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Abstract

We present new relations for scattering amplitudes of color ordered gluons and
gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary mul-
tiplicities and polarizations involving up to three gravitons and up to two color
traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the
double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and
a B-field. Our results generalize recent work of Stieberger and Taylor for the
single graviton case with a single color trace. As the derivation is made in the
dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external
bosons in any number of spacetime dimensions. Moreover, they generalize to the
superamplitudes in theories with 16 supercharges.
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1 Introduction

Einstein’s theory of gravity and Yang-Mills (YM) gauge theories are both built on local symme-
tries yet their dynamical structure is quite different. Nonetheless, in a perturbative quantization
of these theories in a flat space-time background intimate relations between their S-matrices have
been uncovered that are far from obvious at the Lagrangian level. They allow to express graviton
scattering amplitudes through YM scattering data, being entirely unobvious from a Feynman-
diagram based computation. The first such connection are the Kawai-Lewellen-Tye (KLT) rela-
tions [I] derived from the string theoretic origin of the tree-level field-theory S-matrices. The KLT
relations express graviton amplitudes as sums of products of two color ordered gluon amplitudes.

More recently, Bern, Carrasco and Johansson (BCJ) [2)3] introduced a double-copy construc-
tion of graviton amplitudes through gluon amplitudes of the same multiplicity. Here Lie-algebra
like relations for the kinematic building blocks of gauge-theory amplitudes were identified and
used to construct graviton amplitudes. This technique has proven to be enormously powerful
to generate loop-level integrands of gravitational theories from the simpler gauge-theory ones
and became the state-of-the-art method to explore the UV properties of supergravities, see for
instance [4]. At tree level the BCJ double-copy construction enforces the so-called BCJ relations
between color ordered gluon tree amplitudes reducing the basis of independent n-gluon ampli-
tudes to (n — 3)! entries [2]. These BCJ relations have been proven in a variety of different
ways, including monodromy properties of the string worldsheet [5,[6], the field-theory limit of
open-superstring tree amplitudes [7l[8], BCFW on-shell recursions [9] and cohomology arguments
in pure-spinor superspace [10].



Less is known about the explicit S-matrix elements for mixed graviton and gluon scattering
in Einstein gravity minimally coupled to YM theory, EYM for short. In the 1990s gravitationally
dressed amplitudes in four dimensions for the maximally-helicity violating (MHV) case were
given in [I1[12], where at most two gluons or one gluon and one graviton have opposite helicities
to the other particles. These results were established using a self-dual classical ‘perturbiner’
solution [II] or by again employing the KLT relations [12]. Double-copy constructions for gluon-
graviton scattering in supergravity theories were given in [13], also see [I4] for a review.

Very recently a nice and compact formula relating the scattering of a single graviton with
n color ordered gluons of arbitrary helicities to a linear combination of (n + 1)-gluon scattering
amplitudes was found by Stieberger and Taylor [I5]. Their derivation is based on a new set of
monodromy relations for mixed open-closed string amplitudes along the lines of [6L16]. With p*
denoting the graviton momentum, their formula reads

Agym(1,2,...,n;p) = e - A(L2, ... Lpl+1,...,n), (1)

where k and ¢ are the gravitational and YM couplings, respectively. Note that this amplitude
is associated to a single trace color structure of the form Tr(7% ...7T%"), where T denote the
generators of the non-abelian gauge-group. Moreover, x; denotes the region momentum

I
T = Z k' (2)
=1

of the gluons with momenta k}'. In this work we shall give a concise field-theory proof of the
relation (I]) and extend it to more (up to three) graviton insertions and higher (up to two) color
trace structures.

In four spacetime dimensions, the development of on-shell technique has given us powerful
representations of tree-level gluon and also graviton amplitudes at hand. In fact there are now
closed analytical expressions available for all color ordered n-gluon amplitudes [I§] as well as
graviton amplitudes [19] at tree level based on solving the BCFW recursion [20] in its supersym-
metric extension [21] which have been implemented in computer algebra packages [22]. On-shell
recursion relations have been further extended for planar loop integrands [23].

In higher spacetime dimensions, recent progress has been driven by different sets of methods:
The Berends-Giele recursion [24] for an efficient resummation of Feynman diagrams and the
field-theory limit of string amplitudes, starting with [25]. The pure-spinor formalism of the
superstring [26] inspired a recursive setup to determine manifestly supersymmetric n-gluon tree
amplitudes in ten-dimensional super Yang-Mills (SYM) from supersymmetry, gauge invariance
and locality [27]. An extension of these methods to loop level has been initiated in [28]. Machine-
readable component expressions in ten dimensions are significantly facilitated by the techniques
in [29] and available for download on [30]. Moreover, the pure-spinor approach allows for an

1See [17] for introductory references.



alternative proof of BCJ relations [I0] as well as explicit constructions of BCJ numerators at tree
level [31] and loop level [2§].

Another line of attack towards the higher-dimensional tree level S-matrix for gravitons, gluons,
cubic scalars and beyond is provided by the Cachazo-He-Yuan (CHY) formalism [32H35]. As
suggested by their origin from ambitwistor strings [36] and related recent developments [37], CHY
formulae yield unifying representations for a variety of tree amplitudesﬁ which strongly resemble
those of the superstring. For instance, the pure-spinor incarnation of the CHY formalism [39] is
know from [40] to reproduce the supersymmetric tree amplitudes from the field-theory limit of
the superstring [27.[7].

Similar to string theory, CHY formulae compactly represent amplitudes in Einstein gravity,
pure YM and cubic massless scalar theories in arbitrary dimensions in terms of an integral over
the punctured sphere. These CHY integrals localize on the solutions to the scattering equations

n

fo= Z b _ , where sg = ko - Ky, (3)

Oq — Op

b=1

bta
where k# denote the light-like momenta and the o, the positions of the punctures. Such CHY
integrals yield the same propagators as seen in the field-theory limit of worldsheet integrals in
string theory [4133], see [42] for an efficient recursion via Berends-Giele currents.

In this work, we will employ the CHY formalism, in particular the results of [34.35], to derive
the EYM relation ([Il) and its generalizations. Our results therefore hold in arbitrary spacetime
dimensions and by pure-spinor methods [27.[7,39,[40] extend to any superamplitude descending
from ten-dimensional SYM coupled to half-maximal supergravity. The key idea is to rewrite the
graviton building blocks in the CHY integrand in terms of so-called Parke-Taylor factors, thus
reducing the graviton-gluon amplitudes to linear combinations of polarization-dependent sums of
gluon amplitudes. An almost identical derivation can be performed in the heterotic string which
is left for future work.

Our paper is organized as follows. In section [2l we give a brief review of the CHY representa-
tions of tree amplitudes in general and focus on the integrand for mixed gluon-graviton scattering.
Section B proves ([Il) whereas section [] and [B] generalize ([I]) to the two- and three-graviton case.
The EYM amplitude relations we find include

n—1

[\

R . . . .
AEYM<1727' . ,n,p,Q) = ?[Z <€p xl) (Gq ’ .T])A(l, e '7Z7p7Z+17' - 7j7q7.7+17' . 7n)
1=i<j
n—1 Jj+1
— (€, p) (ep~a:j)zA(1,2,...,i—l,q,i,...,j,p,j—i—l,...,n) (4)
j=1 i=1

2See [38] for extensions to loop level.

3Note that the i = 1 contributions in the second and third line of (@) are understood as A(q,1,2,...,n).
Moreover, subamplitudes with adjacent gravitons occur in each line of @) including the terms Z?:_ll(ep - x;)
(€q - xi)[AL,...,4,p,q,i+1,...,n)+A(1,...,4,¢,p,i+1,...,n)] from the double sum in the first line.



1 l
(pk:l) Z A(]-aza71_17q7177]_17p7j77n)+(p<_)q) )

1 1=i<j

n

(ep - €g)
2

l

for n gluons with momenta k; and two gravitons with momenta p, q. The analogous three-graviton
identity is given in (GI). Moreover, the A(...) and the Agywm(. ..) may be read as superamplitudes
in ten-dimensional SYM and supersymmetrized EYM theories with 16 supercharges, respectively.
In section [0 we comment on the four- and higher-graviton cases indicating that there are no
conceptual problems to resolve them. In section [[ and [8 we turn to the multi-trace amplitudes in
EYM augmented by a B-field and a dilaton with the main results in (G8) and ([@0) before ending
with an outlook.

2 CHY representation of scattering amplitudes

In terms of the CHY formula [32H35] the scattering amplitude for n massless particles with
momenta k, and polarizations €, takes the general form

O L CEAE ATt (5)

The integration with measure du, = —%-2e ) is performed over the moduli space of punctured

vol SL(2,C)
spheres, and the J-functions enforcing the scattering equations (B completely localize the inte-
grals. Here one needs to divide by the volume of SL(2,C) as the integrand is invariant under

Mobius transformations. In the following we abbreviate the measure as

n

A, = dp, [['6(£2) - (6)

a=1

Moreover, in the expression above ] refers to the fact that one needs to remove three delta
functions in a way explained in [32H35]. The integrand for a specific bosonic theory, Z,,({k, €, 0}),
is constructed from a combination of building blocks. We set the couplings x and ¢ to unity from
now on. These are on the one hand the Park-Taylor factor

1

C(l,...,n)zama23 o Tap = 0q — Op (7)

and on the other hand the reduced Pfaffian of an anti-symmetric 2n x 2n matrix ¥,

Pf'U, ({k,e,0}), where WU, = ( é _g ) (8)

with the entries
{UIZ“]?; a#b, s {—oiaeﬁb atb, ) vua a#b,
ab

Ca: €aRe — 9
0 a=b, 0 a=», b —;Uafoc a=p. )

Aab =



The prime along with the Pfaffian in (§]) instructs to remove any two rows and columns i, j, i.e.

— 1)t i
PE W, ((he.o}) = T pew, (ke o b)) (10)
i Y
where [.. .]Zj]: is obtained from the enclosed matrix by deleting the i*" and j* row and column,

ij
respectively. We note that, on the support of the scattering equations, the Pfaffian is invariant

under permutations of any of the n particles and independent on this choice of i and j. Combining
these two building blocks in the integrand, one may write a pure gluon amplitude using

ZM(1,2,...,n) =C(1,2,...,n) P U, ({k,¢,0}) , (11)

whereas the single-trace part of an EYM amplitude with a single graviton at position n + 1 with
momentum p takes an integrand of the form [34]

ZEYM(1,2,.. . msp) = C(1,2, ..., n) Cpp PE W, ({Ka, 6,0} (12)

Using these expressions it is straightforward to prove ([l) and extend it to more graviton insertions.
The single-trace sector of a general r-graviton and n-gluon EYM amplitude has the compact
CHY representation [34]

IE}:}/{(I 2,...,n;p1,..,p) =C(1,2,...,n) PTU,.({p, ep,cr})Pf' U,y ({k,p, €, €5, 0}) (13)

where U,.({p, €,, 0}) is a CHY matrix extending only over the r graviton legs without any deletions
as in (I0). In order to rewrite EYM amplitudes in terms of color ordered gluon amplitudes with
integrands (II]) one simply needs to seek identities of the schematic kind

C(1,2,...,n) PEW,({p, ey, 0}) = > Fp,(ep,p, k) C(Py), (14)

Pieperm(lv'"7n7p17"'7p7‘)

which we shall provide with explicitly known functions Fp, of the polarizations and momenta.

3 One graviton

In order to derive the single-graviton relation ([Il) from the CHY formalism, we start from its right
hand side and note that, by the permutation invariance of Pf' ¥, ; under the measure df2,, in

@),

1
A(1727"'7Z7Q7 l+177n) - /dQn-i-l oL Pf, \Iln-f—l({k:)qa €, U}) (15)

O1,qO0ql+1 012---01141---0n1

Hence, given the EYM integrand (I3]), all there is to do in order to prove (I is to show that

PfW,_, = Z e (16)

Ul,q Ogq, 41

6



. . . o .
which is elementary. Writing —2:+1— = 1 _ 1 we have a telescoping sum
Ol,q 9q,1+1 Ol,q Tl+1,9
e T € e (xp—x121) €k €-x
"X ! (@ — 2 "k " Tn—1
cqqzz(q _ G >: g Lt e . (17)
—1 - Tla Ol+1lq —2 Olq Olq In,q

Now using x; — ;-1 = k; and —x,_1 = k,, + ¢ from total momentum conservation, along with
€q - ¢ = 0, we indeed reproduce the diagonal element of the C-matrix in (@)

€ - k
qu:zq lv (18)

which proves ().

4 Two gravitons

In order to address the two-graviton problem we first note that the relevant Pfaffian of W, in
(I3) takes the form (writing p; = p and py = q)

S . . .
PEW, 5 = Cpy Cgg — Ej'eg d + = (i);eq ) ’ Spg =P q- (19)
P P

The inequivalent tensor structures for the graviton polarizations can be conveniently classified
after rearranging the first term in (I9) via

—_

3

O'A . 1 O‘ n
" z‘:l( g Z)Oivp Opit+l N )Uq,p Tpn "
n—1 o o
C. = E.I‘LHjLE.p&_ 21
qq (& Z)Cri,q Ogq,i+1 (€ )Oth Tg.n (21)

I
A

i

This generalizes relation ([I@]) to two gravitons and n gluons. Multiplying these two terms as they
enter (IJ), we arrive at

o o Spq (€p + €4)
Pf\:[/rf — Cl Cl Cl €. - p,n C/ € - q,n _ °pq P q 22
h w Caa F pp( ! P) Op,qOqgn " qQ( g ? Oq,p Opn Uiq (22)
with 1
04i+1
C = ) —2 23
PP ;(Ep xr )Ui,p . (23)

Note that the tensor structure (¢, - p) (¢, - ) cancels between C,, Cy, and the last term in (I9).
In the following, we rearrange the three classes of terms in (22) such that a superposition of
(n + 2)-particle Parke-Taylor factors as in (I4]) arises upon multiplication with C(1,2,...,n).

7



4.1 Two-graviton contributions (€, - z;)(€q - ;)
The first term in (22)) is a product of two expressions as in (23),

n—1

C;pcfllqc(l’Q""’n) = Z(Ep'xi) (eq'xj)c(]-727"'7i7pai+17"'7j7£]7j+17

i,j=1
i ]

n

Oip Opi+1 Tig Oq,i+1

=1

1 9
O
+ > (e -x;)(eg-x5) A C(1,2,...,n).

co,m)

(24)

While the first line is already in the desired form ([I4), the second line needs a small rearrangement.
Multiplying it with the identity 1 = 0, ,/0,, and using the analogue of Schouten’s identity

Oiyi+10p,g = —0OipOqyi+1 + Tig Opit1

we straightforwardly establish the identity

2
0ii+19pgq Oii+1 Oiit1

OipOp,i+10iq0qi+10pg  OipOpqOqi+l  OiqOqpOp,i+l
Using this we thus have

n—1

CrChC(L,..n)=> (&-a)(eq-x;)C(L,....i.pi+1,....j.qj+1...

ij=1
i#j
n—1
+ (€p - x;) (eq~xi)[C(1,...,i,p,q,i+1,...,n)+(p<—>q)} ,
—1

~

completing the rearrangement of this contribution into the desired form (I4).

4.2 Two-graviton contributions (e, - ;) (e, - D)

For the cross-terms arising in the product C,, C,, with (20) and (2II), one has

n—1

Tpn Tpn o
C),(eq-p) —2—C(1,...,n) = (¢ - D) Z(ep-xi)LC(l,...,z,p,Hl,...

Op,g Oqn i1 Op,q Oqn

(25)

(26)
1)

(27)
). (28)

This expression is ready to be recast into the Parke-Taylor form by moving leg p in the factors
of C(1,...,4,p,i+1,...,n) next to leg n such that the numerator o,,, gets cancelled. This can

be achieved by means of Kleiss-Kuijf (KK) relations [43]

C(1,An,B)= (=) Y C(1l,0n).

occAlBt

(29)



The shuffle product of the sets A = {a1,aq,..., 014} and B = {B1, B2, ..., B} in B9) (with
cardinality |A|, |B| and reversal B' = {fip|, ..., 2, f1}) is defined recursively via

and amounts to summing all permutations of A U B which preserve the individual orderings of
A and B. Applying this identity to ([28) we may rewrite the last term as

C(L,2,....i,pi+l,....n)=(=)"""" Y Clo.pn), (31)

oe{1,2,...,i}
wi{n—1,...,i+1}

which leads to the following combination of Parke-Taylor factors,

n—1
Op,n n—i—
Cch(Eq'p)ﬁC(l,...,n):(6q~p)Z(—) Yepew) Y. Clopan).  (32)
) T i=1 ce{1,2,...,i}

There is still freedom to simplify (B2]) using additional KK relations (29). The particularly
economic representation

—P2r_C(1,...,i,p, i+, ..., n) = — g Clo,p,i+1,...,n), (33)
Ip,q Tqn veta)
w{1,2,...,i}

can be conveniently verified in an SL(2,C) frame where o, — oo. This yields the following
compact alternative to (B2):

n—1
0 n .
C;p(eq-p)ﬁC(l,...,n):—(eq~p) E (€p - ;) E Clo,p,i+1,...,n).  (34)
) )1 =1 06{‘1}.

w{1,..., i}

The second crossterm in (22]) with p and ¢ swapped can be addressed in the same manner.

4.3 Two-graviton contributions (€, - €,)

Moving on to the last term in (22), one can use the peculiar cross-ratio identity of [44],

S_IQaqzzspiL, ae{l,2,...,n}, (35)

g OinOpqg0
p,q i;éa,p,q P Y pP,q Y q,a

which holds in the presence of momentum conservation and the scattering equations. Once the
accompanying Parke-Taylor factors C(1,2,...,n) are expanded in a KK-basis of C(...,i,a) via

[29), any term on the right hand side of (B3] can be brought into the desired form (I4)).



Alternatively, one can simply apply the scattering equations in a frame where o,, — oo and
replace 2L = Z?:ll 22 This choice allows to rewrite the last term in (22) as
Ip.q — Tip

(ep-eq)%(f(l,...,n) = (¢, €,) i s Y. Cloyi,...,n). (36)

p,q =1 oe{q,p}
] :

We could have applied the cross relation ([B3) with p and ¢ swapped, and the equality of the
resulting color-ordered gluon amplitudes follows from the BCJ relations [2],

leip Z A( 77---771):251‘,1 Z A(o,i,...,n) . (37)

oe{q,p} i=1 oe{p,q}
w{1,..., i—1} w{1,..., i—1}

Hence, we may as well symmetrize the above result in p and gq.

4.4 Amplitude relations for n gluons and two gravitons

By assembling the results from the previous subsections, ([22)) yields the following final result for
the two-graviton case

n—1

Aegym(1, ..., n5p,q) = Z (€p i) (€q-2;) AL, ... 4,pi+1,...,4,¢q,5+1,...,n) (38)
1=i<;
- Spi (€p7€4)
B {<€p'xi) (eq'p ZA<J7P7Z+177H)+% Z A<0727Z+177n)}+<p<_>q)7
i=1 oe{q} oe{q.p}

w{1,..., i} w{1,..., i—1}

where the symmetrization over p and ¢ applies to both lines of (B8]). This result expresses a
two-graviton and n-gluon amplitude through (n + 2)-point pure gluon amplitudes and agrees
with (@) after expanding the sum over shuffles. The result derived from the CHY formula is valid
in any dimension. The simplest non-trivial examples involve two and three gluons, respectively,

Aeym(1,2;3,4) = (€3 - ka)(eq - 21)A(1,2,3,4) + (€4 - k3)(e3 - 21)A(1,2, 4, 3)
—( Y(eq - x1)A(L,3,2,4) — s13(e3 - €4).A(1,2,4,3), (39)
Aeyn(1,2,3;4,5) = (€4 - x2) (€5 kg) A(1,2,4,5,3) + (€4 - x2) (€5 - 1) A(1,5,2,4, 3)
(€4-x1)(€5 - 21) A(1,4,5,2,3) + (€4 22) (5 - 22) A(1,2,4,5,3)
— (ea - a1)(e5 - ka) [A(1,5,4,2,3) + A(5,1,4,2,3)]
) (1,

+ %(64 €5 [524«4 1,3,5,4,2) — s1sA(1, 2,3, 5, )} (45), (40)

€3+ T

_I_
N
A

where gauge invariance under €, — p can be checked via BCJ relations [2] among the A(...). In
terms of the only BCJ-independent four-point amplitude A(1,2,3,4), (B9) can be brought into

10



the manifestly gauge invariant form

Amni(1,2:3,4) = AL, 2,3,4) x { (63 ko) (s k) + 2 (e ha(es - ) (41)
- &(53 +k1)(€a - k1) — sas(es - 64)} ;
513

and similar expressions can be found for Agyy(1,2,3;4,5) by reducing the right hand side of
Q) to a five-point BCJ basis such as {A(1,2,3,4,5),.A(1,3,2,4,5)}.

5 Three gravitons

We proceed to the amplitudes with three gravitons, where the relevant Pfaffian ¥,_3 is given as

PtW,_3 = CPPCQqur + [C (Eq : T)(fr : q) — Sqr(eq : Er) + cyc(p, q, 7”)}

+ % |:(€p . C])(Eq . T)(Er -p) — (ep . r)(er . q)(eq p)} (42)
" ﬁ [(Ep ~eg){spr(€ - @) = g6 - p)} + eye(p. g, 7“)] ,

where cyc(p, ¢, ) instructs to add the two cyclic permutations (p,q,7) — (¢,7,p) as well as
(p,q,7) = (r,p,q). As in the case of two gravitons, it is convenient to write C), as

g, 0,
Chp=C" : an : nn 43
pp pp + (617 q) Uq,pap,n + (617 T) Ur,pap,n ) ( )

with C}, as given in (23)) and an analogous splitting of Cy, and C,,. Similar to the absence of
tensor structures (e, - ¢)(¢, - p) in the two-graviton case, we note the vanishing of three classes of
terms in ([42) given by

(& - D)eg-7)(&-p), (- -a)(eg-p)er-p), (- a)eg-p)er- 1) (44)

and their permutations in p,q,r. The non-vanishing contributions to (42]) may be organized
according to the contractions of polarization vectors and momenta. It turns out that there are
five such independent contributions, and we will discuss them one by one.

5.1 Three-graviton contributions (e, - €;) (€, « q)

We begin with the term proportional to (e, - €,)(¢, - ¢), where the corresponding o-dependence
stems from the first and the third line of ([@2),

SpqTq.n Spr
PIU,_, = Spofen e (45)
(€ép-€q)(er-q) Ur,qo'r,no-nq Op,q0qrOp,r

11



In a frame where 0, — o0, these two terms can be combined through a single scattering

equation =22 4 2% — 27:11 2ei - In combination with an n-particle Parke-Taylor factor, KK-
Or,p Oq,p % Opj

rearrangements similar to those in section [ yield the SL(2, C)-invariant result

C(1,2,...,n)PfU,_;

n—1
=2 s D, Clegi+len) (46)
j=1

oe{r,q,p}
wi{1,2,...,j—1}

(ep-€q)(er-q
in terms of (n + 3)-particle Parke-Taylor factors.

5.2 Three-graviton contributions (¢, - €;) (€, * ;)
We move on to tensor structures (e, - €;)(€, - ;) stemming from the end of the first line of ([@2]),

PfW,_, Svg O3+l (47)

T2
(ep-eq)(erzj) O-p7q Ojr0rj+1

The techniques of section for the Parke-Taylor factor C(1,2,...,7,7,7+1,...,n) yield

_ Spq C 1 2 - -
= —— J 2, 0,0, 7+ .o n
(ep-eq)(er-ay) o2, ( )

J
:—{ZsipZC(a,i,i—l—l,...,j,'r’,j+1,...,n) (48)
=1

oe{q,p}
w{1,2,...,i—1}

n—1
+ Spr Z C(U,r,j+1,...,n)+25ip Z C(a,i,i+1,...,n)},

oe{q,p} i=j+1 oe{q,p}
w{1,2,....5} W{l,....j,rj+1,...i—1}

C(1,2,...,n)PfU,_;

where the hidden symmetry under p <+ g can be checked via BCJ relations.

5.3 Three-graviton contributions (e, - (g + 7))(€q - 7)(€r - ;)

We jointly discuss the tensor structures (e, - ¢)(e, - 7) (€ - z;) and (e, - 7) (€, - 7) (€, - ;) which arise

from C,, Cyy C)

T

Orn 0j.+1
PfU,_, = = (49)
(ep-q)(eq-m)(er-z;) O0p,qOp,nOq,r OjrOrj+1
2
rn J+1
PfW,_, = D (50)
(epr)(egr)(erzj)  OprOpnOqrOqn 007 41

12



The Schouten identity o, ,0,4 = 0p0nq — 07400 and the frame-choice 0,, — oo are helpful to
combine these expressions with a Parke-Taylor factor,

C(1,2,...,n)Pf0,_4 Z Clo,r,j+1,...,n) (51)

(ep'q)(eqT)(€rzj)

C(1,2,...,n)PtV,_,

e Z Clo,rj+1,....0)+(p+q) . (52)

C(1,2,...,n)Pt0,_, Z Clo,rj+1,...,n). (53)

(ep-(g+7))(eqm)(er-z;)

5.4 Three-graviton contributions (e, - p)(€p « ;) (€q * ;)

The tensor structure (e, - p)(e, - 2:)(eq - ;) due to C,.,. €} C7 is accompanied by

Op, 0ii+103,5+1
PfW,_3 = 2% Jd ) (54)
(erp)(epwi)(eg-xj) OprOrmn OipOpi+104.q0q,5+1

There are three cases to consider for the relative positions of ¢ and j,

—ZC(a,p,H—l,...,j,q,j—i—l,...,n) i<y
oce{r}
— wq1,2,..., i} (55)

C(1,...,n)PfU,_ o
( ) * Ler ) epai)eqzy) — Y Clopi+l,....n) L Q>

as well as the case where i = j,

C(l,...,n)PfW,_3 = — Z Clo,p,q,7+1,.. Z Clo,p,j+1,...,n). (56)

oe{r} O‘E{’r
w{1,2,...,i} w{1,2,....3,q}

(€r-p)(ep-i)(eq i)

Note that summing over all choices of 7, j combines (B5) and (B0) to

n—1
g n .
C;pCéqC(l,...,n)#:—{ E (€p - ) (€ - ) g Clo,p,i+1,...,n)
p,r¥rmn 1=5<s oe{r}

w{l,....5,q,5+1,...,i}

+i(ep.g;i)(eq-xj) 3 C(o,p,i+1,...,j,q,j+1,...,n)}. (57)

1=i<j se{r}
w{1,2,...,i}
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5.5 Three-graviton contributions (€, - ;) (€q * ;) (€ - Tk)

Finally, the term €}, C7 C7, contributes tensor structures (€, - x;)(€, - ¥;)(€, - 7)) along with
PIU,_,

_ 04,i4195,j+10k,k+1

(ep-wi)(eq-zy)(er-xy)

: (58)

Oi,p9p,i+105,q9¢,j+19k,r Or,k+1
where clashes among the summation variables i, j, k require applications of the Schouten identity

C(l, .. .,’I’L) Pf\pr:g

(epwi)(€q-w;5)(er-p) (59)
C(L,2,....4,pyi+1,.... 0, ¢, 5+, ... k,rk+1,...0n) 1 <j<k
=< C(1,2,. ..,z,p,q,i+1,...,k:,r,k+1,...,n)+(p<—>q) ci=g<k
C(1,2,...,4,p,q,r,i+1,...,n) + perm(p, q,7) ci=j=k

The above cases and their permutations in p, ¢, r can be combined to

n—1

CrpCryCrC(L, o n) = D (& ai)(eq - ;) (e - )

1=i<j<k

seenshpi+ 1,000, 7+ 1, ki k+ 1.

(60)

x C(1,2 n) + perm(p, q,r) .

5.6 Amplitude relations for n gluons and three gravitons

Assembling all the terms from the above sections [B.1lto[B.5] yields the following amplitude relation

AEYM(1727---7n;p7Q7 ) 6p Eq Zsjp Z A(07j7j+17---7n)
oe{r,q,p}
wq1,2,..., j—1}
E © € ol ]
p 2) (€ - x]{ZSW Z A(oyiyi+1,....5,m7+1,...,n)
j=1 oc{q,p}
wq{1,2,..., i—1}
n—1
+ Sy Z A(o,r,j+1,...,n)+ Z Sip Z A(cr,i,z'Jrl,...,n)}
o€{q,p} i=j+1 oe{q,p}
w{1,2,....5} w{l,....5,rj+1,...i—1}
n—1
_<67‘p){ Z (Gp'l’i>(€q'l’j) Z A<0-7p7i+17"'7n) (61>
1:j§i oce{r}

w{l,....5,q,5+1,...,i}

+ Z € - T;)(€q - 5) Z A(a,p,i—i—1,...,j,q,j—|—1,...,n)}

1=i<j oce{r}
wq{1,2,..., i}
n—1
+ Z (€p-wi)(eg-xj)(er - wp) AL, 2, i,pi+1,...,70,¢,5+1,... k,ryk+1,...,n)
1=i<j<k
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n—1

+(ep-(q+r))(eq-r) (‘ET'xj) Z A(a,r,j+1,...,n)+perm(p,q,7’) )

1 oe{p,q}
w{1,2,...,5}

<.
Il

where the symmetrization over the three gravitons with momenta p, ¢, applies to all the lines.
The simplest non-trivial example of (&I]) involves two gluons and three gravitons

AEYM(L 2, 3, 4, 5) == (63 . IL‘1)(€4 . l‘l)(€5 . l‘l)A(]_, 3, 4, 5, 2) + (65 . ]{33)(63 . IL‘1)(€4 . $’1)A(1,4, 2, 5, 3)
— (64 . (k‘g + k’5))(€5 . k’g)(Eg . l‘l)A(]_, 2, 4, 5, 3) + (63 . 65)(64 . kf5)$13.¢4(1, 2,4, 5, 3)

where gauge invariance under €, — p can be easily checked by casting all partial amplitudes on
the right hand side into a two-element BCJ-basis.

6 Four and more gravitons

It is straightforward to extend the results in the previous sections to the case with four gravitons
and a single-trace contribution of gluons. As in the case of two and three gravitons, we again
write Cp, as

Ormn

Ogn Otn
Coy=C" +(,-q) —2— + (¢, -7 + (e, t — 63
o0 = Cpp T (6 ) P (e - 7) P (6 - ) p— (63)

with C}, as given in (23] and an analogous splitting of Cyq, C;., and Cy;. Spelling out the complete
four-graviton Pfaffian of W,_, [34] is a tedious but straightforward generalization of ([@2]). Using
these definitions we can proceed just as in the three-graviton case and identify the following 16
permutation independent tensor structures that do not cancel:

CopCagler-)e-p)  Cppleg-t)(er-p)(e-p)  Cileg-&)ep-q) (& €g)(& - )

(& - eo)(eq - D)ler-p) - Cppleq-p) (e -P)e-p) - Cppler-e)leq - p) — Cplgler-a) gy
(€g-€)(&p-1)(&r-p)  Cpleg-T)er-t)(er-p)  CpChleq-1)(er-p)  CpCrCley - p)

(6p - €)(eq - p)(&r-p)  Coglep-a)(&r-p)er-p)  CpCuleq - p)er-p)  CppCoyCrChy

We would like to point out that all the previous techniques and results for dealing with two and
three gravitons can be recycled to relate all the above tensor structures to YM subamplitudes,
the expressions being of course too long to be displayed in this work.

Also in cases with any number of gravitons, SL(2, C)-invariance requires the CHY integrands
to be built from products of Parke-Taylor factors and cross-ratios which possibly lead to higher-
order poles in 0;;. According to [44], any such CHY integrand can always be reduced to linear
combinations of single-cycle Parke-Taylor factors which signal the single-trace color ordered am-
plitudes in YM. Hence, it follows that the above procedure can in principle be generalized to any
number of gravitons.
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7 Towards multitrace contributions

In the following two sections, we provide an indication of how the techniques of this work also
apply to multitrace contributions to EYM amplitudes. Note that these results apply to EYM
extended by B-field and dilaton couplings [34,35] reflecting their string theoretic underpinning.
While an exhaustive discussion is relegated to future work, we will consider the two particularly
simple examples of double-trace amplitudes involving gluons only as well as those with one single
graviton.

In order to lighten the notation, we strip off the ubiquitous n-particle Pfaffian from the
subsequent n-gluon integrands

Iﬁ?g\g}(l,l coor|rl o n) = {Eﬁl\fr}(l,l oo+l oo n) - PP, ({ka, €,0)) (65)

and focus on the reduced integrands /7, {E’f\f?ﬂ} on the right hand side. The subscript {r, n—r} refers
to having r and n — r particles in the first and second trace, respectively. Similarly, the reduced
double-trace integrands 7, {Ef}i} 41 for n gluons and one graviton to be discussed in section [§ are
understood to exclude the overall (n+1)-particle Pfaffian.

7.1 Double-trace amplitude relations without gravitons

The CHY integrand for double-trace contributions to gluon amplitudes is given byH [34,135]
j{EYMr}(l, 2,...,r|r+l,....n) = s12.,C(1,2,...,r)C(r+1,...,n) (66)

with multiparticle Mandelstam variables

S19. r = Z (ki - k) - (67)

1<i<j

Using cross-ratio identities [44] similar to (B3]), one can rewrite the product of Parke-Taylor factors
in ([66]) in terms of a single n-particle Parke-Taylor factol. This generalizes the procedure of
section and reduces any double-trace subamplitude to linear combinations of their single-
trace counterparts. In the remainder of this section, we will derive the following all-multiplicity
formula:

r—1 n
AEYM(1a27---7T|T+1a--'7n) = Z Z (_l)j_i Sij Z Z A(p,i,j,T,T+1,7‘) (68)

=1 j=r42 p€{1,2,...,i—1} T€{j+1,j+2,...,n}
w{r—1,r—2,..,i+1} w{j—1,7—2,...,7+2}

4We are following the normalization conventions of [35].

5The problem of evaluating CHY integrals involving multiple Parke-Taylor factors has been actively studied
in the recent literature [45L[44]. The string-theory analogue of this problem where scattering equations translate
into integration by parts is relevant to reduce tree-level amplitudes of the open superstring [7L8] and the open
bosonic string [46] to an (n — 3)! basis of worldsheet integrals.
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If one of the cycles has a small length, say k = 2,3, 4, the general expression (G8]) simplifies to

r—1
Apym(1,2,,rpg) =Y (1) sig > Alpig,p,7) (69)
i=1 pe{12 ,,,,, i—1}
w{r—1,r—2,..., i+1}
r—1
AEYM(1,2,...,T‘|p,q,t) = Z(_l)r_l Z [SiqA(p,i,q,t,p, T) - SitA(paiataqapar)] (70)
=1 p€{1,2,...,i—1}
w{r—1,r—2,..., i+1}
r—1
AEYM(1727"'7T|paQ7t7u) = Z(_l)r_l Z [SiqA(paiaqatauapa T)+5iuA(pai7u7t7Q7p7 T)
=1 p€{1,2,...,i—1}

w{r—1,r—2,...,i+1}

- SitA(pa 1,1, q,u,p, ’I“) - SitA(p’ i,t,u,q,p, ’I“)} (71)

with lowest-multiplicity examples

Apya(1,2]3,4) = —s14.4(1, 2,3, 4) (72)
Arv(1,2,3]4,5) = s15.A(2,1,5,4,3) — s05.A(L, 2,5, 4, 3) (73)
Apyn(1,2,3,45,6) = sa6[A(1,3,2,6,5,4) + A(3,1,2,6,5,4)]
— 516A(3,2,1,6,5,4) — s35.A(1,2,3,6,5,4) (74)
Arva(1,2,314,5,6) = s15.4(2,1,5,6,4,3) — s16.4(2, 1,6, 5, 4, 3)
— 505.A4(1,2,5,6,4,3) + s56.A(1,2,6,5,4,3) . (75)

Cyclicity within the individual traces and symmetry under exchange of the traces are non-
manifest in these expressions but can be checked to hold via BCJ relations. Note that the
integrands of open-string one-loop amplitudes have been organized in terms of similar combi-
nations of YM trees [47] — see in particular appendix B of [4§]. Hence, the above relations are
expected to follow conveniently from the low-energy limit of one-loop diagrams of the type-I
superstring.

7.2 The derivation
The derivation of (68]) is based on a more general form of the cross-ratio identity (B5) [44],

0' ag;
Ygr+1%r r4+1CV4¢r
- 3r+1,r+2 ..... n E E . (76>

i=1 j=r+2 UZJUTT+1

It holds in the presence of momentum conservation as well as scattering equations and will be
applied to the CHY integrand (60]) for different choices of the sets {r+1,r+2,... n}:
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e For a cycle of length k = 2, setting (r+1,n) — (p, q) yields

r—1
1 ai,r
j{]i:’gl}t/[( .,T|p,Q):—C(1,2,...,T) X azsiqaqa ) (77)
=1 Ha=Ts
r—1
= sig(=1)"" Y Clpyica,p,r)
i=1 p€{1,2,...,i—1}

w{r—1,...,i+1}

which translates to the amplitude relation (69). Here and in later cases, the numera-
tor factor o0;, in the first line has been canceled after expanding the Parke-Taylor factor
C(1,2,...,r) of the r-particle cycle in a KK-basis of C(...,i,7) ~ 0, see ([2J).

e For a cycle of length k£ = 3, setting (r+1,7+2,n) — (p, q,t) yields

r—1
1 ooy
EYM q,p¥ 1,7
. t)=-C(1,2,... X ———— ——— —t
j{r?;} - e g (1.2,...7) Op,494,tTtp ] (8 qal%qar,p Tl >)
r—1
= E :<_1)Til E [SiqC(p,i,q,t,p,’r’) _Sitc<p7i7t7q7p7 T>:| ) (78>

=1 p€{1,2,...,i—1}

W{r—1,...,i+1}

which translates to the amplitude relation ([{0). The numerator factor o, and its image un-
der (¢ > t) have been canceled against the three-particle Parke-Taylor factor (o, 0401 ,) "

e For a cycle of length k = 4, setting (r+1,r4+2,7+3,n) — (p, q, t,u) yields

r—1
g, ai,r
T2 r |t = €120 ) T (5022 1 (g 010 )
i—1 i,qYr,
r—1
= (=Y [s1Clpisa,tw,p, ) + suClpyisust, g, pr) - (79)
i=1 p€{12 ,,,,, i—1}

w{r—1,..., i+1}
- Sitc(pv iu t7 q,u,p, T) - Sitc<p7 i7 tu Uy 4, Py T)} )
which translates to the amplitude relation (7Il). The second term ~ Si,t% in the first
04, t0r,p

line requires the rearrangement C(p, ¢, t,u) = —C(p, t,q,u) —C(p,t, u, q) of the four-particle
Parke-Taylor factor to cancel the numerator ~ o,,.

e For two cycles of arbitrary length, we obtain

TEM (1,2, 4L, yn) = —C(1,2,...,7)C(r 1, .., Z Z Tir41Tir
=1 j=r42 ’j rr+1
r—1 n
Y S sy Y S Clpigomr ) (30)
i=1 j=r+2 p€{1,2,...,i—1} rE€{j+1,...,n}

W{r—1,...,i+1} w{j—1,...,r+2}
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which translates to the most general double-trace amplitude relation (68)). The Parke-
Taylor factor C(r+1,...,n) has been expressed in a KK-basis of C(...,j,r+1) to cancel

0jr4+1 in the numerator.

7.3 An alternative representation

Similar to the observations in section L2 KK-relations (29) give rise to a variety of equivalent
representations of double-trace amplitude relations. Repeating the above rewritings of (66]) in a

frame where o,, — 0o leads to the following alternative representation of (6S):

r=1 n
AEYM(1’2"”’T‘T_'_l""’n):_Z Z <—

j=1 t=r+2

X Z Z Ao, 7. j+1,....r) .

re{r+2,...0—-1} o€{1,2,...,j—1}
w{n,n—1,..., +1}y  w{r+1,7,0}

Its special cases at k = 2, 3,4,

Apya(1,2,...,7|p,q) = —Zsm > A0, g+, )

oe{p,q}
w{1,2,....j—1}

Apyn(1,2,...,7|p,q 1) = Zsm > Al g+l ) = (g )

oe{p,t,q}

w{1,2,...,j—1}
r—1
Apym(1,2,...,7|p, g, t,u) = Z {sjt Z Ao, 7, 7+1,...,71)
j=1 oce{p,q,u,t}

w{1,2,...,j—1}

— Sjq Z A(a,j,j+1,...,r)}+(q<—>u),

oe{p,u,t,q}
w{1,2,...,j—1}

are related to ([69) to (1)) by a sequence of KK relations.

7.4 A double-trace counterpart of BCJ-relations

While BCJ relations among single-trace amplitudes can be written in the form [49]

n—1
prl 7 7"'7l7p7l+1 )IOv
=1

19
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double-trace amplitudes satisfy a modified version of this relation,

r—1
0= Z(p-:EZ)AEYM(I,Z,...,l,p,l+1,...,r|r+1,...,n)

=1
n—1

+ Z (p-x)Agym(1,2, ..., |r+1,... 1,p,l+1,...,n) (86)
l=r+1

r—1 n
- (pxr) Z Z (_)Zijsij Z Z A<T7 0-7i7j7 T, T+17p> 9

=1 j=r42 oce{1,2,...,i—1} Te{j—1,j—-2,...,r+2}
w{r—1,r—2,..,i+1}  w{j+1,542,...,n}

with a single-trace admixture in the last line. For small numbers of particles, (86) specializes to

S

1) Apym(1,p, 2| 3,4) 4+ (p - x3) Apym(1,2]3,p,4) + (p - x2)s14.4(2, 1,4, 3, p) (87)
cx1) Apym(1,p,2,314,5) + (p - 22)Aeym(1,2,p,3[4,5) + (p- 24) Aeym(1, 2,314, p, 5)

- x3)[505A(3,1,2,5,4,p) — s15.4(3,2,1,5,4,p)] (88)
$ @)

ey

S

+
3

(

S

0=(
0=(
0 ( Ty AEYM(17p72|37475)+(px3)AEYM(172|37p7475)+(px4)AEYM(172|3747p7 5)

€2 [514/4(27 17 47 57 37p) - 515-’4(27 ]-7 57 47 37p)} : (89)

+
S

(

Any instance of (8d) can be verified by converting the double-trace amplitudes to single-trace
expressions via (68) and expanding the latter in a BCJ basis. In its general form, however,
([B6) remains conjectural at this point. All cases involving A(...) of multiplicity n < 7 have
been checked in generic dimensions, and we additionally performed numerical checks in four-
dimensional MHV helicity configurations for up to nine points.

8 Double-trace amplitude relations with one graviton

Following our discussion in the previous section, we shall now present the double-trace contri-
butions to EYM amplitudes Agym({1,2,...,7 |7+ 1,...,n},p) with one graviton labelled by
{€p, k, = p}. As will be derived in the remainder of this section, these mixed amplitudes boil
down to their purely gluonic counterparts through the all-multiplicity formula

r—1
Agym({1,2,...,r|r+1,...,n},p) = (€p - @) Apym(L, ..., Lp, 41, r | r+1,... n)
=1
r—1 n
- (617 'I‘r) <_)27]8ij Z Z A(Ta 0-7i7j7 7-7 T+17p)
=1 j=r42 oce{1,2,...,i—1} Te{j—1,j—-2,...,r+2}
w{r—1,r—=2,....i41}  wW{j+1,j42,...,n}
n—1
+ Z (ep - 1) Apym(L, ..., |r+1,. . Lp,l+1,...,n), (90)
I=r+1
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with both single-trace and double-trace contributions on the right hand side. At low multiplicity,
[@0) specializes to

Aeym({1,213,4},p) = (€ - x1) Apym(1,p, 213, 4) (91)
+ (& - x3) Apym(1,2]3,p,4) + (€, - x2) 514.A(2,1,4, 3, p)
Apym({1,2,3]4,5},p) = (6 - 1) Apym(1,p,2,3[4,5) + (6 - 22) Agym(1,2,p,34,5) (92)
+ (ep - 24) Apym(1,2,3|4,p,5) + (& - 23) [525 A(3,1,2,5,4,p) — 515 A(3,2,1,5,4,p)]
Apym({1,2]3,4,5},p) = (6 - 1) Apym(1,p,23,4,5) + (6 - 3) Agym(1,2] 3, p,4,5) (93)
+ (ep - 1) Apym(1,23,4,p,5) + (& - 22) [s14A(2,1,4,5,3,p) — 515 A(2,1,5,4,3,p)] .
Note that the zero-graviton double-trace EYM amplitudes in (@0) can be further reduced to a

basis of single-trace amplitudes in YM by using the relation (68]) from the previous section.

8.1 The integrand

The above formula ([@0) originates from the CHY integrand [35] for EYM double-trace amplitudes
with Try ={1,2...,r} and Tro = {r+1,...,n}:

j{E\;LMT}H({l,Q,...,T|T+1,...,n},p) =C(1,2,...,m)C(r+1,...,n)

. [@ (3 (Y B (Y Ty 2

- . ; . ; g
i=1 i€Try Lp jeTr 7P i€Try b jeTr Jp

=C(1,2,...,r)C(r+1,. [ZZFJ@

g;
=1 j=i+1 i-pIp.j

+ S12..r Cpp . (94)

In proceeding to the last line we have introduced a shorthand for the tensor structure

Fig = (ki-p)(kj - &) — (ki - €)(k; - p) (95)

which is built from the linearized field-strength p*e, — p“el’ and therefore gauge invariant. In
order to spell out the CHY integrand (04)), one of the traces has to be singled out in the general
formula of [35]. That is why the symmetry {1,2,...,r} <> {r+1,...,n} under exchange of the
color traces is obscured in ([@0). Verifying this hidden exchange symmetry for explicit examples
such as ([@I)) to (@) serves as a stringent consistency check of our results.

Similar to the strategy in the previous sections, the goal is to incorporate the o-dependence
from the square bracket of (@4]) into the Parke-Taylor factors C(1,2,...,r) and C(r+1,...,n).
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Repeating the techniques from earlier sections, one can easily arrive at

j{Er\T(LMT}H({Lz...,7’\7’+1, ,n}t,p) = Z}"UZC 2, Lp 41 ) Cr+1, ... n)

1=i<y

—1
+512_“r{ Z (..., Lp+1,...,r)C(r+1,...,n) (96)

=1

+ Z (€p - x1) Sr)Cr+1, .. L p 41, ... n)
l=r+1

+ (ep-xr)%cu,...,r)cwﬂ,...,n)} .

OrpOp,r+1

e The factors of #U’m along with F;; only interact with the legs in C(1,2,...,r). KK
relations can be applied to expand the latter in a basis of C(...,1,j) which paves the way
for the insertion of the graviton-leg and leads to the first line of (96]).

e In the usual expansion of C,, for a single graviton

r—1
g 1
Cop= (- a;) — € i) — Ly (e, x,) — L (97)
" zzl L oo zzr;rl b 0ipopin b 0Ot
all of the terms except for the last one conspire with one of C(1,2,...,r) or C(r+1,...,n)

to yield an insertion of the graviton leg. This builds up the second and third line of ([O6]).

e The last term in (@7) requires special attention since C(1,2,... ,T)L“HC(H—L )
OrpOp,r

does not relate to products of Parke-Taylor factors in an obvious manner. In the next

section, we fill fix its net contribution to the amplitude relation (@) indirectly by imposing

gauge invariance.

8.2 From the integrand to amplitudes

In contrast to the simple conversion rule C(1,2,...,n) — A(1,2,...,n) for single-trace ampli-
tudes under the CHY measure, the products of Parke-Taylor factors in (@8] require an additional
Mandelstam variable s15 ,.C(1,2,...,7)C(r+1,...,n) = Agym(1,2,...,7|7r+1,...,n) to yield
double-trace amplitudes via (66]). In the third line of (@], the prefactor of sj9 ., is manifestly
compatible with the partition of legs among the Parke-Taylor factors, but the first two lines

require a more careful analysis. Leaving the overall C(r+1,...,n) aside, we have
r 7j—1
=Y Fy > c2,. . Lp 4L, (98)
1=i<j I=i
r—1
=> - 2)(e ) = (6 2)(p-2)] C(L,.... LpI+1,....7) .
=1
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This can be straightforwardly proven by considering each Parke-Taylor factor in the sum, for
instance C(1,...,l,p,I+1,...,7), and check that the coefficient of this particular Parke-Taylor
factor is identical on both sides of the equation. To see this, we can take the polarization vector €,
contracting a particular momentum, say €, - k;. We find that the coefficient of €, - k; is p- (2, — ;)
for t <l or —p-x; for t > [ for both sides of the equation.

We can take advantage of (O8] to rearrange the first two lines of (06)):

r—1
_ Z%Zc 2, Lp 1) s > (g -w)C(L. . Lp I+l ) (99)
1=i<y =1
r—1 l
:Sp,12...r Z(Ep'xl>c<17---7l7p7l+17"'7 ) 6p Ty ZZ Spjc 7"'7l7p7l+17"'7r)
=1 =1 j=1

after rewriting (@] in terms of (e, - ;). With (@9) and the third line of ([@G]), we arrive at the
following partial answer for the desired amplitude relation

r—1
Ay ({12, rlr 41, nkp) = (6 @) Apym(l, . Lp, 41, e e+l n)
=1
n—1
+ Y (& m) Apym(L, o 4L L L)+ (6 3)(c ) (100)
I=r+1

where the unevaluated coeflicient of (e, - z,) stems from the fourth line of () and the last
term of ([@9). Although the associated o-dependences can be similarly rearranged via scattering
equations, here we proceed with an alternative method by imposing gauge invariance under
¢, — p. Hence, the ellipsis in (I00) along with (¢, - x,) can be inferred as the unique gauge-
invariant completion

AEYM<{1,2,...,7"7’+1,...,7’1,},]9)

e = ()

r—1
X {Z(p ) Agym(L, ... Lp 1, e e+l n) (101)
=1
+ Z (p-xl)AEYM(l,...,r|r—|—1,...,l,p,l—i—l,...,n)}
l=r+1
= _Z Z Z jSZ] Z Z A(T707i7j777T+1’p) .
=1 j=r42 oe{l,...,i—1} Te{j—1,....,r+2}

w{r—1,...,i+1}  w{j+1,...,n}

In proceeding to the last line, we have used the relation (86l between gluon amplitudes of single-
and double-trace type to cancel the spurious pole as (p-z,) — 0. Hence, (I00) and (I0I]) complete
the derivation of the general amplitude relation (0.
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9 Conclusion and outlook

In this work, we have presented new relations to reduce EYM amplitudes involving up to three
gravitons and up to two color traces to partial amplitudes of pure YM theories. From their
derivation in the dimension-agnostic CHY formalism, the results are valid for external bosons in
any number of spacetime dimensions. Moreover, the formula for gluonic YM amplitudes from a
Pfaffian (1) is supersymmetrizedﬁ by the open-string correlators in pure-spinor superspace [311[7].
Hence, our results extend to any superamplitude which descends from ten-dimensional SYM
coupled to half-maximal supergravity.

This work raises a variety of follow-up questions: Most obviously, it would be desirable to
extend the amplitude relations to any number of color traces and graviton states potentially
uncovering a recursive structure. Another interesting direction is to consider such relations at
loop level. It is actually easy to see that the identity (II) should be violated at loop level, at
least for non-supersymmetric theories, by considering the simplest one-loop amplitude in four
dimensions: The four-point all-plus helicity amplitude. For this particular case, we see that the
right hand side of () is in fact not gauge invariant. This follows either from the explicit form
of four-point all-plus helicity gluon amplitude at one loop [50] or from the known fact that the
amplitudes generated from the higher-dimensional term F* [4751] do not obey the BCJ relations.
Finally, it would be interesting to rederive the results of this work from the heterotic string and
compare the additional string corrections with the open-string results of [6,[I6,15]. One might
speculate about new connections between the tree amplitudes among gluons and gravitons in
different string theories along the lines of [52],46].
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