluation of the dimension of the con-
strained Hilbert space dR, the emergence of typicality in
the j0 � 1 regime is a remarkable new feature. Indeed,
the limit j0 � 1 heralds in some way a semiclassical limit,
in the sense that, on average, the quantum numbers of
the area are really high. Such emergence of a canonical
behaviour, within a semiclassical regime, is something we
may expect to be related to what happens in a black hole.

5 In the limit x→ 0 we have (1 + x)H( 1
1+x

)→ 0
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Eventually, we should consider the regime j0 ∼ 1. In
this case we have (1 + j0)H( 1

1+j0
) ∼ 2H(1/2) = 2 log 2.

Therefore, the condition

N

k
> 2 log Jmax (46)

is sufficient for an exponential decreasing of the bound
under study.

We conclude that there are large regions in the space of
the three parameters (N, Jmax, J0), of physical interest,
in which the bound is much smaller than one.

It is important to mention that the results can also be
checked numerically, since we have an exact expression
for both dS and dR.

In this sense, we can use a physically motivated argu-
ment to provide a meaningful value for the cut-off Jmax
to check the plausibility of the given bounds. As an ex-
ample, we can consider the scale of the radius of the
observed universe LU as the limit value on the maximal
representation of SU(2). Using this argument we obtain
the following cut-off

Jmax ∼
c2

l2PLU
∼ 6× 10122 = e122×log 10 (47)

where c is the speed of light, lP is the Planck length.
Putting the numbers in the inequality to study the sign of
the exponent we get that the following two conditions are
enough to guarantee an exponential decay of the bound
on the trace distance:

J0

k
& 3× 102 (N � J0 � 1) (48)

N

k
& 6× 102 (J0 ≥ N � 1) (49)

We see that the bounds can be easily achieved even for
such a large value of Jmax.

B. Levy’s lemma

Again, following [22] we can apply Levy’s lemma to
bound the fraction of the volume of states which are ε
more distant than dS√

dR
from ΩS as

Vol
[
|I〉 ∈ HR |D(ρS ,ΩS)− dS√

dR
≥ ε
]

Vol [|I〉 ∈ HR]
≤ Bε(dR) (50)

Bε(dR) ≡ 4 Exp

[
− 2

9π3
dRε

2

]
.

The dimension dR can be evaluated numerically be-
cause we have an exact expression. We give a numeric
example to show that it is not necessary to have huge ar-
eas or number of links for the typicality to emerge. Sup-
pose we have a huge sensitivity on the trace distance:

ε = 10−10. Moreover, 2
9π3 ∼ 7× 10−3. With these num-

bers the left-hand side of the previous equation becomes

B10−10(dR) = 4Exp
[
−7 · 10−23dR

]
. (51)

Suppose we look at the most elementary patch, just a
few links (k = 1, 2). The set of numbers J0 = N = 104

gives the following bounds, using a cut-off given by the
cosmological horizon

N

k
∼ 104 � 6× 102 (52a)

B10−10(dR) = 4Exp
[
−5.6× 105992

]
� 1 (52b)

As we can see, the typicality emerges quite easily, due
to the exponential-like growth of the constrained Hilbert
space on the number of links N and on the total area J0.
The bound on the average value of the distinguishability
between a random density matrix and the canonical
reduced state is satisfied but not even remotely as good
as the bound on the volume of states.

The proven typical behaviour indicates the existence of
a regime where the properties of the reduced state of the
N -valent intertwiner state are universal. The structure of
correlations carried by the reduced state is independent
from the specific shape of the pure intertwiner state and
it is locally the same everywhere. Due to the global sym-
metry constraint though, the canonical weight presents a
very involved analytic form, despite the extreme simplic-
ity of the system under study. In order to extract some
physical information from this coefficient we are going to
study its behaviour in the thermodynamic limit.

VII. THERMODYNAMIC LIMIT & AREA LAW

The entropy of the system is given by the von Neumann
entropy,

S(ΩS) = −Tr[ΩS log ΩS ] (53)

Given the diagonal form of the canonical reduced density
matrix ΩS in Eq. (30), this can be written as

S(ΩS) = − 1

dR

∑
JS≤J0,| ~JS |

WSWE log

(
WE

dJS dR

)
. (54)

Within the typicality regime, for N, J0 � 1, we use
again the Stirling approximation for the factorials to sim-
plify the form of the binomial coefficients in WE ,WS and
dR. We will consider two different regimes for this func-
tion, associated to the two different thermodynamic lim-
its N � J0 and J0 � N .
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A. regime: N � J0

Let us start by studying the case N � J0. We single
out two different sectors for the entropy function, corre-

sponding to the extrema of the sum over | ~JS |, JS , namely

| ~JS |, JS � J0 and (| ~JS |+ JS ' J0). The value of the ar-
gument of the logarithm in Eq. (54), for the two sectors,
is explicitly calculated in Appendix B.

For | ~JS |, JS � J0, i.e. when the closure defect is small
and JS is small, we find

− log

(
WE

dJS dR

)
= (55)

2JS

(
1 + log

N − k
J0

)
− logα1(JS , | ~JS |),

where, up to O(1/J0) terms,

α1(JS , | ~JS |) =

(
1 +

JS − | ~JS |
J0

)(
1− k

J0 +N

)2J0

·

(56)

·

(
1− 2(N − k)| ~JS |

J0(J0 +N − k)

)| ~JS |
For large J0 the α1 term is clearly sub-leading with re-
spect to the 2JS term.

On the other hand, the case (| ~JS | + JS ' J0) cor-
responds to a single value of the entropy sum, namely

| ~JS | = JS = J0/2. In this case, we find

− log

(
WE

dJS dR

)
' J0

(
1 + log

(N − k)

J0
+

2k

N

)
+ (57)

+ ε

(
1 + log

(N − k)

J0

)
where ε = J0 −A.

We see that, for both cases in the N � J0 � 1 regime,
the leading term in the logarithm is proportional to twice
the value of the total area of the system, 2JS .

This allows us to write the entropy of the reduced state
as

S(ΩS) ' β〈2JS〉+ small corrections (58)

where 〈·〉 indicate the weighted average obtained by sum-

ming over JS , | ~JS |, while

β ≡
(

1 + log
N − k
J0

)
(59)

formally identified with the “temperature” of the envi-
ronment, turns out to be a function of the averaged spin
of the environment.

In statistical mechanics, the thermal behaviour of the
canonical state relies on the constraint of energy conser-
vation. The emergence of the canonical state from the

micro-canonical occurs as the degeneracy of the the en-
vironment grows exponentially with the energy, hence
decreasing exponentially with the system energy.

Despite being quite far from the standard setting, a
hint toward a thermodynamical interpretation of the re-
sult comes from the U(N) description of the SU(2) inter-
twiner space. Using the Schwinger representation of the
su(2) Lie algebra [26, 28], one can describe the N -valent
intertwiner state as a set of 2N oscillators, ai, bj . The

quadratic operators Eij ≡ (a†iaj − b
†
i bj), withE

†
ij = Eji

acts on couples of punctures (i, j) and form a closed u(N)
Lie algebra. The u(1) Casimir operator is given by the
oscillators’ energy operator E ≡

∑
iEi, with Ei ≡ Eii,

and its value on a state gives twice the sum of the spins
on all legs. Therefore, one can interpret E as measuring
(twice) the total area of the boundary surface around the
intertwiner.

In these terms, constraining the total area is equivalent
to fix a shell of eigenvalues (in fact a single eigenvalue)
of the energy operator acting on the full system. In the
limit N � J0 � 1, the degeneracy of the single energy
level grows exponentially.

For such a reason the area scaling described by Eq. (58)
is consistent with a thermal interpretation for our re-
duced surface state. On the other hand, interestingly, we
can interpret the departure from the thermal behaviour
à la Gibbs as a signature of the breaking of the global
SU(2) symmetry (closure defect), indicated by the ex-

plicit dependence of the reduced state on | ~JS |.

B. regime: J0 � N

Finally, we study the behaviour of the entropy in the
regime J0 � N . We focus on the case A,B � N � 1
(See Appendix B). Up to O(1/J0) the logarithm of the
normalised canonical is given by

− log

(
WE

dJS dR

)
' − log

(
J0e

N − k

)−2k

+
3k

N
− 2kJS

J0

(60)

− 2JS + 2| ~JE |
J0

' k log

(
J0e

N − k

)2

+ small corrs

Interestingly, the leading term does not depend on the
quantum numbers of the system. Therefore the entropy
is counting the number of orthogonal states on which
the canonical state has non-zero support. In this sense,

the term

[(
J0e
N−k

)2
]k

defines the effective dimension of

the system, suggesting that in such regime the canoni-
cal state has approximately a tensor product structure.
This makes the entropy extensive in the number of edges
comprising the dual surface of the system.
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VIII. DISCUSSION

In this letter, we extend the so-called typicality ap-
proach, originally formulated in statistical mechanics
contexts, to a specific class of tensor network states given
by SU(2) invariant spin networks. In particular, follow-
ing the approach given in [22], we investigate the notion
of canonical typicality for a simple class of spin network
states given by N -valent intertwiner graphs with total
fixed area. Our results do not depend on the physical in-
terpretation of the spin-network, however they are mainly
motivated by the fact that spin networks provide a gauge-
invariant basis for the kinematical Hilbert space of several
background independent quantum gravity approaches,
including loop quantum gravity, spin-foam gravity and
group field theories.

The first result is the very existence of a regime in
which we show the emergence of a canonical typical state,
of which we give the explicit form. Geometrically, such a
reduced state describes a patch of the surface comprising
the volume dual to the intertwiner. The structure of
correlations described by the state should tell us how
local patches glue together to form a closed connected
surface in the quantum regime.

We find that, within the typicality regime, the canoni-
cal state tends to an exponential to the power of the total
spin of the subsystem with an interesting departure from
the Gibbs state. The exponential decay à la Gibbs of the
reduced state is perturbed by a parametric dependence
on the norm of the total angular momentum vector of
the subsystem (closure defect). Such a feature provides
a signature of the non local correlations enforced by the
global gauge symmetry constraint. This is our second
result.

We study some interesting properties of the typical
state within two complementary regimes, N � J0 � 1
and J0 � N � 1. In both cases, we find that the area-
law for the entropy of a surface patch must be satisfied at
the local level, up to sub-leading logarithmic corrections
due to the unavoidable dependence of the state from the
closure defect. However, the area scaling interpretation
of the entropy in the two regimes is quite different. In
the N � J0 � 1 regime, the result is related to the defi-
nition of a generalised Gibbs equilibrium state. The area
is playing the role of the energy, as imposed by the spe-
cific choice of the global constraint, requiring total area
conservation.

On the other hand, in the J0 � N � 1 regime, the
area scaling is given by the extensivity of the entropy in
the number of links comprising the reduced state, as for
the case of the generalised (non SU(2)-gauge invariant)
spin networks [29]. In this regimen, each link contributes
independently to the result, indicating that the global
constraints are very little affecting the local structure of
correlations of the spin network state. Still, interestingly,
the remainder of the presence of the constraints can be
read in the definition of what looks like an effective di-
mension for the single link Hilbert space.

We interpret these results as the proof that, within
the typicality regime, there are certain (local) properties
of quantum geometry which are “universal”, namely in-
dependent of the specific form of the global pure spin
network state and descending directly from the physi-
cal definition of the system encoded in the choice of the
global constraints.

Our interest in testing the notion of typicality in quan-
tum gravity is twofold. It first resides in the kinematic
nature of the statement, a fundamental feature to study
the possibility of a thermal characterisation of reduced
states of quantum geometry regardless of any hamilto-
nian evolution in time. In this sense, typicality seems
to be useful to characterise a notion of equilibrium com-
patible with the fully constrained gauge dynamics of the
theory.

Secondly, we stress the importance of the statistical
character of typicality. The statement of typicality gener-
ically relies on the high dimensionality of the Hilbert
space and on the principle of concentration of measure
[30]. For the generic case of a simple intertwiner state,
the statistical analysis necessarily requires to consider a
system with a large number of edges, beyond the very
large dimensionality of the Hilbert space of the single con-
stituents (the single edges in this case). In this sense, the
presented statistical analysis and thermal interpretation
is very different from what recently done in [15–17], con-
sidering quantum geometry states characterised by few
constituents with a high dimensional Hilbert space. We
expect a large number quantum statistical analysis to
play a role in facing the problem of the continuum in
quantum gravity.

Finally, it is interesting to consider the proposed “gen-
eralised” thermal characterisation of a local surface patch
within the standard LQG description of the horizon as a
closed surface made of patches of quantized area. Differ-
ently from the isolated horizon analysis (see e.g. [18, 32]),
in our description the thermal character of the local patch
is not (semi)classically induced by the thermal proper-
ties of a black hole horizon geometry, but emerges from a
purely quantuum description. In this sense, our picture
goes along with the informational theoretic characterisa-
tion of the horizon proposed in [33].

In fact, we expect that typicality could be used to de-
fine an information theoretic notion of quantum horizon,
as the boundary of a generic region of the quantum space
with an emergent thermal behaviour [34].

Acknowledgements

The authors are grateful to Daniele Oriti, Aldo Riello
and Thibaut Josset for the motivating discussions and
the careful reading of the paper draft.



11

Appendix A: The Levy-lemma

In order to better understand the result it is useful to
look at its most important step, which is the so-called
Levy-lemma. Take an hypersphere in d dimensions Sd,
with surface area V . Any function f of the point which
does not vary too much

f : Sd 3 φ→ f(φ) ∈ R |∇f | ≤ 1

will have the property that its value on a randomly
chosen point φ will approximately be close to the mean
value.

Vol
[
φ ∈ Sd : f(φ)− 〈f〉 ≥ ε

]
Vol [φ ∈ Sd]

≤ 4 Exp

[
−d+ 1

9π3
ε2
]

The Levy lemma is essentially needed to conclude that
all but an exponentially small fraction of all states are
quite close to the canonical state.

The effect of such result is that we can re-think
about the “a priori equal probability” principle as an
“apparently equal probability” stating that: as far as
a small system is concerned almost every state of the
universe seems similar to its average state, which is the
maximally mixed state ER = 1

dR
IR.

Appendix B: Approximations

Let us define A = J0−JS+ | ~JS | and B = J0−JS−| ~JS |
and rewrite the formula in Eq. (30) in a more synthetic
form

WE =
A−B + 1

A+ 1

(
N − k − 1 +A

A

)(
N − k − 2 +B

B

)
In the expression above, we can simplify the factorials

(
n+ k − 1

k

)
=

(n+ k − 1)!

k! (n− 1)!
, (B1)

whenever n, k � 1, by means of the Stirling approxi-
mation lnn! = n lnn − n + O(lnn). In the following,
we consider two relevant regimes, N � J0 � 1 and
J0 � N � 1.

For N � J0, we evaluate two cases:

(1)N � A,B � 1 (| ~JS |, JS � J0):

WE '
dJS
A+ 1

(
1 +

N − k − 1

A

)A(
1 +

A

N − k − 1

)N−k−1

·

(B2)

·
(

1 +
N − k − 2

B

)B (
1 +

B

N − k − 2

)N−k−2

=

=
dJS
A

eA+B

(
1 +

N − k − 1

A

)A(
1 +

N − k − 2

B

)B

where dJS = (2| ~JS |+ 1).

(2)N � A,B with A� 1, B ∼ 0 (| ~JS | ' JS ' J0/2):

WE ' dJS
(

1 +
N − k − 1

A

)A(
1 +

A

N − k − 1

)N−k−1

(B3)

Within the regime of approximation N � J0, we
then study the behaviour of the normalization factor of
the canonical state dR. The Stirling approximation of
Eq. (26) reads

dR '
1

J0 + 1

(
1 +

N − 1

J0

)J0 (
1 +

J0

N − 1

)N−1

(B4)(
1 +

N − 2

J0

)J0 (
1 +

J0

N − 2

)N−2

' 1

J0
e2J0

(
1 +

N

J0

)2J0

where we used limn→∞
(
1 + x

n

)n
= ex.

In particular, we are interested in the normalized
canonical weight, given by WE/dJS dR. Again, for
N � J0 � 1, we write the two cases:

(1) N � A,B � 1 (| ~JS |, JS � J0):

WE
dJS dR

' e−2JS

(
1 +

JS − | ~JS |
J0

)(
1 +

k

J0 +N

)
(B5)

(
1− 2(N − k)| ~JS |

J0(J0 +N − k)

)| ~JS |(
1 +

N − k
J0

)−2JS

.

(2) N � A,B with A� 1, B ∼ 0 (| ~JS | ' JS ' J0/2):

WE
dJS dR

' J0

A
eA−2J0

(
1 +

N − k − 1

A

)A(
1 +

N

J0

)−2J0

.

(B6)

We therefore consider the regime J0 � N � 1. In this
case, for A,B � N � 1 we have

WE '
dJS
A+ 1

(
1 +

A

N − k − 1

)N−k−1

· (B7)

·
(

1 +
B

N − k − 2

)N−k−2

e2N−2k−3,

while

dR '
1

J0

(
1 +

J0

N

)2N−3

e2N−3. (B8)
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Thereby, for the normalised canonical weight we find

WE
dJS dR

'
(

J0e

N − k

)−2k
(

1 +
JS − | ~JS |

J0

)
· (B9)

·
(

1 +
2k

N

)N (
1− 2JS

J2
0

− |
~JS |2

J2
0

)N (
1 +

3k

N

)
·

·

(
1− 3JS

J0
− |

~JS |
J0

)(
1− 2JS

J0

)−k
.
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