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1 Introduction

Among the branes of string and M-theory, the D3, M2 and M5 branes enjoy a somewhat

distinguished status in that, when considered in a flat background, their worldvolumes

respectively support four- [1], three- [2] and six-dimensional maximally supersymmetric

conformal field theories (CFTs). The first two cases are by now very well understood.

It is also well known how to engineer D3 and M2 brane configurations and background

geometries that support CFTs with less than maximal supersymmetry. In some cases, these

conformal phases with reduced supersymmetry on the D3 and the M2 branes are known

to be related to the corresponding maximally supersymmetric CFTs via renormalisation

group (RG) flow.

For example, the N = 8 CFT on a stack of N planar M2 branes on flat space is given

by a Chern-Simons theory with a product gauge group U(N)k × U(N)−k at (sufficiently
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low) Chern-Simons levels k and −k, coupled to bifundamental matter with a quartic su-

perpotential [2]. Another conformal phase of the M2-brane field theory is known [3] that

has only N = 2 supersymmetry, the same gauge group, SU(3) flavour symmetry, U(1) R-

symmetry and a sextic superpotential. The latter CFT turns out to arise [3] as the infrared

(IR) fixed point of the RG flow caused by a perturbation of the N = 8 phase [2] with an

N = 2 SU(3)-invariant mass term for the bifundamentals. The near horizon region of both

N = 8 and N = 2 M2-brane configurations develop AdS4 × S7 geometries. In the former

case, such configuration is simply the Freund-Rubin direct product solution [4] with the

maximally supersymmetric and SO(8)-symmetric round metric on the seven-sphere. In

the latter case, the product is warped and supported by a non-vanishing internal value

of the D = 11 four-form and a distorted metric on S7 [5]. This configuration preserves

SU(3) × U(1) local symmetry, in agreement with the global symmetry of the dual CFT.

Precision AdS4/CFT3 checks have been performed using this set-up. In particular, the free

energy of the CFT, computed in [6] using localisation techniques [7–9], perfectly matches

the gravitational free energy of the AdS4 solution.

The situation for the Dp branes of string theory with p 6= 3 is fundamentally different.

The (p + 1)-dimensional worldvolume of N coincident Dp branes on flat space supports

maximally supersymmetric Yang-Mills (SYM) with gauge group SU(N), but this theory

is not conformal for any p different from 3. See [10–12] for descriptions of the holographic

dictionary in these maximally supersymmetric but non-conformal cases. From the gravity

side, the lack of conformality is reflected by near horizon geometries of domain-wall, rather

than AdS, type supported by a running dilaton. Remarkably enough, however, the Dp

brane field theory can still flow in some cases into conformal phases with reduced or no

supersymmetry. See for example [13, 14] for recent studies of this situation in various

contexts. In this paper, we will fix p = 2, corresponding to the D2-brane field theory.

Specifically, we will study holographically how the ultraviolet (UV) description of the D2-

brane worldvolume theory in terms of three-dimensional N = 8 SYM is modified by the

presence of a non-vanishing Romans mass.

The Romans mass F̂(0) [15] induces Chern-Simons couplings on the D2-brane worldvo-

lume, and these are expected to trigger RG flows that drive the worldvolume theory into IR

superconformal phases. In field theory terms, the addition of the Romans mass corresponds

to augmenting three-dimensional N = 8 SYM with Chern-Simons-matter terms, with the

Chern-Simons coupling k identified with the (quantised) Romans mass, F̂(0) = k/(2π`s), as

in [16]. This expectation was recently made more precise in [17]. A specific deformation by

F̂(0) was argued to make three-dimensional N = 8 SYM flow into an N = 2 superconformal

phase described by a Chern-Simons-matter theory with a single gauge group SU(N) at level

k, flavour symmetry SU(3), R-symmetry U(1) and cubic superpotential. This field theory is

of the type first envisaged in [18] as potentially relevant for holography, and further studied

in [19, 20]. The (near horizon) gravity dual was identified [17] to be of the form AdS4×S6,

where the product is warped, the solution is supported by non-vanishing internal IIA forms

and the metric on S6 displays an SU(3)×U(1) isometry that matches the global symmetry

of the CFT. The free-energy of this CFT on S3 was computed by localisation and found

to be in perfect agreement with the gravitational free energy of the dual geometry [17].
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The effect of this particular N = 2 deformation of the N = 8 D2-brane field theory

by the Romans mass is, thus, qualitatively similar to the mass deformation [3] of the

N = 8 M2-brane theory [2], with the crucial difference that only in the latter case is the

UV field theory also conformal as the IR. Both superconformal IR phases in the M2 [3]

and D2- [17] brane field theories have the same global symmetries. Also, they have AdS4

gravity duals in M-theory [5] and massive type IIA string theory [17] with qualitatively

similar properties. In the M2-brane context, this and other related RG flows have been

studied holographically [21–23] using four-dimensional SO(8)-gauged supergravity [24], and

uplifted [5, 25] on S7 to M-theory using the consistent truncation of [26].

Recent developments now make the holographic study of RG flows of three-dimensional

N = 8 SYM triggered by the addition of Chern-Simons-matter terms accessible through

similar gauged supergravity techniques. Massive type IIA supergravity [15] turns out to

admit a consistent truncation on S6 to maximal supergravity in four dimensions with

ISO(7) ≡ CSO(7, 0, 1) ≡ SO(7) n R7 gauge group [17, 27]. The ISO(7) gauging is of

the dyonic type discussed in [28, 29] (see also [30]), with the magnetic gauge coupling m

identified with the Romans mass, m = F̂0 [17]. The consistency of the S6 truncation,

together with the supergravity and holographic identities m = F̂0 and F̂(0) = k/(2π`s),

renders D = 4 N = 8 dyonically-gauged ISO(7) supergravity the natural framework to

study the effect of Chern-Simons-matter terms on the large N D2-brane field theory.

The complete N = 8 dyonically-gauged ISO(7) supergravity theory was explicitly

constructed in [31] using the embedding tensor formalism [32, 33]. Unlike the purely

electric ISO(7) gauging [34], its dyonic counterpart exhibits a rich structure of (AdS)

vacua, both supersymmetric and non-supersymmetric. The supersymmetric vacua with at

least residual SU(3) symmetry include N = 1 vacua with G2 [35] and SU(3) [31] residual

bosonic symmetries, and an N = 2 vacuum with SU(3)×U(1) symmetry [17]. In addition,

the theory has an N = 3 vacuum [36] with SO(4) symmetry. The latter will not play a

significant role in this work, as we will focus on supersymmetric RG flows that preserve at

least SU(3) symmetry. By the consistency of the truncation, all these vacua uplift on the

six-sphere to AdS4 solutions of massive type IIA supergravity with the same symmetry and

supersymmetry as the corresponding D = 4 vacuum. The N = 1, G2 massive IIA solution

was first constructed, directly in D = 10 by other methods, in [37]. All other solutions were

recently obtained by direct uplift using the formulae of [17, 27]. The N = 2, SU(3)×U(1)

vacuum uplifts [17] to the N = 2 massive IIA solution discussed above, and the N = 1,

SU(3) and N = 3, SO(4) vacua were respectively uplifted in [38] and [39] (see also [40]).

All these supersymmetric AdS4 solutions of massive IIA string theory should corre-

spond to conformal phases of the D2-brane field theory with distinct flavour symmetries and

supersymmetry. They should arise as the IR endpoints of RG flows triggered by different

symmetry- and supersymmetry-preserving deformations of N = 8 SYM by Chern-Simons-

matter terms. We confirm this expectation for the N = 2 flow discussed in [17] by explicitly

constructing a domain wall solution of D = 4 dyonic ISO(7) supergravity that interpolates

between the (D = 4 description of the) planar D2-brane solution in the UV and the N = 2,

SU(3)×U(1) vacuum in the IR. More generally, we show that there exists an entire family

of supersymmetric SU(3)-invariant flows that originate in N = 8 SYM and drive the theory
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N=8 SYM

N=1 & G2

N=1 & SU(3)

N=2 & SU(3)xU(1)

Figure 4
Figures 2 & 3

Figure 1. Schematic representation of the holographic supersymmetric RG flows covered in this

paper: from N = 8 SYM to IR CFTs (dotted lines) and between CFTs (solid lines). See figures 2, 3

and 4 for actual plots.

towards the N = 2, SU(3) × U(1)-symmetric IR fixed point. We find a second family of

supersymmetric RG flows that drive N = 8 SYM into the N = 1 IR phase with SU(3)

invariance. Both families are bounded by a unique flow with IR endpoint in the N = 1

G2-symmetric phase. We also find two unique domain walls that interpolate between this

G2 conformal phase in the UV and either the N = 2, SU(3) × U(1) point or the N = 1

SU(3) point in the IR. By the generic results of [17, 27] and the specific formulae of [38],

all these domain walls uplift to massive type IIA supergravity and link the corresponding

AdS4 solutions. See figure 1 for a sketch of this web of domain walls.

In section 2 we review the natural arena for the holographic RG flows that we construct

in this paper: the SU(3)-invariant sector of the N = 8 dyonic supergravity. We discuss

the AdS vacuum structure and the flow equations. The flows that interpolate between the

D2-brane behaviour and the IR conformal phases with at least SU(3) flavour symmetry are

constructed in section 3. Section 4 deals with flows between conformal phases, and section 5

provides further discussion. Various appendices close the paper. Appendix A elaborates

on the boundary conditions satisfied by our domain walls, appendix B comments on the

running of the free energy along the flows and appendix C constructs some flows into the

N = 3 SO(4)-invariant conformal phase.

2 The SU(3)-invariant sector of dyonic ISO(7) supergravity

We want to construct supersymmetric domain walls of D = 4 N = 8 dyonic ISO(7)-gauged

supergravity that preserve at least SU(3) ⊂ ISO(7) symmetry. The natural venue to look

for such solutions is, thus, the SU(3)-invariant sector of the D = 4 supergravity. This
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was explicitly worked out in [31]. The SU(3)-invariant sector is N = 2 supersymmetric

and contains one vector multiplet and one hypermultiplet and, accordingly, six real scalars

along with vectors and other tensor fields in the SU(3)-invariant tensor hierarchy. Here we

will be only interested in neutral domain wall solutions. For this reason, we consistently

truncate out the vectors and work only with the four neutral scalars of the theory, together

with the metric.

2.1 Flow equations and fixed points

We find it useful to use the parameterisation introduced in section 3.3 of [31] following [23].

The four neutral real scalars are thereby packed into two complex scalars z and ζ12 which

take values on two copies of the Poincaré unit disk: |z| < 1 and |ζ12| < 1 . These

respectively correspond to the scalars in the vector multiplet and the neutral scalars in the

hypermultiplet. The Einstein-scalar action reads [31]

S =
1

16πG4

∫
d4x
√
−g

[
R− 6

(1− |z|2)2
∂µz ∂

µz̄ − 8

(1− |ζ12|2)2
∂µζ12 ∂

µζ̄12 − V

]
, (2.1)

where the scalar potential V can be written as

V = 2

(
4

3
(1− |z|2)2

∣∣∣∣∂W∂z
∣∣∣∣2 + (1− |ζ12|2)2

∣∣∣∣ ∂W∂ζ12

∣∣∣∣2 − 3W 2

)
, (2.2)

in terms of either of two (real) superpotentials, W = |W(z, ζ12)| or W = |W(z, ζ̄12)| ,
with [31]

W(z, ζ12) = 2 (1− |z|2)−
3
2 (1− |ζ12|2)−2

×

[
g

(
7

8
(1− ζ12)4 (1 + z)3 + 3 (ζ12 − z) (1 + z) (1− ζ12)2 (1− z ζ12)

)

+ i
m

8
(1− ζ12)4 (1− z)3

]
. (2.3)

Here, g and m ≡ gc respectively are the electric and magnetic couplings of ISO(7) super-

gravity, and c the ‘dyonically gauging parameter’. As explained in [29], all theories with

c 6= 0 are classically equivalent. Accordingly, c can be fixed to any (non-zero) value with-

out loss of generality. Note however that the position of the fixed points in scalar-space,

and therefore the domain walls connecting them, are c-dependent in this parameterisation.

Upon truncation from massive type IIA, g becomes proportional to the inverse S6 radius

and m identified with the Romans mass [17].

Similar superpotentials in the SU(3)-invariant sector of related N = 8 gaugings have

been previously constructed in [22, 23, 41, 42]. For superpotentials in the SO(7)+ and G2

invariant sectors of the purely electric (c = 0, m = 0) N = 8 ISO(7) gauging [34], see [43,

44]. The latter reference allows us to crosscheck the purely electric, G2-invariant truncation

of our superpotential: setting m = 0 and ζ12 = z in (2.3) we reproduce the superpotential

z2 given in equation (14) of [44] after the field redefinition z = tanh
(
λ/(2
√

2)
)
e−iα . More
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generally, we have verified that W(z, ζ12) and W(z, ζ̄12) arise as the two SU(3)-invariant

eigenvalues at a generic point in scalar space of the full N = 8 gravitino mass matrix of

dyonic ISO(7) supergravity.

We are interested in RG flows that preserve some supersymmetry on the D2-brane.

Holographically, these correspond to domain wall solutions to the equations of motion that

follow from (2.1) for which the metric takes on the local form

ds2
4 = e2A(r) ηαβ dxα dxβ + dr2 , where ηαβ = diag(−1,+1,+1) . (2.4)

The scale factor A(r) and the complex scalars z(r) , ζ12(r) depend only on the coordinate

r transverse to the three flat directions xα, α = 0, 1, 2. The domain walls will be supersym-

metric provided the supersymmetry variations of the fermions vanish. Selecting henceforth

W = |W(z, ζ12)| for definiteness, this turns out to be equivalent to the following set of first

order BPS equations:

dz

dr
= −2

3
(1− |z|2)2 ∂W

∂z̄
,

dζ12

dr
= −1

2
(1− |ζ12|2)2 ∂W

∂ζ̄12
,

dA

dr
= W . (2.5)

A generic feature of these equations is that, if a solution to the first two is found for the

scalars z(r) and ζ12(r), then the scale factor equation can be integrated upon substitution

of those scalar profiles into the superpotential W .

The derivation of (2.5) from the supersymmetry variations parallels [21, 22, 44]. Turn-

ing on the dyonic parameter c in an SU(3)-invariant manner leads to new, m-dependent

terms in the fermion shift matrices A1 , A2 of the N = 8 supergravity, but does not turn

on additional components with respect to the electric ISO(7) gauging. Also, important

purely electric expressions, like (25) of [22] and (24) of [44] still hold at c 6= 0 . These

allow us to write the BPS equations (2.5) in terms of the real superpotential W , rather

than the complex (2.3). As in the cases previously dealt with in the literature, projections

on the Killing spinor need to be imposed in order to obtain (2.5) from the supersymmetry

variations. Accordingly, generic domain wall solutions to these equations and their dual

field theory flows will generically preserve two real (Poincaré) supercharges. We will also

find domain walls, and their dual flows, that preserve four real supercharges.

Some remarks about terminology are now in order. We usually adhere to the standard,

though perhaps ambiguous, convention of denoting by N the total number of fermionic

generators in the bulk, but only the superPoincaré generators in the boundary excluding

any superconformal generators, if present. Thus, we simultaneously speak of D = 4 N = 8

supergravity (32 supercharges) and three-dimensional N = 8 SYM (16 supercharges).

However, also following standard practice, we will use the field theory convention (i.e. we

will use ‘the N of the boundary’) to refer to the two- and four-supercharge domain walls

and their dual flows as N = 1 and N = 2. Only at a fixed point of the flow equations, to be

discussed shortly, N of both bulk and boundary coincide numerically due to the presence

of additional superconformal charges in the latter. For example, the N = 2 AdS fixed

point (eight supercharges) is dual to the N = 2 superconformal field theory (four Poincaré

and four superconformal supercharges) discussed in [17].

– 6 –
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z∗ ζ12∗ L∗ V∗

N = 2

SU(3)×U(1)

−2 + (
√

3− i)c1/3

2 + (
√

3− i)c1/3

−2 +
√

2 c1/3

2 +
√

2 c1/3

1√
2 31/4

c1/6

g
−12
√

3
g2

c1/3

N = 1

G2

−8 + 22/3(
√

15− i)c1/3

8 + 22/3(
√

15− i)c1/3

−8 + 22/3(
√

15− i)c1/3

8 + 22/3(
√

15− i)c1/3

5 · 151/4

16 · 21/6

c1/6

g
−512 · 21/3

25

√
3

5

g2

c1/3

N = 1

SU(3)

−4 + (
√

15 + i)c1/3

4 + (
√

15 + i)c1/3

−4 + (
√

5− i
√

3)c1/3

4 + (
√

5− i
√

3)c1/3

55/4

8
√

2 31/4

c1/6

g
−768

25

√
3
5

g2

c1/3

Table 1. Supersymmetric fixed points within the SU(3)-invariant sector of D = 4 N = 8 dyonic

ISO(7)-gauged supergravity. These correspond to AdS solutions with radius L∗ and cosmological

constant V∗, and depend on the dimensionless ratio c ≡ m/g.

The BPS equations (2.5) have three fixed points, i.e., solutions with constant (r-

independent) scalars (z∗, ζ12∗), corresponding to extrema W∗ ≡ W (z∗, ζ12∗) of the super-

potential [31]. These vacua are AdS, as can be easily seen by solving the last equation

in (2.5),

A(r) = W∗ r ≡
r

L∗
, (2.6)

whereby (2.4) becomes the usual AdS metric in the Poincaré patch upon the coordi-

nate redefinition ρ = L∗ e
r/L∗ . In (2.6), L2

∗ ≡ −6/V∗ is the squared AdS radius, with

V∗ ≡ V (z∗, ζ12∗) < 0 the scalar potential at the extremum, namely, the corresponding

cosmological constant. The boundary corresponds to r → ∞ and the Poincaré horizon

to r → −∞.

The total symmetry of each AdS fixed point is OSp(4|N ) × G, where N = 1 or

N = 2 labels the residual supersymmetry, and G = G2 or G = SU(3) for N = 1 and

G = SU(3) × U(1) for N = 2 denotes the residual bosonic symmetry. This is the local

symmetry that these fixed points preserve both as solutions [17, 31, 35] of D = 4 N = 8

dyonic ISO(7) supergravity and as solutions [17, 37, 38] of massive type IIA. This is also the

global symmetry of the dual CFTs. In particular, G corresponds to the flavour symmetry

in the N = 1 cases. In the N = 2 case, the SU(3) and U(1) factors respectively correspond

to the flavour and the R-symmetry. As already noted in [31], in the purely electric [34],

c→ 0, or purely magnetic, c→∞, limits the extrema disappear from the proper Poincaré

disks: |z∗| → 1, |ζ12∗| → 1. Thus, these AdS solutions only exist for the dyonic ISO(7)

gauging. See table 1 for the location of the fixed points in the (z, ζ12) parameterisation.

2.2 Modes and dimensions of dual operators

We are interested in constructing supersymmetric domain wall solutions dual to RG flows

with at least one endpoint at one of the fixed points collected in table 1. Let us show that

the set of SU(3)-invariant perturbations about these points include the modes necessary to

describe the relevant and irrelevant directions of the dual RG flows. This analysis allows

us to determine the relevant boundary conditions for the integration of (2.5).

As we have already noted, scalars and metric scale factor decouple in the flow equations.

Accordingly, for this analysis we can simply focus on solving for the scalars only. The

– 7 –
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Mode 1 Mode 2 Mode 3 Mode 4 Relevant oper. Irrelevant oper.

N = 2

SU(3)×U(1)

M2L2
∗ 3−

√
17 2 2 3 +

√
17

∆+
1+
√
17

2
3+
√
17

2
3+
√

17
2

5+
√

17
2 1 3

∆−
5−
√

17
2

3−
√

17
2

3−
√
17

2
1−
√
17

2

N = 1

G2

M2L2
∗

−11−
√

6
6

−11+
√

6
6 4−

√
6 4 +

√
6

∆+ 2− 1√
6

2 + 1√
6

1 +
√

6 2 +
√

6 2 2

∆− 1 + 1√
6

1− 1√
6

2−
√

6 1−
√

6

N = 1

SU(3)

M2L2
∗ 4−

√
6 4−

√
6 4 +

√
6 4 +

√
6

∆+ 1 +
√

6 1 +
√

6 2 +
√

6 2 +
√

6 0 4

∆− 2−
√

6 2−
√

6 1−
√

6 1−
√

6

Table 2. Scalar mass spectrum around each of the AdS fixed points of table 1. The roots ∆̃ (either

∆̃ = ∆+ or ∆̃ = ∆−) of equation (2.8) that appear in the linearised solution (2.7) are shown with

a gray background. Blue (red) values are compatible with regularity of a domain wall that reaches

the corresponding fixed point in the UV (IR). The last two columns indicate the number of relevant

and irrelevant operators at each point.

linearisation of (2.5) around any AdS fixed point has a general solution given by the

linear superposition

z − z∗ =
4∑
i=1

ai e
−∆̃i

r
L∗ , ζ12 − ζ12∗ =

4∑
i=1

αi e
−∆̃i

r
L∗ . (2.7)

Here, ai and αi are eight complex constants that can be written in terms of only four

independent real parameters in one-to-one correspondence with the exponents ∆̃i, see ap-

pendix A. The latter turn out to coincide with one of the two roots, ∆± , of the equation

M2L2
∗ = ∆(∆− 3) , (2.8)

that holographically relates the mass of a bulk scalar field to the conformal dimension of

its dual operator in the boundary. The dual operators have conformal dimensions given

by the largest root ∆+ and correspond to relevant (irrelevant) deformations of the CFT

if ∆+ < 3 (∆+ > 3). When the masses of the scalar perturbations around the AdS fixed

point lie in the range −9/4 < M2L2
∗ < −5/4 an alternative quantisation is possible, and

the mode can describe a dual operator with dimension ∆−. In table 2 we import from [31]

the SU(3)-invariant scalar mass spectrum around each of the fixed points, along with the

two solutions ∆± to (2.8). The specific ∆̃i that appear in the linearised solution (2.7) are

highlighted with a gray background.

From (2.7) it can be seen that a regular domain wall must approach a UV (r → +∞)

or IR (r → −∞) fixed point driven by modes with ∆̃ > 0 or ∆̃ < 0, respectively. Table 2

graphically shows these signs with a self-explanatory colour code: blue in the first case and
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red in the second. It is apparent from the table that all these fixed points can serve as either

UV or IR endpoints of domain walls. However, only the G2 fixed point will happen to realise

this feature in this paper. For all our flows it also happens, consistently enough, that the

active modes correspond to relevant or irrelevant operators in the field theory depending

on whether the fixed point serves as a UV or IR phase. Finally, only non-normalisable

fall-offs will turn out to be activated in our flows, i.e., ∆̃ = ∆− always. This confirms the

expectation that our domain walls are dual to RG flows caused by perturbations of the

field theory, rather than vacuum expectation values.

In the next two sections we numerically integrate the BPS equations (2.5) with the

boundary conditions specified in table 2 and appendix A. We find two types of regular

domain walls. The first type corresponds to solutions for which one of the superconformal

fixed points lies at the IR end, while the UV is dominated by the non-conformal N = 8

SYM theory. These are flows of N = 8 SYM that are generated upon perturbation with

supersymmetric Chern-Simons-matter terms. We subsequently refer to these solutions as

‘SYM to CFT flows’. The second kind corresponds to domain walls connecting two fixed

points, and we refer to them as ‘CFT to CFT flows’. Similar supersymmetric flows of the

latter type in the purely electric SO(8) gauging [24] of D = 4 N = 8 supergravity have

been previously constructed in [5, 21–23] and, in the dyonic SO(8) gauging [28], in [45–47].

3 SYM to CFT flows

Let us first discuss the holographic RG flows that originate upon modifying N = 8 SYM

with Chern-Simons-matter terms. As we discussed in the introduction, this holographi-

cally corresponds to perturbing the D2-brane worldvolume theory with different couplings

governed by the Romans mass F̂(0).

3.1 Generalities

Our starting point is a stack of N D2-branes of massless type IIA string theory in flat

space. In the type IIA conventions of appendix A of [27], the near horizon region of such

configuration reads, in Einstein frame,

dŝ2
10 = e

3
4
ϕ(r)

(
e2A(r) ηαβ dxα dxβ + dr2

)
+ g−2e−

1
4
ϕ(r) ds2(S6) ,

eφ̂ = e
5
2
ϕ(r) ,

F̂(4) =
5

3!
g eϕ(r)+3A(r) εαβγ dxα ∧ dxβ ∧ dxγ ∧ dr ,

Ĥ(3) = F̂(2) = 0 .

(3.1)

Here ds2(S6) is the conventional, round, SO(7)-symmetric Einstein metric on the six-

sphere, normalised so that the Ricci tensor equals five times the metric, and

eϕ(r) =
24

(g r)2
, eA(r) = (g r)7 . (3.2)

We have found it useful to write this near horizon D2-brane solution in terms of a constant

g. This is related to the inverse radius L of S6 as g = 1/L. The latter is in turn related
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upon flux quantisation to the number N of D2-branes.1 The near-horizon solution (3.1) is

1/2-BPS, i.e., preserves sixteen supercharges, and is manifestly invariant under SO(7), the

R-symmetry group of three-dimensional N = 8 SYM. It takes on a warped product form

of the round metric on S6 and a four-dimensional domain wall metric of the type (2.4).

A natural counterpart of the solution (3.1) in M-theory is provided by the SO(8)-

invariant direct product Freund-Rubin solution AdS4 × S7 [4] that arises as the near-

horizon limit of a stack of M2-branes. In that D = 11 case, the external domain wall

metric is promoted to the usual metric on the Poincaré patch of AdS4 and the number

of supersymmetries is accordingly enhanced to include sixteen additional superconformal

ones. The consistent truncation of D = 11 supergravity on the seven-sphere [26] down

to D = 4 N = 8 (electrically-gauged) SO(8) supergravity [24] can be used to factor out

the S7 dependence and work consistently in an effective four-dimensional setting. From

this point of view, the Freund-Rubin solution corresponds to the ‘central’ N = 8, SO(8)-

invariant AdS stationary point of the D = 4 gauged supergravity. The scalars of the D = 4

theory can be interpreted as couplings in the dual large-N M2-brane field theory of [2].

When turned on, these can trigger RG flows into other IR conformal phases with less

symmetry and supersymmetry. From the effective four-dimensional perspective, these IR

phases correspond to other AdS critical points of the scalar potential of the SO(8)-gauged

supergravity, and the RG flows are manifestly exhibited holographically as domain walls

between the AdS fixed points [5, 21–23]. By the consistency of the S7 truncation [26],

there exists a one-to-one correspondence between four-dimensional and eleven-dimensional

solutions, be them AdS vacua or domain walls.

An analogue picture emerges in our present D2-brane context, with some similarities

and various crucial differences. Similarly to the D = 11 case, both massless and massive

type IIA supergravity can be consistently truncated on the six-sphere to D = 4 N = 8

supergravity with an ISO(7) ≡ CSO(7, 0, 1) ≡ SO(7) n R7 gauging. In the massless case,

the gauging is purely electric and was constructed long ago [34]. The consistency of the

truncation was first suggested in [48] and recently made more precise in [17, 27]. In the

massive case, the ISO(7) gauging is dyonic, in the sense of [28–30]. The dyonic four-

dimensional supergravity was constructed in [31], and the consistency of the S6 truncation

shown in2 [17, 27].

Unlike the SO(8) gauging [24], the purely electric ISO(7) gauging [34] has no (AdS)

critical points. Stationary points with at least residual SO(7) and G2 symmetry were

respectively ruled out in [34] itself and [44]. More recently, critical points of the electric

ISO(7) gauging were excluded in general in [29, 31, 51]. Thus, while the Freund-Rubin

solution [4] corresponding to the near-horizon geometry of the M2-brane descends, upon

truncation on S7, to the N = 8 SO(8) point of the electric SO(8) gauging [24] of D =

4 N = 8 supergravity, the same thing does not happen for the near horizon D2-brane

1See [10, 12] for further details. Moving from the Einstein to the string frame and changing coordinates

as gr = 4(u/L)1/4 brings the massless IIA solution (3.1) to the form presented in [10]. More concretely, we

have eφ̂there = g2YM eφ̂here with g2YMN = L5/(6π2) and xαthere = 2−14xαhere .
2Maximally supersymmetric truncations of massive type IIA [15] on Sn appear to be inconsistent for all

n ≤ 6 different from the usual Scherk-Schwarz n = 1 case and the n = 6 case of [17, 27], see [49, 50].
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solution (3.1), (3.2). Instead, as anticipated in [11], the latter reduces on S6 to a domain

wall solution of D = 4 N = 8 electrically-gauged ISO(7) supergravity. This domain wall

preserves sixteen out of the thirty-two supercharges of the N = 8 supergravity, and the

SO(7) subgroup of ISO(7). Since SU(3) ⊂ SO(7), this solution is also contained in the

SU(3)-invariant sector of the purely electric ISO(7) gauging, whose Lagrangian and flow

equations are respectively given by (2.1)–(2.3) and (2.5) with m ≡ gc = 0, g 6= 0. In our

conventions, this domain wall is given by the metric (2.4) with eA(r) in (3.2) and scalars

z(r) = ζ12(r) ≡ 1− eϕ(r)

1 + eϕ(r)
=

(g r)2 − 24

(g r)2 + 24
, (3.3)

with eϕ(r) given also in (3.2). In our parameterisation, SO(7)-invariant solutions within

the SU(3)-invariant sector are characterised by Rez = Reζ12 and Imz = Imζ12 = 0 .

These conditions are indeed met by (3.3). Within the SU(3)-invariant sector, this solution

preserves four supercharges.

The domain wall (2.4), (3.2), (3.3) is the effective four-dimensional description, within

D = 4 N = 8 supergravity with a purely electric ISO(7) gauging [34], of the near horizon

D2-brane solution (3.1), (3.2) of massless type IIA. The constant g is reinterpreted in

this context as the supergravity gauge coupling. This solution is, in turn, dual to three-

dimensional N = 8 SYM. The absence of AdS vacua of the purely electric ISO(7) gauging

renders this supergravity inappropriate to study holographically IR superconformal phases

of three-dimensional N = 8 SYM. In contrast, the dyonic ISO(7) gauging [31] does possess

AdS vacua. In this section we will show that there exist domain wall solutions of dyonic

ISO(7) supergravity that interpolate between the effective D = 4 description (3.3) of the

D2-brane in the UV and these AdS fixed points in the IR. We will focus on domain walls

and IR fixed points with at least SU(3) symmetry, thus contained within the subsector of

dyonic ISO(7) supergravity reviewed in section 2.

More concretely, we will show the existence of supersymmetric domain wall solutions

of the g 6= 0, m 6= 0 BPS equations (2.5), with metric (2.4) and running scalars z(r), ζ12(r),

that interpolate between a domain wall (2.4) in the UV supported by scalars

z =

(g r)2 − 24

(
1 +

m

g
f1(r)

)
(g r)2 + 24

(
1 +

m

g
f1(r)

) + i
m

g

f3(r)(
24 + (g r)2

)2 ,

ζ12 =

(g r)2 − 24

(
1 +

m

g
f2(r)

)
(g r)2 + 24

(
1 +

m

g
f2(r)

) + i
m

g

f4(r)(
24 + (g r)2

)2 ,
(3.4)

and each of the AdS fixed points recorded in table 1 in the IR. In (3.4), g and

m = gc are again the electric and magnetic couplings of dyonic ISO(7) supergravity, and

f1(r), . . . , f4(r) are real functions of the transverse coordinate r in (2.4) to be determined

shortly. In the limit c ≡ m/g → 0 with g finite (and even at both c ≡ m/g and g finite, also

in the deep UV, see below), the configuration (3.4) reduces to the D = 4 description (3.3)
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of the near-horizon D2-brane solution. Using the SU(3)-invariant consistent uplift formu-

lae [38] of dyonic ISO(7) supergravity into massive type IIA [17, 27], the configuration (2.4),

(3.4) uplifts to the most general deformation of the near horizon D2-brane solution (3.1)

that is small in the Romans mass F̂(0) = m and preserves at least the SU(3) subgroup of

SO(7). By the equality between (quantised) Romans mass and three-dimensional Chern-

Simons coupling, F̂(0) = k/(2π`s) [16, 17], this massive type IIA configuration is dual to

the most general deformation of N = 8 SYM with Chern-Simons terms and adjoint matter

with at least SU(3) flavour.

An uneventful integration shows that the configuration (3.4) solves the BPS equa-

tions (2.5) at linear order in c = m/g provided the functions f1(r), . . . , f4(r) are given by

f1 =
c1

g r
+

c2

(g r)8
, f3 =

c3

(g r)4
+

c4

(g r)12
− 196608

7(g r)4
,

f2 =
c1

g r
− 3

4

c2

(g r)8
, f4 = −3

4

c3

(g r)4
+

c4

(g r)12
− 196608

7(g r)4
,

(3.5)

for arbitrary real integration constants c1, . . . , c4. As (3.5) shows, all the corrections (with

at least SU(3)-invariance) in (3.4) to the effective D = 4 description (3.3) of the D2-brane

near horizon geometry created by the dyonic parameter c = m/g are suppressed by inverse

powers of g r. Thus, the configuration (3.4), (3.5) can indeed serve as the asymptotic

UV of domain walls with at least SU(3) symmetry, and only as the UV, not as the IR.

This indicates that the addition of the Romans mass or, holographically, of Chern-Simons-

matter with at least SU(3) flavour, is a relevant deformation of the N = 8 SYM UV action.

In the deep UV, r → +∞, the scalars (3.4), (3.5) approach the boundary of their Poincaré

disks, z → 1, ζ12 → 1, through the asymptotic D2-brane behaviour (3.3). Note also

from (3.5) that it can never happen that f3 = f4 = 0 . This implies that the deformation

by the Romans mass always breaks the SO(7) R-symmetry of the D2-brane solution (3.3),

as expected.

It is sufficient for our purposes to consider (3.4), (3.5) with c = m/g small as the

UV behaviour of our SYM to CFT flows. The reason for this is that we want to treat the

Romans mass as a perturbation of the D2-brane configuration (3.3). As m becomes large

compared to g , (3.3) should be ultimately replaced with the configuration

z(r) = ζ12(r) =
(7mr)2/7 − 24/7

(7mr)2/7 + 24/7
, eA(r) = (7mr)1/7 , (3.6)

which solves (2.5) with g = 0, m 6= 0. This is no longer a solution of N = 8 supergravity

with a dyonic ISO(7) = CSO(7, 0, 1) gauging. Instead, it is a solution of N = 8 supergravity

with a purely magnetic nilpotent CSO(1, 0, 7) gauging. As argued briefly at the end of

section 2.3 of [31], the latter gauging uplifts to massive type IIA on T 6 rather than S6.

As a result, (3.6) gives rise to a ten-dimensional solution, presumably related to the D8-

brane, very different from a near horizon geometry like (3.1). We will not discuss this

configuration any further.
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3.2 Flow into the N = 1 G2 conformal phase

For the sake of stability of our numerical routine, we integrate the equations (2.5) with a

shooting method that starts near each of the IR fixed points. Let us first look at supersym-

metric flows with IR end in the G2 fixed point. By inspection of table 2 we conclude that

it is indeed possible for this point to serve as the IR (r → −∞) endpoint of a domain wall.

The reason is that there is an irrelevant mode with ∆̃ = ∆− = 1−
√

6 < 0. This mode is,

moreover, non-normalisable, in agreement with the expectation that the dual flow should

be triggered by deformations of the field theory Lagrangian. Perturbing the IR CFT by

this mode corresponds to adding a scale to the IR CFT. Since this is the only scale in

the theory, all of its values are equivalent and there is only one physically independent RG

flow. This has a counterpart in the numerical integration: the ai and αi coefficients in (2.7)

for this flow turn out to depend on only one parameter. This can be fixed by a shift of

the transverse coordinate. Although the actual value of this parameter is immaterial, one

must pick the correct sign, see appendix A.

As a result, our shooting method produces a unique N = 1 flow with IR endpoint in

the N = 1 G2 fixed point, which has z = ζ12 all along the flow. This condition ensures that

the entire flow is G2-symmetric, like the IR fixed point. In the UV, the flow asymptotes

to (3.4), (3.5) with c2 = c3 = 0 . In other words, the UV end of this flow is dominated by the

effective D = 4 description (3.3) of the near horizon D2-brane, with subleading corrections

as in (3.4), (3.5) produced by the non-zero c = m/g . The fact that c2 = c3 = 0 ensures

that this deformation by the Romans mass is G2-symmetric. In field theory terms, the

UV dynamics is governed by the SYM theory living in the worldvolume of the D2-branes,

since the YM term of the action is irrelevant and dominates over the Chern-Simons term

at high energies. At a certain energy scale the gluons of this theory become massive and

decouple at low energies, where the theory crossovers to a Chern-Simons-matter theory

and becomes conformal in the IR. The numerical trajectory of this flow in the z = ζ12

Poincaré disk is depicted in figure 2. Note that the plot approaches z = ζ12 → 1 in the

deep UV, r → +∞, in agreement with (3.4), (3.5), and (3.3).

The consistent uplifting formulae of dyonic ISO(7) supergravity into massive type

IIA [17, 27] can be used to write the ten-dimensional solution corresponding to this domain

wall. Using the G2-invariant restriction of these formulae given in (4.3), (4.4) of [27], the

result is

dŝ2
10 = e

3
4
ϕ(r)X(r)

3
4
(
e2A(r) ηαβ dxα dxβ + dr2

)
+ g−2 e−

1
4
ϕ(r)X(r)−

1
4 ds2(S6) ,

eφ̂ = e
5
2
ϕ(r)X(r)−

3
2 ,

F̂(4) =
[
g eϕ(r)X(r)2

(
5− 7 e2ϕ(r)χ(r)2

)
+me7ϕ(r)χ(r)3

]
vol4

+ g−3 dχ(r) ∧ ImΩ +

[
1

2
mg−4 e4ϕ(r) χ(r)2X(r)−2 − 2 g−3 χ(r)

]
J ∧ J ,

Ĥ(3) = g−2 d
(
e2ϕ(r) χ(r)X(r)−1

)
∧ J + 3 g−2 e2ϕ(r) χ(r)X(r)−1 ReΩ ,

F̂(2) = mg−2 e2ϕ(r) χ(r)X(r)−1 J ,

(3.7)

together with the general relation F̂(0) = m. The external volume form is given by vol4 =
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Figure 2. Trajectory of the SYM to CFT supersymmetric domain wall solution with the N = 1

G2 fixed point (red dot) in the IR. G2-invariance requires z = ζ12 along the flow. This and all

other plots in the paper have been generated with g = m = 1, i.e., c = 1.

1
3! e

3A(r) εαβγ dxα ∧ dxβ ∧ dxγ ∧ dr , J and Ω are the G2-invariant nearly-Kähler forms

on the six sphere, regarded as the homogeneous space S6 = G2/SU(3) , and ds2(S6) the

Einstein metric they determine. The latter coincides with the usual, round Einstein metric

that appears in (3.1). Also, X(r) ≡ 1 + e2ϕ(r)χ(r)2 , and the transverse functions ϕ(r)

and χ(r) are given in terms of the numerical z(r) in figure 2 by

eϕ(r) = 2

(
Rez(r)− 1

|z(r)|2 − 1

)
− 1 , χ(r) = 2

Imz(r)

(Im z(r))2 + (Rez(r)− 1)2
. (3.8)

3.3 Flows into the N = 2 SU(3)×U(1) conformal phase

We have found similar supersymmetric flows that drive the UV asymptotic D2-brane con-

figuration (3.4), (3.5) into the IR conformal phases with N = 2 SU(3) × U(1) and N = 1

SU(3) symmetries. In contrast to the unique G2-invariant flow, RG flows with IR endpoints

in either of these two phases come in one-parameter families.

Let us first focus on RG flows with IR endpoint on the N = 2 SU(3)×U(1) conformal

phase. Within the SU(3)-invariant truncation of dyonic ISO(7) supergravity that we are

considering, this fixed point displays two irrelevant and non-normalisable modes. These are

the negative entries ∆̃ = ∆− = (1−
√

17)/2 and ∆̃ = ∆− = (3−
√

17)/2 marked in red in

table 2. The existence of these two modes in principle allows for a two-parameter family of

flows but, as discussed in more detail in appendix A, one of these parameters can be fixed

(up to a sign) by a shift of the domain wall transverse coordinate r. The one-parameter

freedom of this family of domain walls is reflected in the field theory side: the addition of

an irrelevant deformation to a CFT adds a scale, E1, in the field theory that modifies the

UV. If a second scale, E2, is further added, they cannot be both removed simultaneously.

As a result, there is a one-parameter family of inequivalent physics parameterised by the

ratio E2/E1.

All the solutions in the family preserve at least SU(3) symmetry and N = 1 super-

symmetry along the flow, with an enhancement to SU(3) × U(1) symmetry and N = 2
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Imζ12

Reζ12

Imz

Rez
G2

G2

SU(3)×U(1)

SU(3)×U(1) SU(3)

SU(3)

Figure 3. Numerically integrated trajectories of some SYM to CFT flows. Three flows in each

one-parameter family with IR dominated by the N = 2 SU(3)×U(1) and the N = 1 SU(3) fixed

points are shown with dotted blue lines and dashed green lines, respectively. For each family it is

shown a generic flow, the ‘direct’ flow and a flow that runs very close to the common boundary set

by the G2 flow of figure 2 (not shown here). The latter flows appear almost superimposed along

this common boundary.

supersymmetry at the IR endpoint. The family is bounded by the G2-invariant flow of

section 3.2, and a flow that connects the N = 1 G2 fixed point in the UV with the N = 2

SU(3) × U(1) point in the IR. The latter will be further discussed in section 4. The su-

perconformal field theory dual to the N = 2 SU(3)×U(1) IR fixed point is in the class of

theories considered in [18]. As explained in [17], this corresponds to N = 2 Chern-Simons

theory with a single gauge group SU(N), coupled to three adjoint chiral fields in the funda-

mental of the SU(3) flavour group and subject to a cubic superpotential. The free energy

of this field theory on S3 was computed [17] using localisation [7–9] and shown to match

the gravitational free theory of the dual AdS4 massive type IIA configuration.

One flow in the family is special in that it minimises the trajectory in the (z, ζ12)

scalar space between the deep UV D2-brane solution (the boundary z → 1, ζ12 → 1 of the

Poincaré disks) and the N = 2 SU(3) × U(1) IR endpoint. The bosonic symmetry of this

‘direct’ flow is enhanced to the full SU(3) × U(1) symmetry of the IR fixed point. Also

the supersymmetry along this flow is enhanced, to N = 2 (four Poincaré supercharges,

see the comments on page 6). This ‘direct’ flow occurs with ζ̄12 = ζ12. This condition

is in fact responsible for the supersymmetry and U(1) symmetry enhancement: the two

SU(3)-invariant eigenvalues of the N = 8 gravitino mass matrix, namely, the two super-

potentials discussed in section 2.1, become degenerate when ζ̄12 = ζ12. Gauged N = 2

supergravity techniques similar to those used in [46] allow us to determine the analytic

trajectory in scalar space of the SU(3) × U(1)-invariant ‘direct’ flow. In the the (z, ζ12)

Poincaré disk parameterisation that we are using, this trajectory is given by3

2ig(1 + z)(1 + z̄)(z − z̄)−m (1− z)2(1− z̄)2 = 0 , ζ̄12 = ζ12 . (3.9)

We have numerically verified the validity of these equations. They should be treasured, as

analytic results in the holographic RG flow literature do not abound.

3In the parameterisation used in section 3.1 of [31], equations (3.9) read g t t̄ (t+t̄)−m = 0 and ζ = ζ̃ = 0.
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The numerically integrated trajectories of three flows in this one-parameter family are

depicted with dotted blue lines in figure 3. The trajectory farthest from the horizontal axes

corresponds to a generic flow. The middle trajectory is that, (3.9), of the ‘direct’ flow. A

third flow is depicted with trajectory very close to the boundary of the family. This flow

leaves the deep UV D2-brane solution, z → 1, ζ12 → 1, following closely the G2-invariant

flow of section 3.2. It displays walking dynamics dominated by the G2 fixed point for a

long parametric time or, holographically, for a long range of the ratio of scales E2/E1. This

flow eventually approaches the N = 2 SU(3)×U(1) fixed point in the IR following closely

the G2 to SU(3)×U(1) flow of section 4.

Finally, we note that the entire one-parameter family of flows can be uplifted to massive

type IIA using the consistent truncation formulae of [17, 27] particularised to the SU(3)-

invariant sector [38].

3.4 Flows into the N = 1 SU(3) conformal phase

A very similar story arises for supersymmetric domain walls that land on the N = 1 SU(3)

fixed point. Holographic RG flows into this point are also driven by two irrelevant and

non-normalisable modes, marked in red in table 2, with ∆̃ = ∆− < 0 . This leaves, upon

gauge fixing of the transverse coordinate as in the previous case, a one-parameter family of

N = 1 SU(3)-invariant flows that interpolate between the D2-brane behaviour (3.4) in the

UV and the N = 1 SU(3) fixed point in the IR. This family is bounded by the G2-invariant

flow of section 3.2 and the flow discussed in section 4 that connects the G2 fixed point in

the UV and SU(3) point in the IR. One of the flows in the family has minimal trajectory

in scalar space, but no symmetry or supersymmetry enhancements occur in this case.

Finally, this family of flows uplifts on S6 to massive type IIA using the SU(3)-invariant

specialisation [38] of the reduction formulae of [17, 27]. The IR fixed point corresponds to

the N = 1 SU(3)-invariant AdS4 solution of massive IIA found in [38].

The numerical trajectories of three flows in this family are plotted with dashed green

lines in figure 3. These correspond to a generic flow, to the ‘direct’ flow with minimal

trajectory, and to a flow that follows closely the boundary and displays walking dynamics

governed by the G2 fixed point.

4 CFT to CFT flows

We now turn to discuss RG flows that interpolate between superconformal phases with at

least SU(3) flavour symmetry at both UV and IR endpoints. An argument based on the

following hierarchy of cosmological constants

0 > V G2
∗ > V

SU(3)×U(1)
∗ > V

SU(3)
∗ (4.1)

(see table 1), suggests that there may be at most three types of flows of this type: flows

that originate at the G2 point whose IR is dominated by either the SU(3) × U(1) or the

SU(3) point, and flows that originate at the SU(3)×U(1) phase and reach the SU(3) point

in the IR. We find that only the first two types of flows exist and are, moreover, unique

within the SU(3)-invariant sector. These two flows have already been noted in sections 3.3

and 3.4. The latter type of RG flows is not realised.
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Reζ12

Imζ12Imz

Rez

G2

G2

SU(3)×U(1)

SU(3)×U(1)
SU(3)

SU(3)

Figure 4. Numerically integrated trajectories of the CFT to CFT flows that interpolate between

the G2 fixed point (red dot) in the UV and the SU(3)×U(1) (dotted blue line) or the SU(3) (dashed

green line) fixed point in the IR.

For these RG flows to exist, the supersymmetric CFT with G2 symmetry must possess

at least two relevant, ∆+ < 3, deformations. Each of these would be responsible to trigger

flows into either IR phase, SU(3) and SU(3)×U(1). There are indeed two such modes, that

we called 1 and 2 in table 2. For both of them, the non-normalisable fall-off, ∆̃ = ∆− > 0

happens to be activated in the perturbative solution (2.7) about the UV G2 point. The

(normalisable) mode that falls-off with ∆3 = 1+
√

6 has to be switched off, as it corresponds

to an irrelevant operator. In summary, we expect that there are two independent linear

combinations of operators with dimensions ∆± = 2 ± 1/
√

6 : one that makes the theory

flow to the SU(3)×U(1) fixed point and the other to the SU(3) point.

A numerical integration of the BPS equations (2.5) shows that both such BPS domain

walls do indeed exist. As in the previous section, it is simpler to integrate the equations

starting near the SU(3)×U(1) or SU(3) IR fixed points. For generic IR boundary conditions

compatible with turning on irrelevant deformations, one recovers the two families of flows

with UV dominated by the D2-brane solution that we discussed in the previous section.

However, for both IR fixed points we find that a fine-tuning of the boundary conditions

changes the UV behaviour. In both cases, the UV of these fine-tuned domain walls is

dominated by the N = 1 G2-invariant phase. Moreover, the numerical integration shows

that precisely the expected modes that we described above drive these flows into the UV

G2 phase. Both flows are N = 1 and SU(3)-invariant. Finally, each of them serves as a

boundary of the one-parameter family of flows discussed in section 3 with the same IR

fixed point.

Figure 4 depicts the numerically integrated trajectories of these CFT to CFT flows in

scalar space.

5 Discussion

We have studied supersymmetric domain wall solutions of D = 4 N = 8 dyonically-gauged

ISO(7) supergravity that display at least SU(3) invariance. The domain walls whose UV
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is dominated by (the four-dimensional description of) the D2-brane, (2.4), (3.2), (3.3),

have a clear AdS/CFT interpretation. They describe holographically the RG evolution of

three-dimensional N = 8 SYM theory when the latter is augmented with Chern-Simons

terms and adjoint supersymmetric matter with at least SU(3) flavour symmetry. We have

also constructed domain walls between the conformal phases of the D2-brane with at least

SU(3) symmetry.

Our analysis uncovers a rich web of supersymmetric flows between N = 8 SYM and

different IR superconformal phases. In the supergravity sector under investigation, there

exists a unique domain wall with G2 symmetry along the entire solution that drives the D2-

brane worldvolume theory into the N = 1 phase with that flavour symmetry. This unique

N = 1 G2-invariant flow lies at the common boundary of two one-parameter families of

N = 1 SU(3)-invariant flows. One family contains flows that interpolate between the D2-

brane behaviour in the UV and the N = 2 SU(3) × U(1)-invariant fixed point in the IR.

One of the flows in this family has its supersymmetry and symmetry enhanced to N = 2

and SU(3) × U(1). The other one-parameter family of flows interpolates between the UV

D2-brane worldvolume theory and an N = 1 SU(3)-invariant phase in the IR. In addition,

these families are also bounded by unique N = 1 SU(3)-invariant flows with UV origin

in the G2 phase and IR endpoint in either the N = 2 SU(3) × U(1) or the N = 1 SU(3)

points. See figures 2, 3 and 4 for a graphical summary of this web of supersymmetric RG

flows. Our results are numerical and, for the flow with enhanced symmetry into the N = 2

point, also analytic: see equation (3.9).

To some extent, these results parallel the situation for flows of the M2-brane field

theory with at least SU(3) symmetry. These have been studied [5, 21–23] within the

effective description provided by D = 4 N = 8 supergravity with a (purely electric) SO(8)

gauging [24]. This gauged supergravity also has critical points with N = 1 G2-symmetry

and N = 2 SU(3)×U(1) symmetry (but not with N = 1 SU(3) symmetry). These critical

points give rise, by the consistency of the truncation of D = 11 supergravity on S7 [26], to

AdS4 solutions in D = 11. A one-parameter family of N = 1 SU(3)-invariant flows exists

that drives the M2-brane field theory into the N = 2 SU(3) × U(1) conformal phase [23].

This family contains the ‘direct’ flow of [3, 21] and is bounded by the flow into the N = 1

G2 phase [22] and by the flow from the G2 phase in the UV and the N = 2 SU(3)× U(1)

point in the IR [23]. With the exception of the latter, the UV of these flows is dominated by

the N = 8 SO(8) point of the SO(8) gauging, dual to the superconformal field theory of [2].

Apart from this important difference (the UV of our flows is generically dominated by

the non-conformal N = 8 SYM theory in three dimensions) the situation is quite similar in

our present D2-brane case. Another difference between the M2 and D2-brane cases is the

presence in the latter of an N = 1 SU(3)-invariant conformal phase with no counterpart in

the former. Unlike the purely electric SO(8) gauging [24] of D = 4 N = 8 supergravity, but

like the dyonic ISO(7) gauging [31], the dyonic SO(8) gauging [28] has an N = 1 SU(3)-

invariant critical point [41]. In the dyonic SO(8) gauging, the N = 2 SU(3) × U(1) point

still serves as the IR endpoint of a family of domain walls with UV origin in the N = 8

SO(8) point [45, 46]. In addition, the new N = 1 SU(3) point also dominates the IR of a

one-parameter family of domain walls. Both families are, also in this case, bounded by the

– 18 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
8

G2-invariant flow and by flows between the G2, SU(3) × U(1) and SU(3) points [45, 46].

The web of domain walls with at least SU(3) invariance in the dyonic ISO(7) gauging is

thus much more similar to the web in the dyonic SO(8) gauging [45, 46] than to the web

in the purely electric SO(8) gauging [23], also with the same caveat about the generic UV

behaviour. No-go statements [52, 53] against a conventional higher-dimensional origin of

dyonic SO(8) supergravity [28] seem to preclude a holographic interpretation of the domain

walls of [45, 46] beyond the strict N → ∞ limit. This is unlike the domain walls [5, 21–

23] of SO(8) electrically gauged supergravity and unlike the domain walls that we have

constructed in this paper.

The consistency of the truncation of massive type IIA supergravity on the six-

sphere [17, 27] down to dyonic ISO(7) supergravity ensures the existence of a ten-

dimensional counterpart to our web of four-dimensional BPS domain walls. In other words,

there exists a network of supersymmetric ten-dimensional solutions that interpolate be-

tween the AdS4 solutions of massive type IIA with at least SU(3) internal symmetry that

were recently constructed in [17, 38] (and, in the case of the the N = 1 G2-invariant

solution, earlier in [37]). We have explicitly written down one of these solutions in equa-

tion (3.7). More generally, these ten-dimensional solutions can be obtained from the four-

dimensional domain walls that we have constructed in this paper using the SU(3)-invariant

particularisation [38] of the generic N = 8 consistent truncation formulae of massive IIA

supergravity on S6 [17, 27]. Previous work on domain walls of the CSO(p, q, r) gaugings

and their possible higher-dimensional origin includes [54]. See [55] for a supersymmetry

analysis of domain walls already in ten dimensions.

In this paper we have focused on the effect of the Romans mass on the worldvolume

theory of D2-branes in flat space. Our results, however, admit some straightforward gener-

alisations. For example, the ten-dimensional uplift (3.7) of the G2-invariant flow depends

on the homogeneous nearly-Kähler structure of S6 only. It thus remains a valid solution of

massive type IIA if S6 is replaced with any nearly-Kähler six-manifold. For this reason, as

explained in more detail in [27], this particular solution can be uplifted using the universal

nearly-Kähler truncation of [56, 57]. This universality implies that the results of section 3.2

also describe the flow triggered by the addition of Chern-Simons terms and G2-invariant

matter to the gauge theory defined on a stack of D2-branes probing a G2-holonomy conical

singularity. The IR endpoint of the flow is now the Behrndt-Cvetic solution [37] con-

structed out of the nearly-Kähler base of the G2-holonomy cone. Similarly, the results of

section 3.3 apply to describe flows of the gauge theory defined on D2-branes probing a

CY3 × C singularity, with CY3 a Calabi-Yau three-fold. In this case, the IR endpoint of

the flow corresponds to the generalisation of the N = 2 solution of [17] that replaces CP2

with a suitable Kähler-Einstein base. This more general type of N = 2 AdS4 IR phases

have also been considered, either analytically or numerically, in [58–61].

While the IR CFT dual to the N = 2 SU(3) × U(1) AdS4 solution of massive type

IIA has been well established and shown to pass non-trivial AdS/CFT tests [17], the same

remains to be done for the AdS4 solutions with N = 1 supersymmetry and G2 [37] and

SU(3) [38] symmetries. It would be very interesting to elucidate these dual CFTs.
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A Boundary conditions for the numerical integrations

In this appendix we describe in more detail the boundary conditions necessary to produce

the domain wall solutions that we presented in the main text. The integration of the BPS

equations (2.5) proceeds by shooting from each of the fixed points recorded in table 1

regarded as an IR fixed point.

The linearised solution to the BPS flow equations (2.5) around the N = 1 G2-point

is (2.7) with coefficients explicitly given by

a1 = 0.474κ1+0.215κ2−0.474κ3−0.215κ4+i(0.215κ1+0.098κ2−0.215κ3−0.098κ4) , (A.1a)

a2 = 0.098κ1−0.215κ2−0.098κ3+0.215κ4+i(−0.215κ1+0.474κ2+0.215κ3−0.474κ4) , (A.1b)

a3 = 0.073κ1−0.161κ2+0.098κ3−0.215κ4+i(−0.161κ1+0.355κ2−0.215κ3−0.474κ4) , (A.1c)

a4 = 0.355κ1+0.161κ2+0.474κ3+0.215κ4+i(0.161κ1+0.073κ2+0.215κ3+0.098κ4) , (A.1d)

for z − z∗ and

α1 = −0.355κ1−0.161κ2+0.355κ3+0.161κ4+i(−0.161κ1−0.073κ2+0.161κ3+0.073κ4) , (A.2a)

α2 = −0.073κ1+0.161κ2+0.073κ3−0.161κ4+i(0.161κ1−0.355κ2−0.161κ3+0.355κ4) , (A.2b)

α3 = 0.073κ1−0.161κ2+0.098κ3−0.215κ4+i(−0.161κ1+0.355κ2−0.215κ3+0.474κ4) , (A.2c)

α4 = 0.355κ1+0.161κ2−0.161κ3+0.355κ4+i(0.161κ1+0.073κ2+0.215κ3+0.098κ4) , (A.2d)

for ζ12− ζ12∗. Here, κ1, . . . , κ4 are four independent real integration constants. We provide

three decimal places for the numerical coefficients, but we have used larger precision to

construct the solutions.

For the N = 1 G2 point to serve as the IR endpoint of a regular domain wall, the

integration constants κ1, . . . , κ4 in (A.1a)–(A.2d) have to be chosen so that the coefficients

ai and αi of the exponentials in the linearised solution (2.7) with ∆̃i > 0 vanish. By

inspection of table 2, we see that we need to impose a1 = a2 = a3 = α1 = α2 = α3 = 0. A

solution to these constraints does exist, and this fixes the constants κ2, κ3 and κ4 in terms

of κ1. This gives

a4 = α4 = (1 + 0.454 i)κ1 , (A.3)

and the linearised solution about the IR G2 point thus becomes

z − z∗ = ζ12 − ζ12∗ = (1 + 0.454 i)κ1e
−(1−

√
6) r
L∗ . (A.4)

The shift r → r+ L∗
1−
√

6
log κ1 of the transverse coordinate is a symmetry of the G2-invariant

BPS equations which can be used to set κ1 = 1 without loss of generality. Numerically
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shooting using the IR boundary condition (A.4), we integrate the BPS equations (2.5) into

a unique domain wall that approaches the perturbed D2-brane solution (3.4), (3.5) in the

UV, with c2 = c3 = 0. This flow is plotted in figure 2.

Turning now to the N = 2, SU(3)×U(1) fixed point, the linearised solution of the flow

equations (2.5) about this point is (2.7) with

a1 = 0.155κ1 + 0.269κ2 − 0.268κ3 + i(0.269κ1 + 0.466κ2 − 0.464κ3) , (A.5a)

a2 = 0.284κ1 − 0.164κ2 − 0.464κ4 + i(−0.164κ1 + 0.095κ2 + 0.268κ4) , (A.5b)

a3 = 0.466κ1 − 0.269κ2 + 0.464κ4 + i(−0.269κ1 + 0.155κ2 − 0.268κ4) , (A.5c)

a4 = 0.095κ1 + 0.164κ2 + 0.268κ3 + i(0.164κ1 + 0.284κ2 + 0.464κ3) , (A.5d)

α1 = −0.212κ1 − 0.380κ2 + 0.379κ3 , (A.5e)

α2 = i(−0.380κ1 + 0.212κ2 + 0.621κ4) , (A.5f)

α3 = i(0.380κ1 − 0.212κ2 + 0.379κ4) , (A.5g)

α4 = 0.212κ1 + 0.380κ2 + 0.621κ3 . (A.5h)

The constants κ3 and κ4 can be fixed in terms of κ1 and κ2 to ensure that a1 = a2 = α1 =

α2 = 0, so that the modes with ∆̃ > 0 are turned off for flows that have this point as their

IR endpoint. Doing this, we obtain

a3 =
3

4
κ1 − 0.433κ2 + i

(
−0.433κ1 +

1

4
κ2

)
, (A.6a)

a4 =
1

4
κ1 + 0.433κ2 + i

(
0.433κ1 +

3

4
κ2

)
, (A.6b)

α3 = i (0.612κ1 − 0.354κ2) , (A.6c)

α4 = 0.580κ1 + 1.004κ2 . (A.6d)

As in the previous case, a shift of the transverse coordinate fixes one of the two constants,

say κ1, to any positive fixed value. As a result, we end up with a family of flows with

N = 2 SU(3)×U(1) IR endpoint parameterised by κ2.

Some flows in this family have been plotted in figures 3 and 4 with dashed blue lines.

They correspond to the values

κ1 = 10−2 , κ2 = {4.408, 1.732, 0.981} · 10−2 . (A.7)

The largest value of κ2 in (A.7) corresponds to the critical domain wall depicted in figure 4

whose UV asymptotics is dominated by the G2 fixed point as described in section 4. All

other values of κ2 produce flows with UV asymptotics dominated by the Romans-mass-

perturbed D2-brane solution (3.4), (3.5) with suitable c1, . . . , c4. For example, the smallest

value of κ2 in (A.7) produces the dotted blue domain wall in figure 3 that runs farthest

from the axes. It is shown as a representative of generic behaviour within this family

of flows. The central value of κ2 in (A.7) is again special in that it generates the ‘direct’

domain wall that minimises the trajectory between D2-brane UV behaviour and the N = 2

SU(3)×U(1) IR fixed point. As discussed in the main text, all flows in the family preserve

– 21 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
8

SU(3) symmetry and N = 1 supersymmetry, except the direct flow for which these are

enhanced to SU(3)×U(1) and N = 2. The ‘direct’ flow corresponds to the central dotted

blue line in figure 3, and its analytic trajectory is given by equations (3.9).

Finally, around the fixed point with N = 1 supersymmetry and SU(3) symmetry

we observe that the numerical values of ∆̃i come in two equal pairs. We can thus set

a2 = a4 = α2 = α4 = 0 without loss of generality. The remaining coefficients are

a1 = 0.398κ1−0.395κ2−0.381κ3+0.045κ4+i(−0.395κ1+0.602κ2+0.045κ3+0.381κ4) , (A.8a)

a3 = 0.602κ1+0.395κ2+0.381κ3−0.045κ4+i(0.395κ1+0.398κ2+0.045κ3−0.381κ4) , (A.8b)

α1 = −0.216κ1+0.025κ2+0.507κ3−0.408κ4+i(0.025κ1+0.216κ2−0.408κ3+0.492κ4) , (A.8c)

α3 = 0.216κ1−0.025κ2+0.492κ3+0.408κ4+i(−0.025κ1−0.216κ2+0.408κ3+0.507κ4) . (A.8d)

The constants κ3 and κ4 can be fixed in terms of κ1 and κ2 to ensure that a1 = α1 = 0,

thus cancelling the mode with ∆̃ > 0. Once this is done we obtain

a3 = κ1 + κ2 i , (A.9a)

α3 = 1.150κ1 − 1.206κ2 + i(0.901κ1 − 1.437κ2) . (A.9b)

Since both parameters κ1 and κ2 contribute in this case to the same mode, the sign of κ1

or κ2 cannot be fixed uniquely. The solutions depicted in figures 3 and 4 were produced

with values

(κ1, κ2) = {(−0.067,−0.1) , (0.114, 0.1) , (0.318, 0.1)} . (A.10)

The first pair of values corresponds to the critical value where the UV is dominated by

the conformal G2 fixed point, depicted by the dashed green curve in figure 4. All other

values lead to flows with D2-brane UV behaviour. For example, the second pair of values

gives the domain wall solution that minimises the trajectory in scalar space and the third

one corresponds to a generic flow, the dashed green curve of figure 3 that runs the farthest

from the axes.

B Running of the free energy

The free energy of the different superconformal phases with at least SU(3) flavour symmetry

that arise as IR fixed points of N = 8 SYM upon perturbation with Chern-Simons-matter

terms was computed holographically in [17, 38]. Here we will extend this computation and

determine the running of the free energy along the entire flows that we constructed in the

main text.

The uplift on S6 of the four-dimensional metric ds̃2
4 and SU(3)-invariant scalars of the

four-dimensional model (2.1) to the ten-dimensional metric takes the form [38]

dŝ2
10 = e2A ds̃2

4

+ g−2e
1
8

(2φ−ϕ)X1/4∆
1/2
1 ∆

1/8
2

[
e−2φ+ϕX−1dα2 (B.1)

+ sin2 α
(

∆−1
1 ds2(CP2) +X−1∆−1

2 (dψ + σ)2
)]

.
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Here we have parameterised the four-dimensional scalars as in section 3.1 of [31]. The

change of variables into the scalar parameterisation that we have used in the main body

of this paper is given by

z =
t− i
t+ i

, and ζ12 =
u− i
u+ i

, with u ≡ −1

2

√
ζ2 + ζ̃2 + ie−φ . (B.2)

The warp factor is given by

e2A = −6 e
1
8

(2φ−ϕ)X1/4∆
1/2
1 ∆

1/8
2 V −1 , (B.3)

where V is the scalar potential (2.2). In (B.1), α and ψ are angles on S6 with periods π

and 2π, respectively, σ is a one-form potential for the Kähler form on CP2 and ds2(CP2)

is the Fubini-Study metric normalised so that the Ricci tensor equals six times the metric.

Finally, we have defined

X = 1 + e2ϕχ2 , (B.4)

∆1 = eϕ
(

1 +
1

4
e2φ
(
ζ2 + ζ̃2

))
sin2 α+ e2φ−ϕ (1 + e2ϕχ2

)
cos2 α , (B.5)

∆2 = eϕ sin2 α+ e2φ−ϕ cos2 α . (B.6)

For convenience, we have rescaled the four-dimensional metric ds̃2
4 with respect to [38] by a

factor −6V −1. This factor evaluates on a critical point of V to the squared AdS radius L2
∗,

see below (2.6). However, the metric ds̃2
4 does not need to be the AdS metric corresponding

to an IR fixed point, it can rather be any four-dimensional geometry. In fact, here we will

be mostly interested in the case in which ds̃2
4 is the domain wall metric (2.4).

The free energy F is proportional to the inverse of the effective four-dimensional New-

ton’s constant. On the geometry (B.1), (B.3), this evaluates to

F =
16π3

(2π`s)8

∫
S6

e8A vol6 = − 96π3

(2π`s)8
g−6 v(S6)V −1 , (B.7)

where `s =
√
α′ is the string length and vol6 is the volume element corresponding to

the metric on the deformed S6 given in (B.1), following the conformal factor conventions

of [17, 38]. The integrand’s dependence on the functions ∆1 and ∆2 turns out to cancel,

leaving solely an α dependence of the form sin5 α which integrates into the volume

v(S6) =
16

15
π3 (B.8)

of the unit radius round six-sphere. Equation (B.7) already exhibits the expected inverse

dependence of the free energy on the scalar potential V . However, this expression is written

in terms of the classical D = 4 coupling constants g and m (explicitly and through V ).

Instead, we would like to express the result in terms of the IIA fluxes or, equivalently, the

number N of D2-branes and the quantum k of Romans mass.

In order to do this, note that, at an AdS critical point with at least SU(3) invariance,

the cosmological constant scales as g2(m/g)−1/3 (see table 1 in the main text). This
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combination can be taken to set an overall scale not only at a critical point but, in fact, at

any point in scalar space. We can thus factorise this dependence from the scalar potential

as V = g2(m/g)−1/3 Ṽ and replace g and m by their values in terms of N and k [17, 38],

g5 = 5 v(S6) (2π`s)
−5N−1 , m = k (2π`s)

−1 . (B.9)

Thus, from (B.7) we finally obtain

F = −96 · 5−5/3 π3 v(S6)−2/3 Ṽ −1N5/3k1/3 . (B.10)

At a critical point of the D = 4 potential with at least SU(3) invariance (see table 1

in the main text for the supersymmetric points and, more generally, table 3 of [31]), equa-

tion (B.10) produces the free energies given in [17, 38]. More generally, (B.10) is valid at

any point of the SU(3)-invariant scalar space, not necessarily at a critical point of the scalar

potential. In particular, equation (B.10) gives holographically the running of the free en-

ergy under the renormalisation group flows on the D2-brane with at least SU(3) symmetry

that we have considered in this paper. We conjecture that, more generally, equation (B.10)

also holds at any point of the 70-dimensional coset space E7(7)/SU(8) of the full D = 4

N = 8 dyonically-gauged ISO(7) supergravity, with Ṽ given by the full g = m = 1, N = 8

potential, normalised as in [31].

C SO(4)-invariant RG flows

The focus of this paper has been to construct supersymmetric RG flows of the D2-brane

field theory triggered by the Romans mass that preserve at least the SU(3) subgroup of the

SO(7) R-symmetry of N = 8 SYM in three dimensions. In this appendix, we will briefly

touch on similar flows, not necessarily supersymmetric, that have the N = 3 SO(4) critical

point [36] of dyonic ISO(7) supergravity as their IR endpoint and preserve at least this

SO(4) along the flow. The field theory dual of this critical point was conjectured in [17]

to correspond to an N = 3 CFT discussed in [19, 20]. The corresponding massive type

IIA uplift has been obtained in [39] (see also [40]) using the consistent truncation formulae

of [17, 27].

C.1 Flow equations, modes and fixed points

We will work within the SO(4)-invariant sector of dyonic ISO(7) supergravity described

in section 5 of [31]. This sector preserves N = 1 supersymmetry and retains the metric

along with four real scalars that parameterise two chiral multiplets. We pack these into

two complex fields, Φ1,2 . The bosonic action of this sector can be written as [31]

S =
1

16πG4

∫
d4x
√
−g

[
R+

12

(Φ1 − Φ̄1)2
∂µΦ1∂

µΦ̄1 +
2

(Φ2 − Φ̄2)2
∂µΦ2∂

µΦ̄2 (C.1)

− 8

(
2

3

(
Φ1 − Φ̄1

)2 ∣∣∣∣∂W∂Φ1

∣∣∣∣2 +
1

4

(
Φ2 − Φ̄2

)2 ∣∣∣∣∂W∂Φ1

∣∣∣∣2 − 3|W |2
)]

,
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Mode 1 Mode 2 Mode 3 Mode 4 Relevant oper. Irrelevant oper.

N = 3

SO(4)

M2L2
∗ 3(1−

√
3) 1−

√
3 1 +

√
3 3(1 +

√
3)

∆+

√
3 1 +

√
3 2 +

√
3 3 +

√
3 2 2

∆− 3−
√

3 2−
√

3 1−
√

3 −
√

3

Table 3. Spectrum of SO(4)-invariant scalars around the N = 3 SO(4) fixed point. Blue (red)

values correspond to modes compatible with UV (IR) regularity of a domain wall.

with the scalar potential V canonically expressed in terms of an N = 1 superpotential

W = g
(
8 Φ3

1 + 6 Φ2
1 Φ2

)
+ 2m (C.2)

(see [31] for further details). This superpotential has a single fixed point. This is also a

fixed point of the scalar potential: it is the N = 1, G2 critical point. More generally, the

identification Φ1 = Φ2 = −i (z+ 1)/(z− 1), with z the vector multiplet scalar employed in

the main text, reduces the action (C.1) to that of the G2-invariant sector.

The scalar potential V displays a number of other extrema which does not share

with the superpotential and are therefore not supersymmetric within this truncation. The

SO(4)-symmetric AdS point we are interested in is one of these. It is non-supersymmetric

within this truncation in spite of being N = 3 within the full N = 8 dyonic ISO(7)

supergravity. The reason for this peculiar behaviour was explained in [31]: the three

gravitini that remain ‘massless’ at this point transform in a non-trivial representation of

SO(4) and are thus projected out from the SO(4)-invariant sector. In the parameterisation

that we are using, this SO(4)-invariant point is located at

Φ∗,1 = 2−4/3
(
−1 +

√
3 i
)
c1/3 , Φ∗,2 = 2−1/3

(
1 +
√

3 i
)
c1/3 , (C.3)

and occurs with the following inverse radius and cosmological constant:

L∗ =
33/4

213/6

c1/6

g
, V∗ = −32 · 21/3

√
3

g2

c1/3
. (C.4)

The normalised scalar masses at this point within this sector and the conformal dimensions

of the dual operators are summarised in table 3.

C.2 SYM to CFT flows

We now construct an SO(4)-invariant family of domain walls that interpolate between the

D2-brane behaviour (3.3) in the UV and the SO(4)-invariant point (C.4) in the IR. Since

the supersymmetry of the latter is not captured by the model (C.1), (C.2), we work with

the second order Euler-Lagrange equations of motion that derive from it. In particular,

the equation of motion of the scale factor A(r) does not decouple from the equations of

motion of the scalars Φi. It nevertheless still happens to be first order. This allows us to

integrate its linearised equation of motion about the IR fixed point as

A(r) =
r

L∗

(
1 +

cA
r

)
, (C.5)
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in terms of a unique integration constant, cA, which must be small for the linearised

approximation to hold. The linearised equations of motion of the scalars can in turn be

integrated about the IR fixed point as

Φi − Φ∗,i =

4∑
j=1

(
b+,j,i e

−∆+,j
r
L∗ + b−,j,i e

−∆−,j
r
L∗

)
, (C.6)

in terms of sixteen complex constants b±,j,i that depend solely on eight independent real

integration constants, respectively associated to each of the conformal dimensions ∆±,j ,

j = 1, . . . , 4, listed in table 3.

Next, we proceed with the integration of the entire domain walls. As in the cases cov-

ered in the main text, the regularity of an incoming domain wall at the IR fixed point (C.3)

can be enforced by appropriately choosing boundary conditions. Namely, by imposing re-

lations among the eight integration constants in order to set b±,j,i = 0 whenever ∆±,j > 0.

From table 3 we see that the only negative exponents ∆±,j that can drive a regular do-

main wall into the IR fixed point via (C.6) are the non-normalisable ∆−,3 = 1 −
√

3 and

∆−,4 = −
√

3. The regularity requirement leaves only two such real integration constants,

one of which can be fixed by a shift of the transverse coordinate as in appendix A. Also, the

constant cA in (C.5) can be set to zero without loss of generality, since it just corresponds

to a renormalisation of the Minkowski directions in the IR. In conclusion, we find a one-

parameter family of SO(4)-invariant domain wall solutions to the Euler-Lagrange equations

derived from (C.1)–(C.2) which are smooth in the IR SO(4)-invariant fixed point (C.3).

Numerical integrations show that the UV of this family of domain walls is dominated by

the D2-brane geometry (3.3).

Since we work with second-order equations of motion in this appendix, the flows in this

SO(4)-invariant family will typically be non-supersymmetric, even within the full N = 8

dyonic ISO(7) supergravity. The analysis for the construction of the domain wall solutions

is, however, very similar to the supersymmetric cases considered in the main text. In

figure 5 we present two trajectories of domain wall solutions of the Euler-Lagrange equations

in a Poincaré disk parameterisation for the scalars

zj =
Φj − i
Φj + i

. (C.7)

The right-most one has only the mode ∆−,4 turned on. The second trajectory has both

∆−,3 and ∆−4, tuned so that this flow experiences walking behaviour dominated by the

(unstable) SO(7) point [51] of dyonic ISO(7) supergravity.

It would be interesting to explicitly check for supersymmetric flows within this family

and, more generally, to construct those systematically.

C.3 Comments on CFT to CFT flows

From table 1 and equation (C.4), the following hierarchy of cosmological constants among

the known supersymmetric critical points of dyonic ISO(7) supergravity can be seen to hold:

0 > V G2
∗ > V

SU(3)×U(1)
∗ > V

SO(4)
∗ > V

SU(3)
∗ . (C.8)
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Figure 5. Trajectory of a SYM to CFT domain wall solution with the SO(4) fixed point (orange

dot) at the IR endpoint. The non-supersymmetric SO(7) fixed point is depicted with a pink dot.

It is then natural to ask whether supersymmetric RG flows from the G2 or the SU(3)×U(1)

points in the UV to the SO(4) point in the IR exist. The latter flow has been conjectured

to exist in [17], following [19, 20]. Similarly, one can ask whether supersymmetric flows

between the SO(4) point in the UV and the SU(3) point in the IR exist.

In order to look for such flows, one needs to consider either the full ISO(7) theory

or find a subsector that retains all of these points. A candidate that fulfils the latter

requirement is the Z2 × SO(3)-invariant sector discussed appendix A of [31]. This is an

N = 1 truncation that retains six real scalars, which can be complexified into three chiral

fields Φ1,2,3. The SU(3)-invariant sector is recovered upon identifying Φ2 = Φ3 whereas the

SO(4)-invariant sector is obtained by setting Φ1 = Φ3. Unfortunately, the N = 3 SO(4)

point suffers the handicap of being non-supersymmetric also within this sector, for similar

reasons as in the SO(4)-invariant sector discussed in the previous subsection. Thus, this

subsector does not appear to be suitable to study BPS domain walls among the known

supersymmetric extrema of dyonic ISO(7) supergravity.

Extending the analysis to include non-supersymmetric domain walls, as in the previous

subsection, does not produce flows in the Z2×SO(3)-invariant sector that were not already

contained in the SO(4) sector, at least when the SO(4) point lies at the IR. The reason for

this is that the extra two real modes contained in this sector compared to the SO(4) sector

cannot trigger new flows. Let us focus on the G2, SU(3)×U(1) and SO(4) fixed points.

The mass spectra about these points within the Z2 × SO(3)-invariant sector are

M2L2
∗ |G2 = (2×) − 1

6
(11±

√
6) , 4±

√
6,

M2L2
∗ |SU(3)×U(1) = 3±

√
17 , (2×) 2 , −20

9
, −14

9
,

M2L2
∗ |SO(4) = 3(1−

√
3) , 1−

√
3 , 1 +

√
3 , 3(1 +

√
3) , (2×) − 2.

(C.9)

In addition to the masses in tables 2 and 3, there are two new ones, −1
6(11±

√
6), for the

G2 point and −20
9 , −14

9 for the SU(3)×U(1) point, and a new degenerate one, −2 , for

the SO(4) point. The latter corresponds to a relevant operator at the SO(4) point, which

makes it unsuitable to drive flows into this point when it serves as an IR endpoint.

Let us look at the complete spectrum of the SO(4) = SO(3)diag × SO(3)right point

within the full ISO(7) theory, in order to figure out a truncation that stands a chance of
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capturing supersymmetric CFT to CFT flows with the SO(4) point as the IR endpoint.

The scalar mass spectrum is given by [36]

M2L2
∗ |SO(4) = 3(1−

√
3)(1,1) , (1−

√
3)(5,1)+(1,1) , (1+

√
3)(5,1)+(1,1) , 3(1+

√
3)(1,1);

− 2(3,3)+(3,3) ; −9

4

(2,2)

, −5

4

(2,2)+(4,2)

; 0(2,2)+(2,2)+(4,2)+(3,1)+(3,1),
(C.10)

with dual conformal dimensions

∆+ |SO(4) =
√

3
(1,1)

, (1 +
√

3)(5,1)+(1,1) , (2 +
√

3)(5,1)+(1,1) , (3 +
√

3)(1,1);

1(3,3) , 2(3,3) ;
3

2

(2,2)

,
5

2

(2,2)+(4,2)

; 3(2,2)+(2,2)+(4,2)+(3,1)+(3,1).
(C.11)

Here, the labels (n,m) specify SO(4) = SO(3)diag×SO(3)right representations. The N = 3

R-symmetry group is identified with SO(3)diag . The 14 states in the upper line of (C.10)

(equivalently (C.11)) form an N = 3 long gravitino multiplet. The states in the second line

correspond to three massless vector multiplets (3 × 6 states in the first block), two semi-

short gravitino multiplets (2 × 8 states in the second block) and 22 states (third block)

corresponding to the Goldstone bosons of the ISO(7) spontaneous symmetry breaking to

SO(4) [36].

As already discussed, the desired CFT to CFT flows ending at the SO(4) point can

only activate irrelevant modes in the IR (∆+ > 3) due to regularity. This selects the scalars

with M2L2
∗ normalised masses and SO(4) = SO(3)diag × SO(3)right multiplicities given

by (1 +
√

3)(5,1)+(1,1) and 3(1 +
√

3)(1,1). A truncation keeping these seven fields (among

others) is the one retaining the long gravitino multiplet (14 scalars) and 6 out of the 22

Goldstone bosons. Note that it contains the SO(4)-invariant sector as a subtruncation.

Alternatively, it can also be seen as the SO(3)right-invariant sector of the ISO(7) theory,

which describes an N = 4 supergravity — the eight gravitini of the full theory decompose

as 8 → (1,1) + (3,1) + (2,2) under SO(4) = SO(3)diag × SO(3)right — coupled to three

vector multiplets. The scalar manifold is then identified as M = SL(2)
SO(2) ×

SO(6,3)
SO(6)×SO(3) and

accounts for the 2 + 18 = 14 + 6 scalars previously discussed.

We leave the investigation of the possible supersymmetric flows among all supercon-

formal phases of the D2-brane worldvolume field theory, including the N = 3 SO(4) phase,

for future work.
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Yang-Mills with compressible quark matter, JHEP 03 (2016) 154 [arXiv:1511.05484]

[INSPIRE].

[15] L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986)

374 [INSPIRE].

[16] D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015

[arXiv:0901.0969] [INSPIRE].

[17] A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity

and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009]

[INSPIRE].

[18] J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078

[hep-th/0411077] [INSPIRE].

[19] D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP 08

(2007) 056 [arXiv:0704.3740] [INSPIRE].

[20] S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, Supersymmetric States in Large

N Chern-Simons-Matter Theories, JHEP 02 (2012) 022 [arXiv:1104.0680] [INSPIRE].

[21] C.-h. Ahn and J. Paeng, Three-dimensional SCFTs, supersymmetric domain wall and

renormalization group flow, Nucl. Phys. B 595 (2001) 119 [hep-th/0008065] [INSPIRE].

– 29 –

http://dx.doi.org/10.1088/1126-6708/2008/09/072
http://arxiv.org/abs/0806.1519
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1519
http://dx.doi.org/10.1016/0370-2693(80)90590-0
http://dx.doi.org/10.1016/0370-2693(80)90590-0
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B97,233%22
http://dx.doi.org/10.1016/S0550-3213(02)00134-7
http://dx.doi.org/10.1016/S0550-3213(02)00134-7
http://arxiv.org/abs/hep-th/0107220
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107220
http://dx.doi.org/10.1007/JHEP06(2011)102
http://arxiv.org/abs/1103.1181
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1181
http://dx.doi.org/10.1007/JHEP03(2010)089
http://arxiv.org/abs/0909.4559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
http://dx.doi.org/10.1007/JHEP05(2012)159
http://arxiv.org/abs/1012.3210
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3210
http://dx.doi.org/10.1007/JHEP03(2011)127
http://dx.doi.org/10.1007/JHEP03(2011)127
http://arxiv.org/abs/1012.3512
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3512
http://dx.doi.org/10.1103/PhysRevD.58.046004
http://arxiv.org/abs/hep-th/9802042
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802042
http://dx.doi.org/10.1088/1126-6708/1999/01/003
http://arxiv.org/abs/hep-th/9807137
http://inspirehep.net/search?p=find+EPRINT+hep-th/9807137
http://dx.doi.org/10.1088/1126-6708/2008/09/094
http://arxiv.org/abs/0807.3324
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3324
http://dx.doi.org/10.1007/JHEP07(2015)056
http://arxiv.org/abs/1505.00210
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.00210
http://dx.doi.org/10.1007/JHEP03(2016)154
http://arxiv.org/abs/1511.05484
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05484
http://dx.doi.org/10.1016/0370-2693(86)90375-8
http://dx.doi.org/10.1016/0370-2693(86)90375-8
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B169,374%22
http://dx.doi.org/10.1007/JHEP01(2010)015
http://arxiv.org/abs/0901.0969
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0969
http://dx.doi.org/10.1103/PhysRevLett.115.091601
http://arxiv.org/abs/1504.08009
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.08009
http://dx.doi.org/10.1088/1126-6708/2004/11/078
http://arxiv.org/abs/hep-th/0411077
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411077
http://dx.doi.org/10.1088/1126-6708/2007/08/056
http://dx.doi.org/10.1088/1126-6708/2007/08/056
http://arxiv.org/abs/0704.3740
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3740
http://dx.doi.org/10.1007/JHEP02(2012)022
http://arxiv.org/abs/1104.0680
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0680
http://dx.doi.org/10.1016/S0550-3213(00)00687-8
http://arxiv.org/abs/hep-th/0008065
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008065


J
H
E
P
0
8
(
2
0
1
6
)
1
6
8

[22] C.-h. Ahn and K. Woo, Supersymmetric domain wall and RG flow from 4-dimensional

gauged N = 8 supergravity, Nucl. Phys. B 599 (2001) 83 [hep-th/0011121] [INSPIRE].

[23] N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 Supersymmetric RG

Flows on M2 Branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE].

[24] B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

[25] C.-h. Ahn and T. Itoh, An N = 1 supersymmetric G-2 invariant flow in M-theory, Nucl.

Phys. B 627 (2002) 45 [hep-th/0112010] [INSPIRE].

[26] B. de Wit and H. Nicolai, The Consistency of the S7 Truncation in D = 11 Supergravity,

Nucl. Phys. B 281 (1987) 211 [INSPIRE].

[27] A. Guarino and O. Varela, Consistent N = 8 truncation of massive IIA on S6, JHEP 12

(2015) 020 [arXiv:1509.02526] [INSPIRE].

[28] G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged

supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

[29] G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal

Supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].

[30] G. Inverso, Electric-magnetic deformations of D = 4 gauged supergravities, JHEP 03 (2016)

138 [arXiv:1512.04500] [INSPIRE].

[31] A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02

(2016) 079 [arXiv:1508.04432] [INSPIRE].

[32] B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal

supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

[33] B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP 06

(2007) 049 [arXiv:0705.2101] [INSPIRE].

[34] C.M. Hull, A New Gauging of N = 8 Supergravity, Phys. Rev. D 30 (1984) 760 [INSPIRE].

[35] A. Borghese, A. Guarino and D. Roest, All G2 invariant critical points of maximal

supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].

[36] A. Gallerati, H. Samtleben and M. Trigiante, The N > 2 supersymmetric AdS vacua in

maximal supergravity, JHEP 12 (2014) 174 [arXiv:1410.0711] [INSPIRE].
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