
ar
X

iv
:1

60
6.

08
18

5v
1 

 [
he

p-
th

] 
 2

7 
Ju

n 
20

16

BASIC HYPERGEOMETRY OF SUPERSYMMETRIC DUALITIES

ILMAR GAHRAMANOV AND HJALMAR ROSENGREN

Abstract. We introduce several new identities combining basic hypergeometric sums and integrals.

Such identities appear in the context of superconformal index computations for three-dimensional super-

symmetric dual theories. We give both analytic proofs and physical interpretations of the presented

identities.

1. Introduction

Recently, there has been renewed interest in basic hypergeometric integrals because of

their connection with various branches of mathematical physics, such as supersymmetric

field theory, 3-manifold invariants and integrable systems. The purpose of this paper is

to state and prove new basic hypergeometric integral identities and give their physical

interpretations in terms of superconformal indices.

There is an interesting connection between partition functions of supersymmetric gauge

theories on different curved manifolds and certain classes of hypergeometric functions. The

first observation of this relation was made by Dolan and Osborn [1]. They found that the

superconformal index of four-dimensional N = 1 supersymmetric gauge theory can be

written via elliptic hypergeometric integrals. Similarly, three-dimensional superconformal

indices can be expressed in terms of basic hypergeometric integrals (see e.g. [2–5]).

The superconformal index for a three-dimensional N = 2 supersymmetric field theory is

defined as

Tr

[

(−1)Fe−β{Q,Q†}q
1
2
(∆+j3)

∏

i

tFi

i

]

, (1.1)

where the trace is taken over the Hilbert space of the theory, Q and Q† are supercharges,

∆, j3 are Cartan elements of the superconformal group and the fugacities ti are associated

with the flavor symmetry group.

Studying the relation between basic hypergeometric integrals and superconformal indices is

an important field of research from different points of view (see e.g. [6]). Non-trivial math-

ematical identities for superconformal indices provide a very powerful tool to check known

supersymmetric dualities and to establish new ones. Such identities are also important

for better understanding the structure of the moduli of three-dimensional supersymmetric
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theories and supersymmetric dualities. On the other hand, there is an interesting rela-

tionship between three-dimensional N = 2 supersymmetric gauge theories and geometry

of triangulated 3-manifolds. The independence of a certain topological invariant of 3-

manifolds on the choice of triangulation corresponds to equality of superconformal indices

of three-dimensional N = 2 supersymmetric dual theories.

Besides their appearance in supersymmetric field theory, basic hypergeometric integrals

discussed in this paper recently appeared in the theory of exactly solvable two-dimensional

statistical models [7, 8].

In this paper we extend the results of our previous work [4,5] on superconformal indices to a

number of three-dimensional dualities. We provide explicit expressions for the generalized

superconformal indices of some three-dimensional N = 2 supersymmetric electrodynamics

and quantum chromodynamics in terms of basic hypergeometric integrals.

We will only consider confining theories, which means that the duality leads to a closed

form evaluation of a sum of integrals (rather than a transformation between two such

expressions). As an example, one of the resulting identities is

∞
∑

m=−∞

∮ 6
∏

j=1

(q1+m/2/ajz, q
1−m/2z/aj ; q)∞

(qNj+m/2ajz, qNj−m/2aj/z; q)∞

(1− qmz2)(1− qmz−2)

qmz6m
dz

2πiz

=
2

∏6
j=1 q

(Nj
2 )a

Nj

j

∏

1≤j<k≤6

(q/ajak; q)∞
(ajakqNj+Nk ; q)∞

, (1.2)

where |q| < 1, the parameters aj are generic and Nj are integers, subject to the balancing

conditions
∏6

i=1 ai = q and N1 + · · ·+N6 = 0. Here, we use the standard notation

(a; q)∞ =
∞
∏

j=0

(1− aqj) ,

(a1, . . . , am; q)∞ = (a1; q)∞ · · · (am; q)∞
and the integration is over a positively oriented contour separating sequences of poles going

to infinity from sequences going to zero.

The organization of the paper is as follows.

• In Section 2 we outline the superconformal index technique for three-dimensional

N = 2 supersymmetric gauge theories.

• In Section 3 we discuss supersymmetric dualities and present explicit expressions of

superconformal indices for certain supersymmetric dual theories in terms of basic

hypergeometric integrals. We present four examples, each leading to an integral

evaluation similar to (1.2). Some of these evaluations generalize identities previously

obtained in [2–4].
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• In Section 4 we give mathematical proofs of the four integral evaluations that were

derived using non-rigorous methods in Section 3. This gives a consistency check of

the corresponding supersymmetric dualities.

• We review the basic aspects of three-dimensional N = 2 supersymmetric gauge theo-

ries with focus on the necessary elements for the superconformal index computations

and give some details of index computation in Appendices.

2. 3d superconformal index

In this section, we recall basic facts related to the superconformal index technique. The

presentation closely follows that in [2, 3, 13].

The concept of the superconformal index was first introduced for four-dimensional theories

in [14, 15] and later extended to other dimensions. The superconformal index of three-

dimensional N = 2 superconformal field theory is a twisted partition function defined on

S2 × S1 as follows [13, 16, 17]

I(q, {ti}) = Tr

[

(−1)Fe−β{Q,Q†}q
1
2
(∆+j3)

∏

i

tFi

i

]

, (2.1)

where

• the trace is taken over the Hilbert space of the theory on S2,

• F plays the role of the fermion number which takes value zero on bosons and one

on fermions. In presence of monopoles one needs to refine this number by shifting

it by e × m, where e and m are electric charge and magnetic monopole charge,

respectively. See [18, 19] for a discussion of this issue.

• ∆ is the energy (or conformal dimension via radial quantization), j3 is the third

component of the angular momentum on S2,

• Fi is the charge of global symmetry with fugacity ti,

• Q is a certain supersymmetric charge in three-dimensional N = 2 superconformal

algebra with quantum numbers ∆ = 1
2
and j3 = −1

2
and R-charge R = 1. The

supercharges Q† = S and Q satisfy the anti-commutation relation1

1

2
{Q, S} = ∆− R− j3 . (2.2)

Only BPS states with ∆ − R − j3 = 0 contribute to the superconformal index. Conse-

quently, the index is β-independent but depends non-trivially on the fugacities ti and q.

The superconformal index counts the number of BPS states weighted by their quantum

numbers.

1The full algebra can be found in many places, see e.g., [20].
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The superconformal index can be evaluated by a path integral on S2×S1 via the localization

technique [21], leading to the matrix integral [13, 17]

I(q, {ti}) =
∑

m∈ZrankG

∫

1

|Wm|
e−S

(0)
CSeib0q

1
2
ǫ0

rankF
∏

j=1

t
q0j
j

× exp

[

∞
∑

n=1

1

n
ind(zni , t

n, qn;m)

]

rankG
∏

i=1

dzi
2πizi

. (2.3)

The sum in the formula is to be understood as follows. It is a sum over magnetic fluxes

m = (m1, . . . , mrankG) on the two-sphere with

mi =
1

2π

∫

S2

Fi , (2.4)

where mi parametrizes the GNO charge of the monopole configuration2, in the examples we

consider it runs over the integers. The prefactor |Wm| =
∏k

i=1(rankGi)! is the order of the

Weyl group of G which is “broken” by the monopoles into the product G1×G2×· · ·×Gk.

For instance, in case of U(N) gauge group |Wm| =
∏

Nk!.

The term

S
(0)
CS =

ik

4π

∫

trCS(A
(0)dA(0) − 2i

3
A(0)A(0)A(0))

= 2itrCS(gm) , (2.5)

is the contribution of the Chern–Simons term if the action contains such term and

b0 = −1

2

∑

Φ

∑

ρ∈RΦ

|ρ(m)|ρ(g) (2.6)

is the 1-loop correction to the Chern–Simons term. The trCS stands for the trace containing

the Chern–Simons levels, k is the Chern–Simons level and
∑

Φ and
∑

ρ∈RΦ
are sums over

all chiral multiplets and all weights of the representation RΦ, respectively. We give the

contribution (2.5) for completeness; in all our examples we will consider theories without

the Chern–Simons term.

The term q0j in (2.3) is the zero-point contribution to the energy,

q0j(m) = −1

2

∑

Φ

∑

ρ∈RΦ

|ρ(m)|fj(Φ) . (2.7)

In addition, there is the contribution from the Casimir energy of the vacuum state on the

two-sphere with magnetic flux m,

ǫ0(m) =
1

2

∑

Φ

(1−∆Φ)
∑

ρ∈RΦ

|ρ(m)| − 1

2

∑

α∈G

|α(m)| , (2.8)

2The operators creating magnetic fluxes are not completely understood yet, for details, see e.g. [17].
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where
∑

α∈G represents summation over all roots of G, ∆Φ is the superconformal R-charge

of the chiral multiplet Φ and α are the positive roots of the gauge group G.

One can calculate the single letter index

ind(z, t, q;m) = −
∑

α∈G

eiα(g)q
1
2
|α(m)| (2.9)

+
∑

Φ

∑

ρ∈RΦ

[

eiρ(g)
∏

j

t
fj
j

q
1
2
|ρ(m)|+ 1

2
∆Φ

1− q
− e−iρ(g)

∏

j

t
−fj
j

q
1
2
|ρ(m)|+1− 1

2
∆Φ

1− q

]

.

Here, the first term is the contribution of the vector multiplets and the second line is

the contribution of matter multiplets, labeled by Φ, where j runs over the rank of the

flavor symmetry group. Given the single letter index it is a combinatorial problem [22,23]

to compute the full multi-letter index. The result is given by the so-called “plethystic”

exponential

exp

( ∞
∑

n=1

1

n
ind(zn, tn, qn;m)

)

. (2.10)

For instance, let us consider the N = 2 theory with U(N) gauge group. Then, the chi-

ral multiplet Φ with R-charge r in the fundamental representation of the gauge group

contributes to the single-letter index as

N
∑

i=1

[

ztf(Φ) q
r
2
+

|mi|

2

1− q
− z−1t−f(Φ) q

1− r
2
+

|mi|

2

1− q

]

. (2.11)

After the “plethystic” exponential one obtains the contribution of the chiral multiplet to

the index
N
∏

i=1

(q1−
r
2
+

|mi|

2 t−f(Φ)z−1
i ; q)∞

(q
r
2
+

|mi|

2 tf(Φ)zi; q)∞
. (2.12)

Similarly the contribution of the vector multiplet to the single-letter index is

−
∑

i,j=1,...,N, i 6=j

q
1
4
|mi−mj |

zi
zj
, (2.13)

and the multi-letter index gets the form

q−
∑

1≤i<j≤N

|mi−mj |

2

∏

i,j=1,...,N, i 6=j

(

1− zi
zj
q

|mi−mj |

2

)

. (2.14)

Our main interest is the so-called generalized superconformal index which includes integer

parameters corresponding to global symmetries. In [3] Kapustin and Willett pointed out

that one can generalize the superconformal index of three-dimensional supersymmetric

gauge theory by considering the theory in a non-trivial background gauge field coupled to

the global symmetries of the theory. As a result the superconformal index includes new

discrete parameters for global symmetries; we do not sum over these parameters. In case
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of the generalized superconformal index the contribution (2.12) has the form

N
∏

i=1

(q1−
r
2
+

|mi+f(Φ)nΦ|

2 t−f(Φ)z−1
i ; q)∞

(q
r
2
+

|mi+f(Φ)nΦ|

2 tf(Φ)zi; q)∞
, (2.15)

where the parameters nΦ are new discrete variables. It is convenient to express the index

as a product of contributions from chiral and vector multiplets

I(q, {ta}, {na}) =
∑

m1,...,mrank(G)

1

|Wm|

∮ rankG
∏

j=1

dzj
2πizj

Zgauge(zj, mj ; q)

×
∏

Φ

ZΦ(zj, mj ; ta, na; q) , (2.16)

where

Zgauge(zj , mj ; q) =
∏

α∈ad(G)

q−
1
2
|α(m)|

(

1− eα(g)q
|α(m)|

2

)

(2.17)

and

ZΦ =
∏

ρ∈RΦ

(

q
1−rφ

2

∏

j

e−iρ(g)t(Φ)−f(Φ)

)
1
2
|ρ(m)+f(Φ)n(Φ)|

×(e−iρ(g)t(Φ)−f(Φ)q
1
2
|ρ(m)+f(Φ)n(Φ)|+

1−rΦ
2 ; q)∞

(eiρ(g)t(Φ)f(Φ)q
1
2
|ρ(m)+f(Φ)n(Φ)|+

rΦ
2 ; q)∞

. (2.18)

Here ad(G) stands for the adjoint representation of the gauge group G. Note that we

do not write the contribution of the Chern–Simons term in (2.16), since as we mentioned

before we consider theories without this term.

It is worth to mention that the three-dimensional superconformal index can be constructed

from the so-called holomorphic blocks [24] due to its factorization property [2, 25–29], i.e.

the superconformal index can be expressed in terms of two identical 3d holomorphic blocks

B(x; q) as3
∑

c

Bc(x; q)Bc(x̃; q̃) . (2.19)

It is possible to obtain the factorized superconformal index directly from the localization

technique via the so-called Higgs branch localization [30, 31].

3. Integral identities from 3d dualities

In [32] Seiberg found that there exist pairs of different four-dimensional N = 1 super-

symmetric gauge theories which describe the same physics in the infrared limit. This is

called supersymmetric duality. Since its proposal a large number of dualities in various

dimensions have been found.

3Geometrically it means that the index can be obtained by gluing two solid tori. In this context Bc(x; q) are partition
functions on solid tori.
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In this section, we study three-dimensional N = 2 supersymmetric dualities [12, 33–35]

and demonstrate the matching of the superconformal index for dual theories. The super-

conformal index technique is one of the main tools for establishing and checking super-

symmetric dualities.

In this work, we consider only confining theories, i.e. theories whose infrared limit can be

described in terms of gauge invariant composites (mesons and baryons) and without dual

quarks. There are definitely more confining supersymmetric theories in three dimensions

(for recent discussions, see [36, 37]). We restrict our attention to samples of theories with

U(1) (supersymmetric quantum electrodynamics) and SU(2) (supersymmetric quantum

chromodynamics) gauge symmetry. We also limit ourselves to the cases of vanishing Chern-

Simons term; however, one can add such a term to the action of the theories considered in

the paper.

Note that similar results for N = 1 supersymmetric gauge theories in four dimensions

were intensively studied in [1, 38, 39]. All 3d dualities considered in the next section can

be obtained via dimensional reduction from 4d dualities. However, obtaining the right

duality in three dimensions is more tricky (for details see [19, 40]). The main issue is that

the reduction procedure and renormalization group flow from ultraviolet to infrared do not

commute with each other. This happens because of an anomalous U(1) symmetry in 4d,

which one needs to break in 3d theory. This can be done by adding a monopole operator

to the 3d Lagrangians. To be more precise we need to add the effective superpotential

W = ηX to the Lagrangian of electric theory and W = η̃X̃ to the magnetic theory (dual

theory), where X is a monopole operator and η is the 4d instanton factor.

In our examples we give only the necessary input to compute the superconformal index

and do not discuss other aspects of dual theories. As for many other dualities in physics,

systematic proofs of supersymmetric dualities are absent and the superconformal index

computations do not constitute a proof of the duality. There are other important argu-

ments for three-dimensional supersymmetric dualities, i.e. study of superpotentials for

interactions among chiral multiplets [19], brane construction (see e.g, [35, 41]), contact

terms (see e.g., [42, 43]) and other powerful methods very much in the spirit of the super-

conformal index such as study of sphere partition functions [44, 45], ellipsoid partition

functions [40, 46, 47], lens partition functions [48, 49], etc.

The ’t Hooft anomaly matching conditions which played a central role in checking Seiberg

dualities for N = 1 supersymmetric gauge theories become useless in three dimensions

since, unlike four-dimensional gauge theories, in three dimensions there are no chiral anom-

alies. In three dimensions it is possible to have a classical Chern-Simons term which breaks

parity. One can then use the matching condition for the parity anomaly; however, condi-

tions for discrete anomalies are weaker than those for continuous anomalies.
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In what follows, we omit the R-charges for chiral multiplets, since the superconformal

indices of dual theories match for arbitrary assignment of the R-charge [13]. The correct

R-charges for matter fields in the infrared fixed points can be obtained by the so-called

Z-extremization procedure [45].

As a final remark, let us comment that the matching of superconformal indices for dual

pairs were studied mainly by expanding in terms of fugacities [13,50–52] and only in a few

works [2–4] authors give rigorous proofs of the index identities.

Below we give explicit expressions of generalized superconformal indices for some theories.

Equality of indices for dual theories leads to integral evaluations, which will be proved

rigorously in Section 4.

Example 1.

We first consider a Theory A and its low-energy description Theory B which can be

described purely in terms of composite gauge singlets.

• Theory A: Supersymmetric Quantum Chromodynamics with SU(2) gauge group

and with SU(6) flavor group, chiral multiplets in the fundamental representation of

the gauge group and the flavor group, a vector multiplet in the adjoint representation

of the gauge group. Note that in case of SU(2) gauge theories the fundamental

and antifundamental representations are equivalent, therefore we have SU(6) flavor

group rather than SU(3)× SU(3)× U(1).

• Theory B: no gauge symmetry, fifteen chiral multiplets in the totally antisymmetric

tensor representation of the flavor group.

This duality was considered in [53] where the authors presented the sphere partition func-

tions for dual theories. It is analogous to the four-dimensional duality for similar theories [1]

and can be obtained by dimensional reduction.

Using the group-theoretical data (see Appendix B) it is straightforward to compute ex-

plicitly the generalized superconformal indices, and due to the supersymmetric duality we

find the basic hypergeometric integral identity
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∑

m∈Z

∮

dz

4πiz
q−|m|(1− q|m|z2)(1− q|m|z−2) (−q 1

2 )
∑6

i=1(
|ni+m|

2
+

|ni−m|

2
)

× z−
∑6

i=1(
|ni+m|

2
−

|ni−m|

2
)

6
∏

j=1

a
−

|nj+m|

2
−

|nj−m|

2
j

(q1+
|nj+m|

2 /ajz, q
1+

|nj−m|

2 z/aj ; q)∞

(q
|nj+m|

2 ajz, q
|nj−m|

2 aj/z; q)∞

= (−q 1
2 )

∑
1≤j<k≤6

|nj+nk|

2

∏

1≤j<k≤6

(ajak)
−

|nj+nk|

2

(q1+
|nj+nk|

2 a−1
j a−1

k ; q)∞

(q
|nj+nk|

2 ajak; q)∞

(3.1)

with the balancing conditions

6
∏

i=1

ai = q and
6
∑

i=1

ni = 0 . (3.2)

This identity describes confinement without breaking of the “chiral symmetry”. The left

side of the expression (3.1) includes the contributions of twelve chirals and a vector multi-

plet, while the right hand side contains the contribution of fifteen chirals. From the fact

that all physical degrees of freedom of Theory B are gauge invariant there is no integration

on the right hand side.

It is worth mentioning that the duality considered in the example is a special case of the

duality claimed in [19], where the theory A is the three-dimensional SP (2N) SQCD with

2Nf fundamentals and theory B is the SP (2Nf − 2N − 4) theory with 2Nf fundamentals.

Such duality is qualitatively similar to SU(N) duality with matter in the fundamental

representation of the gauge group. In case of N = 2 one can consider the theory A as

SU(2) gauge theory since SP (2) ≃ SU(2).

Note that the balancing conditions are imposed by the effective superpotential and the

theories described above are dual only in the presence of certain superpotentials. We refer

the interested reader to [19] for more details related to the study of superpotentials for

three-dimensional dualities.

In (3.1) we used the absolute values of monopole charges as in the definition of the super-

conformal index. It is possible to eliminate all absolute values using the elementary iden-

tity [18]

(q1+|m|/2/z; q)∞
(q|m|/2z; q)∞

= (−q− 1
2 z)

|m|−m

2
(q1+m/2/z; q)∞
(qm/2z; q)∞

. (3.3)

After such simplification, (3.1) takes the form
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∞
∑

m=∈Z

∮ 6
∏

j=1

(q1+(m+nj)/2/ajz, q
1+(nj−m)/2z/aj ; q)∞

(q(nj+m)/2ajz, q(nj−m)/2aj/z; q)∞

(1− qmz2)(1− qmz−2)

qmz6m
dz

4πiz

=
1

∏6
j=1 a

nj

j

∏

1≤j<k≤6

(q1+(nj+nk)/2/ajak; q)∞
(q(nj+nk)/2ajak; q)∞

.

After replacing (aj, nj) 7→ (ajq
Nj/2, Nj), this is (1.2). We give a rigorous mathematical

proof of this identity in Theorem 4.1.

The most intriguing physical interpretation of the formula (3.1) stems from the role it plays

as a star-triangle relation [7, 8] for a certain two-dimensional statistical model.

The integral identity (3.1) can be obtained by reduction [8,54,55] from the similar identity

for four-dimensional lens indices. In [8] such reduction was made in the context of integrable

statistical models.

The q → 1 limit of (3.1) was discussed in [8]. This limit also has an interpretation in

terms of exactly solvable statistical models [56]. From the viewpoint of supersymmetric

dualities such reduction [55,57] gives the equality of the sphere partition functions of dual

two-dimensional N = (2, 2) supersymmetric gauge theories.

Example 2.

Our second example is again a supersymmetric quantum chromodynamics with a weakly

coupled magnetic dual.

• Theory A: Supersymmetric Quantum Chromodynamics with SU(2) gauge group

and four flavors, chiral multiplets in the fundamental representation of the gauge

group and the flavor group, the vector multiplet in the adjoint representation of the

gauge group.

• Theory B: no gauge degrees of freedom, with six mesons and a singlet chiral field.

According to the supersymmetric duality we have the following integral identity for the

generalized superconformal indices:
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∑

m∈Z

∮

dz

4πiz
q−|m|(1− q|m|z2)(1− q|m|z−2) (−q 1

2 )
∑4

i=1(
|ni+m|

2
+

|ni−m|

2
−ni)

× z−
∑4

i=1(
|ni+m|

2
−

|ni−m|

2
)

4
∏

j=1

a
−

|nj+m|

2
−

|nj−m|

2
+nj

j

(q1+
|nj+m|

2 /ajz, q
1+

|nj−m|

2 z/aj ; q)∞

(q
|nj+m|

2 ajz, q
|nj−m|

2 aj/z; q)∞

= (−q 1
2 )

∑
1≤j<k≤4

|nj+nk|

2
−
∑4

i=1 ni−
|
∑4

i=1 ni|

2 (a1a2a3a4)
|
∑4

i=1 ni|−
∑4

i=1 ni
2

× (q
|
∑4

i=1 ni|

2 a1a2a3a4)∞

(q1+
|
∑4

i=1
ni|

2 /a1a2a3a4)∞

∏

1≤j<k≤4

(ajak)
−

|nj+nk|+(nj+nk)

2
(q1+

|nj+nk|

2 /ajak; q)∞

(q
|nj+nk |

2 ajak; q)∞

. (3.4)

The ordinary index of the theory A was considered in [58] in the context of global symmetry

enhancement. It was shown that the superconformal index of the theory has an extended

SO(10) flavor symmetry when coupled to 4d multiplets with specific boundary conditions.

Note that one can deform dual theories from Example 1 by adding mass terms for some of

the quarks. After integrating out one flavor (massive modes) the theory with the remaining

four flavors confines with “chiral symmetry breaking” [7] if we keep a certain superpotential

for the theory giving the balancing conditions similar to (3.2). Here the theory A has no

superpotential and therefore we obtain the duality (3.4).

Eliminating the absolute values as before, (3.4) can be expressed as

∑

m∈Z

∮

dz

4πiz

(1− qmz2)(1− qmz−2)

qmz4m

4
∏

j=1

(q1+
nj+m

2 /ajz, q
1+

nj−m

2 z/aj ; q)∞

(q
nj+m

2 ajz, q
nj−m

2 aj/z; q)∞

=
(q

∑4
i=1 ni
2 a1a2a3a4)∞

(q1+
∑4

i=1
ni

2 /a1a2a3a4)∞

∏

1≤j<k≤4

(q1+
nj+nk

2 /ajak; q)∞

(q
nj+nk

2 ajak; q)∞
. (3.5)

This can be recognized as a special case of Proposition 4.2. More precisely, Proposition 4.2

states that (3.5) holds even with the integers nj replaced by generic complex parameters.

In contrast to four dimensions, there exist supersymmetric dualities for abelian gauge

theories in three dimensions. For details of such dualities see e.g. [59]. Below we consider

two examples of such dualities.

Example 3.

• Theory A: d = 3 N = 2 supersymmetric electrodynamics with U(1) gauge sym-

metry and six chiral multiplets, half of them transforming in the fundamental repre-

sentation of the gauge group and another half transforming in the anti-fundamental

representation.



BASIC HYPERGEOMETRY OF SUPERSYMMETRIC DUALITIES 12

• Theory B: no gauge degrees of freedom, nine gauge invariant “mesons” transform-

ing in the fundamental representation of the flavor group.

Supersymmetric duality leads to the following identity for the generalized superconformal

indices:

∑

m∈Z

∮

dz

2πiz
(−q 1

2 )
∑3

i=1(
|mi+m|

2
+

|ni−m|

2
)z−

∑3
i=1(

|mi+m|

2
−

|ni−m|

2
)

×
3
∏

i=1

a
−

|mi+m|

2
i b

−
|ni−m|

2
i

(q1+
|mi+m|

2 /aiz, q
1+

|ni−m|

2 z/bi; q)∞

(q
|mi+m|

2 aiz, q
|ni−m|

2 bi/z; q)∞

= (−q 1
2 )

∑3
i,j=1

|mi+nj |

2

3
∏

i,j=1

(aibj)
−

|mi+nj |

2
(q1+

|mi+nj |

2 /aibj ; q)∞

(q
|mi+nj |

2 aibj ; q)∞

, (3.6)

where the fugacities ai and bi stand for the flavor symmetry SU(3) × SU(3), z is the

fugacity for the U(1) gauge group and the balancing conditions are

3
∏

i=1

ai =
3
∏

i=1

bi = q
1
2 and

3
∑

i=1

ni =
3
∑

i=1

mi = 0 . (3.7)

Eliminating the absolute values, this identity takes the form

∞
∑

m=−∞

∮ 3
∏

i=1

(q1+(m+mi)/2/aiz, q
1+(ni−m)/2z/bi; q)∞

(q(m+mi)/2aiz, q(ni−m)/2bj/z; q)∞

1

z3m
dz

2πiz

=
1

∏3
i=1 a

mi

i bni

i

3
∏

i,j=1

(q1+(mi+nj)/2/aibj ; q)∞
(q(mi+nj)/2aibj ; q)∞

.

After the change of variables z 7→ −z, one may check that this is equivalent to Theorem 4.3

below. This identity was first proved in [4] in the special case of ordinary superconformal

indices4, that is, mi ≡ ni ≡ 0. The general case was presented without proof in [5] .

The expression (3.6) can be written as an integral pentagon identity. Following [4], we

introduce the function

Bm[a, n; b,m] = (−q 1
2 )

|n|
2
+

|m|
2

− |n+m|
2 a−

|n|
2 b−

|m|
2 (ab)

|n+m|
2

× (q1+
|n|
2 a−1, q1+

|m|
2 b−1, q

|n+m|
2 ab; q)∞

(q
|n|
2 a, q

|m|
2 b, q1+

|n+m|
2 (ab)−1; q)∞

, (3.8)

4Note that the identity of sphere partition functions for this duality was presented in [60, 61].
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and rewrite the equality (3.6) in terms of this function. We obtain the following integral

pentagon identity in terms of B functions:

∑

m∈Z

∮

dz

2πiz

3
∏

i=1

B[aiz, ni +m; biz
−1, mi −m]

= B[a1b2, n1 +m2; a3b1;n3 +m1] B[a2b1, n2 +m1; a3b2, n3 +m2] , (3.9)

with the balancing conditions (3.7).

The integral identity (3.9) is interesting from the following point of view. There is a recently

proposed relation called 3d/3d correspondence between 3d N = 2 supersymmetric gauge

theories and 3-manifolds [62,63] (see also [18,64] and earlier works [65,66]) in similar spirit

as the AGT correspondence [67]. This correspondence translates the ideal triangulation

of the 3-manifold into mirror symmetry for three-dimensional supersymmetric theories.

The independence of the corresponding 3-manifold invariant on the choice of triangulation

corresponds to the equality of superconformal indices of mirror dual theories [18]. In this

context the identity (3.9) encodes a 3–2 Pachner move for 3-manifolds.

Example 4.

Let us consider another example of abelian duality, namely the well-known XYZ/SQED

mirror symmetry [11, 12, 35].

• Theory A: N = 2 supersymmetric quantum electrodynamics, with a single U(1)

vector multiplet and two chiral multiplets charged oppositely under the gauge group.

• Theory B: free Wess–Zumino theory with three chiral multiplets. This theory is

often is called the XYZ model in the literature.

In this example we wish to turn on the contribution to the generalized superconformal

index of the topological symmetry U(1)J , which is not explicit in the Lagrangian. This

hidden symmetry is generated by the current

Jµ = εµνρFνρ . (3.10)

The current Jµ is topologically conserved5 due to the Bianchi identity.

In this case we have a special duality called mirror symmetry which exchanges the Coulomb

branch of a theory with the Higgs branch of its mirror dual and vice versa. The duality

5The corresponding charge is carried by the Abrikosov-Nielsen-Olesen vortices in the Higgs branch of N = 2 theory.
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implies the identity
∑

s∈Z

∮

dz

2πiz
(−1)s+m+

|s+m|
2

+
|s−m|

2 znws(q
1
4 zα−1)

|s−m|
2 (q

1
4z−1α−1)

|s+m|
2

× (z±α−1q
|s∓m|

2
+ 3

4 ; q)∞

(z±αq
|s±m|

2
+ 1

4 ; q)∞

= (−1)n+m+ |n+m|
2

+ |n−m|
2 (q

1
4αw)

|m−n|
2 (q

1
4αw−1)

|m+n|
2 α−2|m|

× (αw±q
|m±n|

2
+ 3

4 , α−2q|m|+ 1
2 ; q)∞

(α−1w±q
|m∓n|

2
+ 1

4 , α2q|m|+ 1
2 ; q)∞

, (3.11)

where the fugacity α and the monopole charge m denote the parameters for the axial

U(1)A symmetry, ω and n denote the parameters for the topological U(1)J symmetry and

the discrete parameter s stands for the magnetic charge corresponding to the U(1) gauge

group. The factors containing ± should be interpreted as the product over both choices;

for instance,

(z±α−1q
|s∓m|

2
+ 3

4 ; q)∞ = (zα−1q
|s−m|

2
+ 3

4 ; q)∞(z−1α−1q
|s+m|

2
+ 3

4 ; q)∞.

Here, we explicitly write the R-charges of chiral multiplets. Due to the permutation sym-

metry of the superpotential W = q̃Sq for the theory B, where q, q̃, S are three chiral

multiplets of the theory, one can fix the R-charges6.

The case m = n = 0 of (3.11) was presented in [2, 13] and proven in [2]. The general

case was presented, with a slight mistake7, in [3], where a proof was given for the special

case m = 0. In Section 4 we give an analytic proof of the general case. More precisely,

eliminating the absolute values in (3.11) gives

∑

s∈Z

∮

dz

2πiz
(−w)szn−s (z

±α−1q
m∓s

2
+ 3

4 ; q)∞

(z±αq
m±s

2
+ 1

4 ; q)∞

= (−w)n (αw±q
m±n

2
+ 3

4 , α−2qm+ 1
2 ; q)∞

(α−1w±q
m±n

2
+ 1

4 , α2qm+ 1
2 ; q)∞

,

which can be recognized as the special case a = b = q
1
4
−m

2 α, c = d = q
1
4
+m

2 α of Proposi-

tion 4.4.

6In the infrared limit the superpotential W must have the R-charge 2, then the R-charge of chiral multiplets of theory B
must be 2

3
.

7 We have an additional phase factor (−1)s+m+
|s+m|

2
+

|s−m|
2 , which is due to the definition of the fermion number operator

F in the definition of the superconformal index [18] (see also [19, 29]). In fact, in general the superconformal indices match
for dual theories in presence of this corrected phase factor [19]. Without the phase factor the identity presented by Kapustin
and Willett [3] is incorrect. It is actually a good example where the naive choice of the fermion number as 2J3 does not work.
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The identity (3.11) and related identities can also be written as pentagon identities. In

fact, introducing the tetrahedron index [18, 63]

Iq[m, z] =
(q1−

m
2 /z; q)∞

(q−
m
2 z; q)∞

,

it follows from Proposition 4.4 that

∑

s∈Z

∮

(−w)szN−s Iq[m− s; q1/4αz] Iq[n + s; q1/4β/z]
dz

2πiz

= (−w)NIq[m+ n; q
1
2αβ] Iq[n+N ; q1/4w/β] Iq[m−N ; q1/4/αw].

Special cases with m = n = N = 0 and m = n (corresponding to (3.11)) were presented

earlier in [4], [5], respectively.

One can also consider this duality as a mirror symmetry between N = 4 supersymmetric

electrodynamics with a single flavor and its dual theory with a free hypermultiplet. Then

we obtain instead of (3.11) the mathematically equivalent identity

α2|m| (α
2q|m|+ 1

2 ; q)∞

(α−2q|m|+ 1
2 ; q)∞

∑

s∈Z

∮

dz

2πiz
(−1)s+m+ |s+m|

2
+ |s−m|

2

× znws(q
1
4 zα−1)

|s−m|
2 (q

1
4z−1α−1)

|s+m|
2

(z±α−1q
|s∓m|

2
+ 3

4 ; q)∞

(z±αq
|s±m|

2
+ 1

4 ; q)∞

= (−1)n+m+
|n+m|

2
+

|n−m|
2 (q

1
4αw)

|m−n|
2 (q

1
4αw−1)

|m+n|
2

(αw±q
|m±n|

2
+ 3

4 ; q)∞

(α−1w±q
|m∓n|

2
+ 1

4 ; q)∞
. (3.12)

4. Mathematical proofs of identities

In this section we will use the standard notation of [9]. We will assume that |q| < 1. We

will also write

θ(z; q) = (z, q/z; q)∞ .

This theta function satisfies the quasi-periodicity

θ(zqN ; q) =
(−1)N

q(
N

2 )zN
θ(z; q) , N ∈ Z . (4.1)

We will formulate four fundamental identities, which evaluate a combination of a basic

hypergeometric integral and sum. In each case, we assume that the parameters are generic,

so that the poles of the integrand split naturally into geometric sequences converging to 0

and to ∞. The integration is over a positively oriented contour separating these two types

of poles.
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To prove the first identity, we use the Nasrallah–Rahman integral and the nonterminating

Jackson summation, which are top level results for basic hypergeometric integral evalua-

tions and summations, respectively. Consequently, we expect that Theorem 4.1 is a top

level result for evaluations of the type considered here, with combined integration and

summation.

Theorem 4.1. Let aj be generic numbers and Nj integers satisfying a1 · · · a6 = q and

N1 + · · ·+N6 = 0. Then,

∞
∑

m=−∞

∮ 6
∏

j=1

(q1+m/2/ajz, q
1−m/2z/aj ; q)∞

(qNj+m/2ajz, qNj−m/2aj/z; q)∞

(1− qmz2)(1− qmz−2)

qmz6m
dz

2πiz

=
2

∏6
j=1 q

(Nj
2 )a

Nj

j

∏

1≤j<k≤6

(q/ajak; q)∞
(ajakqNj+Nk ; q)∞

. (4.2)

Proof. Let L denote the left-hand side of (4.2). Note that the poles of the integrand are

situated at fixed values of zqm/2. Thus, we may replace z by zq−m/2 and interchange the

sum and the integral. This gives

L =

∮ 6
∏

j=1

(qz±/aj ; q)∞
(qNjajz±; q)∞

(1− z2)(1− z−2)

× 8ψ8

(

q/z,−q/z, a1/z, . . . , a6/z
1/z,−1/z, q/a1z, . . . , q/a6z

; q, q

)

dz

2πiz
. (4.3)

By [9, Eq. (III.38)], we may write

6
∏

j=1

(qz±/aj; q)∞(1− z2)(1− z−2) 8ψ8

(

q/z,−q/z, a1/z, . . . , a6/z
1/z,−1/z, q/a1z, . . . , q/a6z

; q, q

)

=
(q; q)∞

∏4
j=1(qa

±
5 /aj ; q)∞θ(a6z

±; q)(z±2; q)∞

(qa25, a6a
±
5 ; q)∞

× 8W7(a
2
5; a5a1, a5a2, a5a3, a5a4, a5a6; q, q) + idem(a5; a6) , (4.4)

where the second term means that the first term is repeated with a5 and a6 interchanged.

Using (4.1) to write

θ(a6z
±; q)∞ = q2(

N6
2 )a2N6

6 θ(a6q
N6z±; q)∞ ,

this leads to

L = q2(
N6
2 )a2N6

6

(q; q)∞
∏4

j=1(qa
±
5 /aj; q)∞

(qa25, a6a
±
5 ; q)∞

8W7(a
2
5; a5a1, a5a2, a5a3, a5a4, a5a6; q, q)

×
∮

(z±2, q1−N6a−1
6 z±; q)∞

∏5
j=1(q

Njajz±; q)∞

dz

2πiz
+ idem

(

(a5, N5); (a6, N6)
)

.
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Applying the Nasrallah–Rahman identity [9, Eq. (6.4.1)]
∮

(z±2, Bz±; q)∞
∏5

j=1(bjz
±; q)∞

dz

2πiz
=

2
∏5

j=1(B/bj ; q)∞

(q; q)∞
∏

1≤j<k≤5(bjbk; q)∞
, B = b1 · · · b5 ,

we conclude that

L = 2q2(
N6
2 )a2N6

6

∏4
j=1(qa

±
5 /aj ; q)∞

∏5
j=1(q

1−N6−Nj/aja6; q)∞

(qa25, a6a
±
5 ; q)∞

∏

1≤j<k≤5(q
Nj+Nkajak; q)∞

× 8W7(a
2
5; a5a1, a5a2, a5a3, a5a4, a5a6; q, q) + idem((a5, N5); (a6, N6)) .

By the non-terminating Jackson summation [9, Eq. (II.25)], this can be simplified to the

right-hand side of (4.2). �

If one formally replaces 6 by 4 in Theorem 4.1, it is possible to replace the discrete param-

eters Nj by generic complex numbers. The proof of the corresponding identity is in fact

very easy.

Proposition 4.2. For aj and bj generic,

∞
∑

m=−∞

∮ 4
∏

j=1

(q1+m/2/ajz, q
1−m/2z/aj ; q)∞

(qm/2bjz, q−m/2bj/z; q)∞

(1− qmz2)(1− qmz−2)

qmz4m
dz

2πiz

=
2(b1b2b3b4; q)∞
(q/a1a2a3a4; q)∞

∏

1≤j<k≤4

(q/ajak; q)∞
(bjbk; q)∞

. (4.5)

Proof. With L the left-hand side of (4.5), the identity (4.3) is replaced by

L =

∮ 4
∏

j=1

(qz±/aj; q)∞
(bjz±; q)∞

(1− z2)(1− z−2)

× 6ψ6

(

q/z,−q/z, a1/z, . . . , a4/z
1/z,−1/z, q/a1z, . . . , q/a4z

; q,
q

a1 · · · a4

)

dz

2πiz
.

Applying Bailey’s summation [9, Eq. (II.33)] gives

L =
(q; q)∞

∏

1≤j<k≤4(q/ajak; q)∞

(q/a1a2a3a4; q)∞

∮

(z±2; q)∞
∏4

j=1(bjz
±; q)∞

dz

2πiz
,

which reduces the result to the Askey–Wilson integral [9, Eq. (6.1.4)]. �

The next result was obtained in [4] for Mj ≡ Nj ≡ 0 and announced in [5] in general.
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Theorem 4.3. Let aj, bj be generic numbers and Mj, Nj integers satisfying a1a2a3 =

b1b2b3 = q1/2 and M1 +M2 +M3 = N1 +N2 +N3 = 0. Then,

∞
∑

m=−∞

∮ 3
∏

j=1

(q1+m/2/ajz, q
1−m/2z/bj ; q)∞

(qMj+m/2ajz, qNj−m/2bj/z; q)∞

(−1)m

z3m
dz

2πiz

=
1

∏3
j=1 q

(Mj
2 )+(

Nj
2 )a

Mj

j b
Nj

j

3
∏

j,k=1

(q/ajbk; q)∞
(ajbkqMj+Nk ; q)∞

. (4.6)

Proof. This can be proved similarly as the special case treated in [4], so we will be very

brief. Shrinking the contour of integration to zero, we pick up residues at the poles

z = qk−
m
2
+Njbj , j = 1, 2, 3, k ≥ max(0, m−Nj) .

Working out the sum of residues explicitly, the left-hand side of (4.6) can be written

L =
(−1)N1

q
3
2
N2

1 b3N1
1

(qb1/b2, qb1/b3; q)∞
(qN2−N1b2/b1, qN3−N1b3/b1; q)∞

3
∏

j=1

(q/ajb1; q)∞
(qN1+Mjajb1; q)∞

× 3φ2

(

qM1+N1a1b1, q
M2+N1a2b1, q

M3+N1a3b1
q1+N1−N2b1/b2, q

1+N1−N3b1/b3
; q, q

)

3φ2

(

a1b1, a2b1, a3b1
qb1/b2, qb1/b3

; q, q

)

+ idem
(

(b1, N1); (b2, N2), (b3, N3)
)

. (4.7)

Let

x1 = b1(qb1/b2, qb1/b3; q)∞

3
∏

j=1

(ajb2, ajb3; q)∞ 3φ2

(

a1b1, a2b1, a3b1
qb1/b2, qb1/b3

; q, q

)

and let x2 and x3 be defined by the same expression with b1 interchanged by b2 and b3,

respectively. Then, by the nonterminating q-Saalschütz summation [9, Eq. (II.24)],

x2 − x1 = b2θ(b1/b2; q)
3
∏

j=1

θ(ajb3; q) . (4.8)

Let x̃j denote the result of replacing aj by ajq
Mj and bj by bjq

Nj in xj . By (4.1),

under the same change of variables, the right hand side of (4.8) is divided by C =
∏3

j=1 q
(Mj

2 )+2(Nj
2 )a

Mj

j b
2Nj

j . Thus, if we define yj = Cx̃j , then y2 − y1 = x2 − x1. By

symmetry, yj = xj +D, where D is independent of j. It follows that

(x3 − x2)x1y1 + (x1 − x3)x2y2 + (x2 − x1)x3y3 = (x2 − x1)(x3 − x2)(x3 − x1) .

After simplification, this identity reduces to the desired result. �

We conclude with the following identity. Note that the parameter t can be removed by

scaling z 7→ tz, but it seems useful to keep it.
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Proposition 4.4. For a, b, c, d and t generic parameters and integer N , such that

|qN+1
2 a−1| < |t| < |qN−1

2 b|,
∞
∑

m=−∞

∮

(q1+m/2/az, q1−m/2z/b; q)∞
(qm/2cz, q−m/2d/z; q)∞

tmzN−m dz

2πiz

= tN
(q/ab,−q 1+N

2 ct,−q 1−N
2 d/t; q)∞

(cd,−q 1+N
2 /at,−q 1−N

2 t/b; q)∞
. (4.9)

Proof. Replacing z by zq−m/2 and changing the order of summation, we find that the

left-hand side is given by

L =

∮

(q/az, qz/b; q)∞
(cz, d/z; q)∞

zN 1ψ1

(

b/z

q/az
; q,−q

1−N
2 t

b

)

dz

2πiz
.

Applying Ramanujan’s summation [9, Eq. (II.29)] gives

L =
(q, q/ab; q)∞

(−q 1+N
2 /at,−q 1−N

2 t/b; q)∞

∮

θ(−qN+1
2 z/t; q)

(cz, d/z; q)∞
zN

dz

2πiz

(the restriction on t is needed here for convergence). It remains to prove that
∮

θ(−qN+1
2 z/t; q)

(cz, d/z; q)∞
zN

dz

2πiz
= tN

(−q 1+N
2 ct,−q 1−N

2 d/t; q)

(q, cd; q)∞
. (4.10)

To this end, we expand the integral as the sum of residues at the points z = qkd, k ≥ 0.

By [9, Eq. (4.10.8)], under the additional assumption |q 1+N
2 t/d| < 1, the sum of residues

converges and can be computed by the q-binomial theorem [9, Eq. (II.3)]. Since the left-

hand side of (4.10) is analytic in t for t 6= 0, the result holds also without the restriction

|q 1+N
2 t/d| < 1. �

Using (3.3), it is easy to see that the case a = b = c = d, N = 0 is equivalent to the

identity proved in Appendix A1 of [2]. It may be remarked that our proof of the general

case is simpler.

5. Conclusions

Similarly to four-dimensional dualities [38, 39], equality of the superconformal indices for

dual theories in three dimensions leads to new non-trivial integral identities [2–4]. We

have presented four new identities for basic hypergeometric integrals. More concretely, we

studied the generalized superconformal index of confining theories in three dimensions that

has the form of a basic hypergeometric integral. This kind of result is important for better

understanding the structure of three-dimensional supersymmetric dualities. Most dualities

discussed in the work are known in the literature, but the verification of these dualities

using the superconformal index technique is new.
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We also presented so-called pentagon identities. They are especially interesting from the

geometrical point of view, which interprets the pentagon relation as the 3 − 2 Pachner

move in the context of the 3d − 3d correspondence. This relates different decompositions

of a polyhedron with five ideal vertices into ideal tetrahedra.

It would be interesting to study more general SU(N) gauge theories, other gauge groups

and other confining theories.
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Appendix A. A short review of 3d N = 2 theories

The subject is very broad, and we only discuss basic facts needed to obtain our results in

Section 2. We refer the reader to [10–12] for more details.

A.1. Conventions. The Clifford algebra in 2 + 1 dimensions with metric gµν is

{γµ, γν} = 2gµν , (A.1)

[γµ, γν] = −2iǫµνλγλ. (A.2)

As a convenient representation we choose γµ as

(γ1)αβ = iσ2 , (γ2)αβ = σ3 , (γ3)αβ = σ1 , (A.3)

where α, β are spinor indices in the defining representation of SL(2,R). Spinor indices are

contracted, raised and lowered with the anti-symmetric matrix

Cαβ = −Cβα = Cβα =

(

0 −i

i 0

)

. (A.4)

A.2. N = 2 SUSY algebra. Besides the ordinary generators of the Poincaré algebra, the

three-dimensional N = 2 SUSY algebra (as for N = 1 SUSY in four dimensions) has four

real supercharges. They can be combined into a complex supercharge and its Hermitian

conjugate

Qα and Q̄α , (A.5)
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where α is a spinor index which goes from 1 to 2(= N ). The part of the N = 2 SUSY

algebra involving the supercharges can be written [11]

{Qα, Qβ} =
{

Q̄α, Q̄β

}

= 0, (A.6)
{

Qα, Q̄β

}

= 2γiαβPi + 2iǫαβZ, (A.7)

where the bosonic generator Pµ is the momentum generator and Z is a central charge

which can be thought of as the reduced component of four-dimensional momentum. The

automorphism group of the algebra is U(1) R-symmetry which rotates the supercharges

[R,Qα] = −Qα . (A.8)

Here we are interested in superconformal theories. In this case, we have two additional

bosonic generators, special conformal transformationsKµ and dilatationsD and two fermionic

generators, Sα and S̄α. The N = 2 superconformal algebra in three dimensions takes the

form of the supergroup [45]

SO(3, 2)conf × SO(2)R ⊆ OSp(2|4) . (A.9)

In Euclidean signature it is

SO(4, 1)conf × SO(2)R ⊆ OSp(2|2, 2) . (A.10)

The first factor is the conformal group and the second one is the R-symmetry. Note that

in the superconformal case the algebra has a distinguished R-symmetry. The important

relation of the superconformal algebra for our purposes is

{Q̄α, S̄β} = Mµν [γ
µ, γν]αβ + 2εαβD − 2εαβR . (A.11)

In particular, we will use the commutation relation

{Q̄1, S̄1} = 2∆− 2R− 2j3 . (A.12)

A.3. Multiplets. The supersymmetry representations of 3d N = 2 theories are closely

related to the representations of 4d N = 1 theories and can be directly obtained from

these by dimensional reduction.

To obtain irreducible representations one must impose constraints. In order to do so it is

useful to define supercovariant derivatives:

Dα =
∂

∂θα
− i(γµθ̄)α∂µ , (A.13)

D̄α =
∂

∂θ̄α
− i(γµθ)α∂µ . (A.14)

The simplest type of superfield is a chiral multiplet Φ. It satisfies the constraint

D̄αΦ = 0 . (A.15)
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It can be expanded as

Φ = φ(y) +
√
2θψ(y) + θ2F (y) , (A.16)

where φ is a complex scalar field, ψ is a complex Dirac fermion, F is an auxiliary complex

scalar, θ is a Grassmann coordinate and yµ = xµ + iθσµθ̄.

The vector multiplet consists of a real scalar field σ, a vector field Aµ, a complex Dirac

fermion λ and a real auxiliary scalar field D. Its expansion in Wess-Zumino gauge is given

by

V = −θσµθ̄Aµ(x)− θθ̄σ + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) , (A.17)

The appearance of a real scalar field σ is due to the component of the four-dimensional

vector field in the reduced direction.

Appendix B. Details of Example 1

All contributions to the superconformal indices in Example 1 are as follows:

• Contribution of the chiral multiplets

indΦ =















[

zai
q
|ni+m|

2

1−q
− z−1a−1

i
q1+

|ni+m|
2

1−q

]

+

[

z−1ai
q
|ni−m|

2

1−q
− za−1

i
q1+

|nj−m|

2

1−q

]

: Theory A,
[

aiaj
q
|ni+nj |

2

1−q
− a−1

i a−1
j

q1+
|ni+nj |

2

1−q

]

: Theory B.

(B.1)

• Contribution of the vector multiplet

indgauge =

{

−q 1
2
|mi|z2 − q

1
2
|mi|z−2 : Theory A,

no vector multiplet : Theory B.
(B.2)

• Other contributions

q0(m) =

{

− |nj+m|
2

− |nj−m|
2

: Theory A,

− |ni+nj |
2

: Theory B.
(B.3)

eib0 =

{

z−
∑6

i=1(
|ni+m|

2
−

|ni−m|

2
) : Theory A,

0 : Theory B.
(B.4)
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