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1 Introduction

Einstein’s theory of gravity and Yang-Mills (YM) gauge theories are both built on local
symmetries yet their dynamical structure is quite different. Nonetheless, in a perturbative
quantization of these theories in a flat space-time background intimate relations between
their S-matrices have been uncovered that are far from obvious at the Lagrangian level.
They allow to express graviton scattering amplitudes through YM scattering data, being
entirely unobvious from a Feynman-diagram based computation. The first such connection
are the Kawai-Lewellen-Tye (KLT) relations [1] derived from the string theoretic origin of
the tree-level field-theory S-matrices. The KLT relations express graviton amplitudes as
sums of products of two color ordered gluon amplitudes.

More recently, Bern, Carrasco and Johansson (BCJ) [2-4] introduced a double-copy
construction of graviton amplitudes through gluon amplitudes of the same multiplicity.
Here Lie-algebra like relations for the kinematic building blocks of gauge-theory amplitudes
were identified and used to construct graviton amplitudes. This technique has proven to
be enormously powerful to generate loop-level integrands of gravitational theories from
the simpler gauge-theory ones and became the state-of-the-art method to explore the UV
properties of supergravities, see for instance [5-8]. At tree level the BCJ double-copy con-
struction enforces the so-called BCJ relations between color ordered gluon tree amplitudes
reducing the basis of independent n-gluon amplitudes to (n — 3)! entries [2]. These BCJ
relations have been proven in a variety of different ways, including monodromy proper-
ties of the string worldsheet [9, 10], the field-theory limit of open-superstring tree ampli-
tudes [11, 12], BCFW on-shell recursions [13-15] and cohomology arguments in pure-spinor
superspace [16].

Less is known about the explicit S-matrix elements for mixed graviton and gluon
scattering in Einstein gravity minimally coupled to YM theory, EYM for short. In the 1990s
gravitationally dressed amplitudes in four dimensions for the maximally-helicity violating
(MHV) case were given in [17-19], where at most two gluons or one gluon and one graviton
have opposite helicities to the other particles. These results were established using a self-
dual classical ‘perturbiner’ solution [17, 18] or by again employing the KLT relations [19].
Double-copy constructions for gluon-graviton scattering in supergravity theories were given
in [20, 21], also see [22] for a review.

Very recently a nice and compact formula relating the scattering of a single graviton
with n color ordered gluons of arbitrary helicities to a linear combination of (n + 1)-gluon
scattering amplitudes was found by Stieberger and Taylor [23]. Their derivation is based
on a new set of monodromy relations for mixed open-closed string amplitudes along the
lines of [10, 24]. With p* denoting the graviton momentum, their formula reads

n—1
Asyni(1,2,.. ., n:p) = g Yo @ AL2,.. . Lp 1,0, (1.1)
=1

where k and ¢ are the gravitational and YM couplings, respectively. Note that this ampli-
tude is associated to a single trace color structure of the form Tr(77T?2 ...T% ), where
T denote the generators of the non-abelian gauge group. Moreover, x; denotes the region



momentum l
o =) K (1.2)
j=1

of the gluons with lightlike momenta k{*. In this work we shall give a concise field-theory
proof of the relation (1.1) and extend it to more (up to three) graviton insertions and
higher (up to two) color trace structures.

In four spacetime dimensions, the development of on-shell techniques' has given us
powerful representations of tree-level gluon and also graviton amplitudes at hand. In
fact there are now closed analytical expressions available for all color ordered n-gluon
amplitudes [28] as well as graviton amplitudes [29] at tree level based on solving the BCFW
recursion [30] in its supersymmetric extension [31-33] which have been implemented in
computer algebra packages [34-36]. On-shell recursion relations have been further extended
for planar loop integrands [37].

In higher spacetime dimensions, recent progress has been driven by different sets of
methods: the Berends-Giele recursion [38] for an efficient resummation of Feynman dia-
grams and the field-theory limit of string amplitudes, starting with [39]. The pure-spinor
formalism of the superstring [40] inspired a recursive setup to determine manifestly su-
persymmetric n-gluon tree amplitudes in ten-dimensional super Yang-Mills (SYM) from
supersymmetry, gauge invariance and locality [41]. An extension of these methods to loop
level has been initiated in [42, 43]. Machine-readable component expressions in ten dimen-
sions are significantly facilitated by the techniques in [44] and available for download on [45].
Moreover, the pure-spinor approach allows for an alternative proof of BCJ relations [16] as
well as explicit constructions of BCJ numerators at tree level [46] and loop level [42, 43].

Another line of attack towards the higher-dimensional tree level S-matrix for gravi-
tons, gluons, cubic scalars and beyond is provided by the Cachazo-He-Yuan (CHY) for-
malism [47-51]. As suggested by their origin from ambitwistor strings [52, 53] and related
recent developments [54-56], CHY formulae yield unifying representations for a variety
of tree amplitudes®? which strongly resemble those of the superstring. For instance, the
pure-spinor incarnation of the CHY formalism [65] is know from [66] to reproduce the
supersymmetric tree amplitudes from the field-theory limit of the superstring [11, 41].

Similar to string theory, CHY formulae compactly represent amplitudes in Einstein
gravity, pure YM and cubic massless scalar theories in arbitrary dimensions in terms of an
integral over the punctured sphere. These CHY integrals localize on the solutions to the
scattering equations

n
Sab
fa = b:Zl o i o =0 R where Sab = ka . kb; (13)
b#a

where kf denote the light-like momenta and the o, the positions of the punctures. Such
CHY integrals yield the same propagators as seen in the field-theory limit of worldsheet in-
tegrals in string theory [49, 67], see [68] for an efficient recursion via Berends-Giele currents.

!See [25-27] for introductory references.
2See [57-64] for extensions to loop level.



In this work, we will employ the CHY formalism, in particular the results of [50,
51], to derive the EYM relation (1.1) and its generalizations. Our results therefore hold
in arbitrary spacetime dimensions and by pure-spinor methods [11, 41, 65, 66] extend
to any superamplitude descending from ten-dimensional SYM coupled to half-maximal
supergravity. The key idea is to rewrite the graviton building blocks in the CHY integrand
in terms of so-called Parke-Taylor factors, thus reducing the graviton-gluon amplitudes
to linear combinations of polarization-dependent sums of gluon amplitudes. An almost
identical derivation can be performed in the heterotic string which is left for future work.

Our paper is organized as follows. In section 2 we give a brief review of the CHY
representations of tree amplitudes in general and focus on the integrand for mixed gluon-
graviton scattering. Section 3 proves (1.1) whereas section 4 and 5 generalize (1.1) to the
two- and three-graviton case. The EYM amplitude relations we find include?

o [ n—1
K . . . .
AEYM(1727"‘7n;paq> :72 Z (Ep'xi) (6q'wj)A(lv"'717p72+17"‘7]7Q7j+17'"7”)
9 1=i<j
n—1 Jj+1
— (¢4 D) Z (ep - 7) ZA ci=1,q,0, ., D, L, ) (1.4)
Jj=
(ey-€ . . . ‘
- L qukl Z-A 71_17(]717"')]_1)191]1'"7n)+(p<_>Q)
= 1=i<j

for n gluons with momenta k; and two gravitons with momenta p, q. The analogous three-
graviton identity is given in (5.20). Moreover, the A(...) and the Agym(...) may be read
as superamplitudes in ten-dimensional SYM and supersymmetrized EYM theories with 16
supercharges, respectively. In section 6 we comment on the four- and higher-graviton cases
indicating that there are no conceptual problems to resolve them. In section 7 and 8 we
turn to the multi-trace amplitudes in EYM augmented by a B-field and a dilaton with the
main results in (7.4) and (8.1) before ending with an outlook.

2 CHY representation of scattering amplitudes

In terms of the CHY formula [47-51] the scattering amplitude for n massless particles with
momenta k, and polarizations ¢, takes the general form

A, = dunH 5(fo) Tn({k, e, 0}) . (2.1)

The integration with measure du, = %"(‘éc) is performed over the moduli space of
punctured spheres, and the J-functions enforcing the scattering equations (1.3) completely
localize the integrals. Here one needs to divide by the volume of SL(2,C) as the integrand

*Note that the i = 1 contributions in the second and third line of (1.4) are understood as A(q, 1,2, ...,n).
Moreover, subamplitudes with adjacent gravitons occur in each line of (1.4) including the terms """ (e, x:)
(eq - xi)[AQ, ... 0,p,q,i+1,...,n) +AQ1,...,i,q,p,i+ 1,...,n)] from the double sum in the first line.



is invariant under M&bius transformations. In the following we abbreviate the measure as
n
S, = dpn [['0(1a) - (2.2)
a=1

Moreover, in the expression above H’ refers to the fact that one needs to remove three
delta functions in a way explained in [47-51]. The integrand for a specific bosonic theory,
Zn.({k,e,0}), is constructed from a combination of building blocks. We set the couplings
k and ¢ to unity from now on. These are on the one hand the Park-Taylor factor

1
Cl,....n)=—————— | Gap=04—0p (2.3)
01,2023 ...0n,1

and on the other hand the reduced Pfaffian of an anti-symmetric 2n x 2n matrix ¥,

Pt W, ({k,e,0}), where ¥, = A =Cr (2.4)
C B
with the entries
€q-k
ko -k, a 7& b €q€p a 7& b o’aifgb a 75 b ,
Agp = 707 " B p=4 70 % C = ‘ o ke (2.5)
‘ {0 a=b, {0 a=b, |2 a=b.
c#a
The prime along with the Pfaffian in (2.4) instructs to remove any two rows and columns
1,7, i.e.
p _ (=D ij
Pt W, ({k,e,0}) = HPf[\Pn({k, €, a})]ij, (2.6)
where [.. ]Z is obtained from the enclosed matrix by deleting the i*" and j*' row and

column, respectively. We note that, on the support of the scattering equations, the Pfaffian
is invariant under permutations of any of the n particles and independent on this choice
of i and j. Combining these two building blocks in the integrand, one may write a pure
gluon amplitude using

TM(1,2,...,n) =C(1,2,...,n)PF ¥, ({k,e,0}), (2.7)

whereas the single-trace part of an EYM amplitude with a single graviton at position n+ 1
with momentum p takes an integrand of the form [50]

ZEYM(1,2,...,n;p) = C(1,2,...,n) Cpp P U1 ({ka, py €, 0}) (2.8)

Using these expressions it is straightforward to prove (1.1) and extend it to more graviton
insertions.

The single-trace sector of a general r-graviton and n-gluion EYM amplitude has the
compact CHY representation [50]

IE_ETM(L 2,...,n5p1,. . pr) =C(1,2,...,n) PEU,({p, €y, o P U,y . ({k, D, €k, €p, T} )
(2.9)



where W, ({p,€p,0}) is a CHY matrix extending only over the r graviton legs without
any deletions as in (2.6). Double-trace generalizations of (2.9) can be found in sections 7
and 8. In order to rewrite EYM amplitudes in terms of color ordered gluon amplitudes
with integrands (2.7) one simply needs to seek identities of the schematic kind

C(1,2,...,n)PtW,({p,ep,0}) = > Fp,(¢p, 0, k) C(Pi), (2.10)
P;ePerm(1,...,n,p1,...,pr)

which we shall provide with explicitly known functions Fp, of the polarizations and mo-
menta.

3 One graviton

In order to derive the single-graviton relation (1.1) from the CHY formalism, we start from
its right hand side and note that, by the permutation invariance of Pf ¥,, .1 under the
measure d), 1 in (2.2),

1
A(1,2,...,01,p,1+1,...,n) :/dQnH Iti+1 PY U, 1 ({k,p,e,0}).
OlpOpl+1 01,2---014+1---0n,1
(3.1)

Hence, given the EYM integrand (2.9), all there is to do in order to prove (1.1) is to show
that

n—1
O1,14+1
PfU, =Cpp=Y € o ——, (3.2)
-1 Olp Tp,i+1
which is elementary. Writing —t+1— = L _ 1 we have a telescoping sum
Tl,p Ip,l+1 91,p Ti+1,p

s €p Tl €T s ep (T —x—1) €k €-Tp_1
C, :Z L il :Z + — ) (3.3)

—1 \ %Lp Ol+lp —2 ILp ILp On,p

Now using x; — ;-1 = k; and —x,—1 = k,+p from total momentum conservation, along
with €, - p = 0, we indeed reproduce the diagonal element of the C-matrix in (2.5)

€, k
Cpp:z . l’ (3.4)

which proves (1.1).

4 Two gravitons

In order to address the two-graviton problem we first note that the relevant Pfaffian of W,
in (2.9) takes the form (writing p; = p and ps = q)

Spq (€p - € €p-q)(€q- D
PEU,_ = Cpp Cgg — Eﬂp 2 + s 0)2( 2?) ) Spg =P 4q- (4.1)
Py P.g



The inequivalent tensor structures for the graviton polarizations can be conveniently clas-
sified after rearranging the first term in (4.1) via

n—1
O04,i+1 Ogq,n
Cop= 3 (e - 21)—THHL 4 (g, g)—Tan 12
" 1;21( ! Z)‘72'717 Op,it+1 (& )qup Op,n 7 (4.2)
n—1 o o
C :Ze-m-L—H—i—e-p&. 4.3
b i:l( ! Z)Ui,q Tq,it+1 (€ )Up,q Tgn 3

This generalizes relation (3.2) to two gravitons and n gluons. Multiplying these two terms
as they enter (4.1), we arrive at

Op.n Ogn s € €
PfWw,_, =C,, C, +C;/)p(€q'p)L+Céq(€p'q> e ~ Spq (6 - €q) (4.4)

P ~qq 2
Op,qOqn Oq,p Op,n Op.q
with
n—1 o
i+l
zlﬂp = E (€p - xz)i . (4.5)
i=1 Oi,p Opi+1

Note that the tensor structure (e, - p) (€, - ¢) cancels between Cp, Cyq and the last term
in (4.1). In the following, we rearrange the three classes of terms in (4.4) such that a
superposition of (n+2)-particle Parke-Taylor factors as in (2.10) arises upon multiplication
with C(1,2,...,n).

4.1 Two-graviton contributions (e, - z;)(€q * ;)

The first term in (4.4) is a product of two expressions as in (4.5),

n—1
ChChCL2, . n) = Y (i) (6q-2) C(L, 2, iy pyi+ L fogsj + 1, ym)
Z;J;é:jl
n—1 0_2‘+1
+ e 1) (e, - xs 1,0 C(1.2.....m). L6
;(p Z)( ! z> O4,p Op,i+1 Oi,q Oq,i+1 ( ) ( )

While the first line is already in the desired form (2.10), the second line needs a small
rearrangement. Multiplying it with the identity 1 = o0, 4/0p, and using the analogue of
Schouten’s identity

Oiji+1 Opq = —0ip Oqit1 + Tig Opiit1 (4.7)

we straightforwardly establish the identity

2
oZ. o .. ..
i,i+1 Y p.q 0i,i+1 04,i+1
= + . (4.8)
Oi,p Op,i+10i,q 0q,i+1 Opg  OipOp,qOqi+l  Ti,qO0qp Op,i+1
Using this we thus have

n—1

C'I’,pC(/IqC(l,Z...,n) = Z(ep-xi) (€q-z;)C(L,2,...,4,pi+1,...,5,q,5+1,...,n)
zzi];é:jl
n—1
+Z(6p'xi) (eqxl)[c(172a7Z7p7Q7/L+177n)+(p<_>q) ) (49)
i=1

completing the rearrangement of this contribution into the desired form (2.10).



4.2 Two-graviton contributions (ep, « x;)(€q * P)

For the cross-terms arising in the product Cp, Cyq with (4.2) and (4.3), one has

Cl o (eg-p) — 2" C(1,2,...,n) = (¢ - D) Z (6 - 25) — 2" C(1,2,...,4,p,i+1,....n).

Op,q 9q,n — Op,q 9q,n
(4.10)
This expression is ready to be recast into the Parke-Taylor form by moving leg p in the
factors of C(1,...,4,p,i+1,...,n) next to leg n such that the numerator o, , gets cancelled.
This can be achleved by means of Kleiss-Kuijf (KK) relations [69, 70]

C(1,A,n,B)=(=)Pl >~ c(1,0,n). (4.11)
o€ ALLB?

The shuffle product of the sets A = {a1,a2,..., a4} and B = {1, B2,...,Bjp|} in (4.11)
(with cardinality |A|, | B| and reversal B! = {B| B|»---» B2, f1}) is defined recursively via

(Z)LUA:ALU@:A, AIJJBE{al(ag...a‘A‘UJB)}+{51(ﬂ2...5|B|LUA)} (4.12)

and amounts to summing all permutations of AU B which preserve the individual orderings
of A and B. Applying this identity to (4.10) we may rewrite the last term as

C(1,2,...,4,p,i+1,...,n) = (=) 1 > C(o,p,n), (4.13)

oce{l1,2,..., i}
w{n—1,n-2,..., i+1}

which leads to the following combination of Parke-Taylor factors,

n—1
(o
C)p(eq-p) —22—C(1,2,...,n) = (6g-p) D ()" (e~ i) > Clo,p,q,n).
i=1 i

(4.14)
There is still freedom to simplify (4.14) using additional KK relations (4.11). The partic-
ularly economic representation

I e(1,2,. it n) =~ > Clovpitl,...,n), (4.15)
Op,q 9q,n vela)
wq{1,2,..., i}

can be conveniently verified in an SL(2, C) frame where o,, — oo. This yields the following
compact alternative to (4.14):

n—1
o
C]’Dp(eq-p)¢6(1,2,...,n):—(eq-p)z € T;) Z C(o,p,i+1,...,n). (4.16)
Ip,q g i=1 oe{q}
w{1,2,...,i}

The second cross-term in (4.4) with p and ¢ swapped can be addressed in the same manner.



4.3 Two-graviton contributions (e, - €4)

Moving on to the last term in (4.4), one can use the peculiar cross-ratio identity of [71],

Spq , Tia
O_T— Z szm, aE{l,Q,...,n}, (417)

which holds in the presence of momentum conservation and the scattering equations.
Once the accompanying Parke-Taylor factors C(1,2,...,n) are expanded in a KK-basis
of C(...,i,a) via (4.11), any term on the right hand side of (4.17) can be brought into the
desired form (2.10).

Alternatively, one can simply apply the scattering equations in a frame where o,, — 0o

and replace “24 = Y7 ! %z This choice allows to rewrite the last term in (4.4) as
Op,q =1 op

n—1
s .
(ep'eq)%C(l,Q,...,n) = (€p - €) E Sip E Clo,iy...,m). (4.18)
P i=1 s€{q,p}

w{1,2,...,i—1}

We could have applied the cross relation (4.17) with p and ¢ swapped, and the equality of
the resulting color-ordered gluon amplitudes follows from the BCJ relations [2],

n—1 n—1
Z Sip Z A(o,i,...,n) = Z Siq Z A(o,i,...,n) . (4.19)
=1 =1

o€{q,p} o€{p,q}
w{1,2,...,i—1} w{1,2,...,i—1}

Hence, we may as well symmetrize the above result in p and gq.

4.4 Amplitude relations for n gluons and two gravitons

By assembling the results from the previous subsections, (4.4) yields the following final
result for the two-graviton case

n—1
Apym(L, . nip, @)=Y (ep-2) (eq-2) AL ... iypyi+ 1, 5,¢,§ +1,...,n) (4.20)
1=i<j
n—1 s ( ) )
- Z { (€p-i) (€4-p) Z A(o,p,i+1,...,n) + % Z A(o,i,i+1,...,n) }
=1 oc{q} oe{a,p}

w{1,..., i}t w{1,..., i—1}

+ < q),

where the symmetrization over p and ¢ applies to both lines of (4.20). This result expresses
a two-graviton and n-gluon amplitude through (n+2)-point pure gluon amplitudes and
agrees with (1.4) after expanding the sum over shuffles. The result derived from the CHY
formula is valid in any dimension. The simplest non-trivial examples involve two and three



gluons, respectively,

Arym(1,253,4) = (e3 - kg)(eq - 1)A(1,2,3,4) + (eq - k3)(e3 - 21).A(1, 2,4, 3)
— (e3-m1)(€eq - 21)A(1,3,2,4) — s13(e3 - €4).A(1,2,4,3), (4.21)
Arym(1,2,3;4,5) = (e4 - x2) (€5 - k) A(1,2,4,5,3) + (e4 - x2) (€65 - 1) A(1,5,2,4,3)
+ (e4- 1) (€5 - 1) A(1,4,5,2,3) + (€4 - x2) (€5 - x2) A(1,2,4,5,3)
— (&4 - x1) (€5 - ka) [A(1,5,4,2,3) + A(5,1,4,2,3)]

+ %(64 ce5)[524A(1,3,5,4,2) — s144(1,2,3,5,4)| + (4 < 5), (4.22)

where gauge invariance under €, — p can be checked via BCJ relations [2] among the

A(...). In terms of the only BCJ-independent four-point amplitude \A(1,2,3,4), (4.21) can
be brought into the manifestly gauge invariant form

Apyni(1,2:3,4) = A(1,2,3,4) x {(63 Ka)(ea - k1) + ?(64 ks3)(es - k1) (4.23)
13

S
-2 (€3-k1)(ea- k1) — sa3(e3 - 64)} ,
513

and similar expressions can be found for Agynm(1,2,3;4,5) by reducing the right hand side
of (4.22) to a five-point BCJ basis such as {A(1,2,3,4,5),.4(1,3,2,4,5)}.

5 Three gravitons

We proceed to the amplitudes with three gravitons, where the relevant Pfaffian W,_3 is

given as
PfW,_3 = CppCyqCrr + | Cpp (&g - )(er - ((]7)2_ Sarleq &) + cye(p, g, r)}
L q,r
1 -
+ P (& - a)(eg-m)(er - p) = (& 7)(er - a)(eq -p)} (5.1)
1 -
S —— (Ep ’ Eq){spr(er ' q) - SQT(ET p)} + Cyc(p7Q7T):| )

Op,q0q,rOrp b

where cyc(p, ¢, r) instructs to add the two cyclic permutations (p,q,r) — (q,r,p) as well
as (p,q,r) — (r,p,q). As in the case of two gravitons, it is convenient to write Cy,, as

g, g
Copy=C + (€, q) —L%— + (¢, 7) —" 5.2
pp pp ( p ) TqpOpn ( p ) OrpOpn ( )

with C},, as given in (4.5) and an analogous splitting of Cy; and C,... Similar to the absence
of tensor structures (€, - ¢)(e; - p) in the two-graviton case, we note the vanishing of three
classes of terms in (5.1) given by

(p-@)eg-r)(er-p)s (& -(eq-P)e D), (& a)(eg-p)(er - x5) (5:3)

and their permutations in p, ¢, 7. The non-vanishing contributions to (5.1) may be organized
according to the contractions of polarization vectors and momenta. It turns out that there
are five such independent tensor structures, and we will discuss them one by one.
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5.1 Three-graviton contributions (e, - €4) (€, « q)

We begin with the term proportional to (e,-€;)(€,-q), where the corresponding o-dependence
stems from the first and the third line of (5.1),

SpqT n Spr
PfW,_3 =S P : (5.4)
(Ep'Eq)(Er'q) UT?QO-T»nO-p,q o-pvqo-q7,r0-p7r

In a frame Where O’n — 00, these two terms can be combined through a single scattering
equation U”’ + S Uq . Z? 11 ;;Ij]] In combination with an n-particle Parke-Taylor factor,
KK—rearrangernents similar to those in section 4 yield the SL(2, C)-covariant result

C(1,2,...,n)PfU,_3 _Zs]p Y Clogitl....n) (5.5)

(ep-€q)(€r-q)
p€a) oc{r,q.p}
w{1,2,...,5 -1}

in terms of (n+3)-particle Parke-Taylor factors.

5.2 Three-graviton contributions (€, : €4) (€, * ;)

We move on to tensor structures (e, - €4) (e, - ;) stemming from the end of the first line
of (5.1),
s 0j;
=P I (5.6)
(ep-€q)(er-xj) Op,q 04rOrj+1

PfW,_3

The techniques of section 4.3 for the Parke-Taylor factor C(1,2,...,7,7,j+1,...,n) yield

s
C(1,2,...,n)PfW,_ =2 0(1,2,...,5,rj+1,....n
( ) ey~ o2, (1, 3irsd )
{st Z Cloyi,i+1,...,5,rj+1,...,n) (5.7)
o€{q,p}

w{1,2,...,i—1}

n—1
+ Spr Z C(a,r,j—i—l,...,n)—i—ZsiP Z C(a,z‘,z’—l—l,...,n)},

oc{q,p} i=j+1 oe{q,p}
w{1,2,....5} w{l,....5,mj+1,...i—1}

where the hidden symmetry under p <+ g can be checked via BCJ relations.

5.3 Three-graviton contributions (ep - (¢ + 7)) (€q - 7)(&r - ;)

We jointly discuss the tensor structures (e, -q)(€eq-7)(€r-2;) and (e, -7)(€q-7) (€& - ;) which

arise from Cpy, Cyq C

rr

pu Ciinl
PfU,_; = nn A (5.8)
(ep-d)(egr)(erzj)  TpqOpnOqr Ojr0rj+1
0—2 0’ . .+1
PfU,_3 - i J2J . (5.9)
(ep-r)(eqr)(€r-xj) Op,rOpnTqrOqn 04,r0r,j+1
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The Schouten identity o, ,0p4 = 07p0Ong — 0rq0n,p and the frame-choice o, — oo are
helpful to combine these expressions with a Parke-Taylor factor,

C(1,2,...,n)PfW,_3 = Y Clorj+l,...,n) (5.10)

(ep-q)(eqT)(€r-xj)

C(l, 2, ce ,n)Pf\I/r:'g,

= Z Clo,r,j+1,....n)+(p+q) . (5.11)

oe{p,q}
w{1,2,...,5}

(epr)(eq-r)(€r-z;5)

Distributing the two terms in (5.11) among two permutations of (5.10) yields six terms of

the form
C(1,2,...,n)PfW,_3 = Y Clorj+l,....n). (5.12)
(ep-(q+r))(eqr)(er-xj) veipa}
wq{1,2,..., i}

5.4 Three-graviton contributions (e, - p)(€p - ;) (€q * x5)

The tensor structure (e, - p)(ep - #;)(¢q - z7) due to Cp Cp, Cy, is accompanied by

_ _9pn 0i,i+104,j+1 (5.13)

Pfw,_5
(erp)(ep-zi)(eqxj)  OprOrm OipOpit104,90q,j+1

There are three cases to consider for the relative positions of ¢ and 7,

Z Clo,p,i+l,....4,¢,5+1,....,n) : i <]

oe{r}

C(1,...,n)Pf¥, 3 = e
( ] - - > Clopitl,....n)  ti>j
oe{r}
w{1,...,5,q,5+1,..., i}
(5.14)
as well as the case where 7 = 7,
C(l,...,n)Pf¥,_3 :—Z Clo,p,q,j+1,..., Z Clo,p,j+1,...,n).
(6T'p)(€P'Zi)(€q'mi) oe{r} crE{'r
w{1,2,..., i} w{1,2,...,i,q}
(5.15)

Note that summing over all choices of 4,7 combines (5.14) and (5.15) to

n—1
O- .
Cz/mcé‘(qc( .,n)apgz—{ Z (ep - zi)(€q - ) Z C(o,p,i+1,...,n)
prenn 1=j<i aoem
w{l,....5,q,5+1,..., i

n—1
+ Z (€p - i) (€q - xj) Z C(U,p,i—l—l,...,j,q,j+1,...,n)}. (5.16)

1=i<j se{r}
w{1,2,...,i}

5.5 Three-graviton contributions (e, - z;)(eq - ;) (€ - k)
Finally, the term Cy, Cy, Cy,. contributes tensor structures (e,-x;)(eq-x;)(¢, - 1) along with

PrU,_q _ 04,i+1094,j+10k k41 ’ (5.17)

(epwi)(eq-xj)(er-ak) OipO0pi+105,q0q,j+10krOr k+1

— 12 —



where clashes among the summation variables 4, j, k require applications of the Schouten
identity:
C(l,...,n)PfW,_3 (5.18)
( I3 eiermieran)
C(L,2,....0,p,i+1,...,5,q, 5+, .. ..k, k+1,....n) : i<j<k
=< C(1,2,....4,p,q,i+1,....k,r k+1,...,n)+ (pq) : i=7<k

C(1,2,...,i,p,q,7,i+1,...,n) + perm(p, q,r) ci=75=k
The above cases and their permutations in p, ¢, can be combined to
n—1
ClyClyCLC(L.on) = > (ep-x)(eq - x))(er - ) (5.19)
1=i<j<k

xC(1,2,...,4,p,i+1,...,5,q,5+1, ..., k,r, k+1,...,n) + perm(p,q,r) .
5.6 Amplitude relations for n gluons and three gravitons

Assembling all the terms from the above sections 5.1 to 5.5 yields the following amplitude
relation

n—1
AEYM(1727"'>n;p7Q7T):(6p'€q)(6T'Q)ZSjP Z A(O’,j,j—Fl,...,?’L)
j=1

oe{r,q,p}
1,2,...,5

w{1,2,..., j—1}
(€p - €q) = J - o
— TZ(er-zj) Zsip Z A(oyiit+1,...,5,m7+1,...,n)
]:1 i=1 o€{q,p}

w{1,2,...,i—1}

n—1
s Y Alortln)+ D sy A(a,i,i+1,...,n)}

oc{q,p} i=j+1 oe{aq,p}
wi{1,2,...,5} wi{1,...,45,75+1,...i—1}
n—1
— (er -p){ S (g-wi)eg-z) Y. Alopitl,...,n) (5.20)
1=5<i oef{r}

W{L,ee,5,@55 415000}

n—1
+ > (e mi)egray) Y .A(J,p,i—i—l,...,j,q,j—i—l,...,n)}
1

== A
n—1
+ Y (g mi)eg ) w) AL, i il foq Ly kL L)
1=i<j<k
n—1
+ (€P ’ (Q+T))(€q 'T) Z(GT xj) Z A(a,r,j—i—l,...,n) +perm(p7 q, T)7
=R,

where the symmetrization over the three gravitons with momenta p, ¢, r applies to all the
lines. The simplest non-trivial example of (5.20) involves two gluons and three gravitons

AEYM(L 2: 3,4, 5) = (63 . 3?1)(64 . 3?1)(65 . $1)A(1, 3,4,5, 2) + (65 . k‘g)(ﬁg . 371)(64 . 3?1)./4(1,4,2, 5,3)
—(64 : (k:s + k5))(65 : ks)(ﬁs : $1)~A(1, 2,4,5, 3) + (63 : 65)(64 : k5)813¢4(1, 2,4, 5>3)

1
+§(e4 ce5)(e3 - 1) [534A(3,1,2,5,4) — s14A(1,3,2,5,4)] + perm(3,4,5), (5.21)
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where gauge invariance under €, — p can be easily checked by casting all partial amplitudes
on the right hand side into a two-element BCJ-basis.

6 Four and more gravitons

It is straightforward to extend the results in the previous sections to the case with four
gravitons and a single-trace contribution of gluons. As in the case of two and three gravi-
tons, we again write Cj,, as

[0} ag Utn
Cop = Cpp+ (ep- @) —"— +(ep 1) —— + (- t) ———, 01

with Cj,, as given in (4.5) and an analogous splitting of Cyy, Cy and Cy. Spelling out the
complete four-graviton Pfaffian of W,—4 [50] is a tedious but straightforward generalization
of (5.1). Using these definitions we can proceed just as in the three-graviton case and
identify the following 16 permutation independent tensor structures that do not cancel:

CopCaqler-a)(erp)  Cpplegt)(erp)(erp)  Chlega)lepa)  (6eg)lerer)
(epe)(egt)(erp)  Cpplegp)erp)(ep)  Cpplere)(egp)  CppChqlerer) 6.2)
(eg-e)(ept)(erp)  Cpplegr)(et)(ep)  CpChilegr)(erp)  CpCrChylegp)
(ep-er)(eqp)(er-p)  Coglep@)er-p)(erp)  CppChilegp)(erp)  CppCoyCrrChy

The previous techniques and results for dealing with two and three gravitons can be recycled
to relate all the above tensor structures to YM subamplitudes, the expressions being of
course too long to be displayed in this work. The most nontrivial case ~ (e, - €;) (€, - €) is
discussed in appendix A.

Also in cases with any number of gravitons, SL(2,C)-invariance requires the CHY
integrands to be built from products of Parke-Taylor factors and cross-ratios which possibly
lead to higher-order poles in o; ;. According to [71], any such CHY integrand can always
be reduced to linear combinations of single-cycle Parke-Taylor factors which signal the
single-trace color ordered amplitudes in YM. Hence, it follows that the above procedure
can in principle be generalized to any number of gravitons.

7 Towards multitrace contributions

In the following two sections, we provide an indication of how the techniques of this work
also apply to multitrace contributions to EYM amplitudes. Note that these results apply
to EYM extended by B-field and dilaton couplings [50, 51] reflecting their string theoretic
underpinning. While an exhaustive discussion is relegated to future work, we will consider
the two particularly simple examples of double-trace amplitudes involving gluons only as
well as those with one single graviton.

In order to lighten the notation, we strip off the ubiquitous n-particle Pfaffian from
the subsequent n-gluon integrands

EYM(Q

{7"71 T} .,T|7"+17...,

) {EXLMT}( 2 -,T’T"i_l?'"an)'Pf,\IJn({kaye,O'}) (71)
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and focus on the reduced integrands 7, {E}?\ET} on the right hand side. The subscript {r,n—r}
refers to having r and n—r gluons in the first and second trace, respectively. Similarly, the
reduced double-trace integrands 7, {EEKIT} 4 for n gluons and one graviton to be discussed
in section 8 are understood to exclude the overall (n+1)-particle Pfaffian.

7.1 Double-trace amplitude relations without gravitons

The CHY integrand for double-trace contributions to gluon amplitudes is given by? [50, 51]
j{E};l\fr}(l,Q, |l n) =810 . C(1,2, ..., ) C(r+1,. .., n) (7.2)

with multiparticle Mandelstam variables

r

S12.r = Z (k‘z . k]) . (73)

1<i<j

Using cross-ratio identities [71] similar to (4.17), one can rewrite the product of Parke-
Taylor factors in (7.2) in terms of a single n-particle Parke-Taylor factor.’ This generalizes
the procedure of section 4.3 and reduces any double-trace subamplitude to linear combi-
nations of their single-trace counterparts. In the remainder of this section, we will derive
the following all-multiplicity formula:

r—=1 n
Apym(L,2,or el ) =)0 S (-1 sy Y > Alpiij, L)

i=1j=r+2 pe{1,2,...,i-1}  TE{j+1,j+2,...,n}
w{r—1,r—2,..,i+1} w{j—1,j—2,...,r4+2}

(7.4)
For a small number of gluons in the second cycle {r+1,...,n}, say n —r = 2,3,4, the
general expression (7.4) simplifies to
r—1 )
AEYM(1727"'7T‘p7 Q) = Z(_l)T_lSiq Z A(pviaq7p7 T) (75)
i=1 pe{1,2,..., i—1}
w{r—1,7r—2,..., i+1}
r—1 )
AEYM(]-?Q,"' 7r|p7Q7t) = Z(_l)T_z Z [SiqA(pviaqvtapv 7’) - sitA(pviatv(va ’f')}
i=1 pe{1,2,...,i—1}
w{r—1,r—2,...,i+1}
(7.6)
r—1 )
AEYM(laza"'ar|p7Qatau) = Z(_l)r—z Z [SiqA(pvia(Ltauvpy T) +SiuA(pvivuvtanpv 7")
=l Wl
- SitA(p7 7;’ t7 q,u,p, T) - SitA(p7 7;’ t7 u,q,p, ’I”)} (77)

*We are following the normalization conventions of [51].

5The problem of evaluating CHY integrals involving multiple Parke-Taylor factors has been actively stud-
ied in the recent literature [71-73]. The string-theory analogue of this problem where scattering equations
translate into integration by parts is relevant to reduce tree-level amplitudes of the open superstring [11, 12]
and the open bosonic string [74] to an (n — 3)! basis of worldsheet integrals.
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with lowest-multiplicity examples
Apym(1,2]3,4) = —s14.A(1,2,3,4)

Apym(1,2,3]4,5) = s154(2,1,5,4,3) — s25.4(1,2,5,4,3)
Arym(1,2,3,415,6) = so6 [.A(l, 3,2,6,5,4) + A(3,1,2,6,5, 4)]

—516A4(3,2,1,6,5,4) — s36.4(1,2,3,6,5,4) (7.10)
AEYM(I, 2,3 ’ 4.5, 6) =s154(2,1,5,6,4, 3) — 816A(2, 1,6,5,4,3)
— 525./4(1, 2,5,6,4, 3) + SQGA(l, 2,6,5,4, 3) . (7.11)

Cyclicity within the individual traces and symmetry under exchange of the traces are non-
manifest in these expressions but can be checked to hold via BCJ relations. Note that
the integrands of open-string one-loop amplitudes have been organized in terms of similar
combinations of YM trees [75] — see in particular appendix B of [76]. Hence, the above
relations are expected to follow conveniently from the low-energy limit of one-loop diagrams
of the type-I superstring.

7.2 The derivation

The derivation of (7.4) is based on a more general form of the cross-ratio identity (4.17) [71],

O' ag;
= Sr4+1,r42,...,n = Z Z A . (712)

O' 102
i=1 j=r+2 4,jO0rr+1

It holds in the presence of momentum conservation as well as scattering equations and will
be applied to the CHY integrand (7.2) for different choices of the sets {r+1,7+2,...,n}:

e For a cycle of length two, setting (r+1,n) — (p,q) yields

r—1

1 i
TEN,2, . r pg) = —C(1L,2,. 1) x —— > sig— (7.13)
Opq ;=  iqOrp

r—1
= Zsz‘q(—l)rii Z C(p7i7Q7p7r)7
=1

pe{l1,2,...,i—1}
wi{r—1,...,i+1}

which translates to the amplitude relation (7.5). Here and in later cases, the numera-
tor factor o;, in the first line has been canceled after expanding the Parke Taylor fac-

tor C(1,2,...,r) of the r-particle cycle in a KK-basis of C(...,7,7) ~ o; o See (4.11).
e For a cycle of length three, setting (r+1,r+2,n) — (p, q,t) yields
1 ! Oqp0i
JEYM (1 orlpgt)=—C(1,2,...,r) x —— <s- P q<—>t>
3y (1, \ ) ( ) P at,p; g o (g4+1)

r—1
Y [siuClpsisat,p,r) = suClpyist,q,por)], (7.14)

:1 pe{l,2,..., i—1}
w{r—1,..., i+1}

.
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which translates to the amplitude relation (7.6). The numerator factor o,, and its
image under (g <> t) have been canceled against the three-particle Parke-Taylor factor

(Jp,qaq,tat,p)_l

For a cycle of length four, setting (r+1,r7+2,r4+3,n) — (p,q,t,u) yields

r—1
EYM 94,p94,
Ty (4, .,r\p,q,t,u):—C(l,Q,...,T)C(p,q,t,u)z<siqgjj(7:;+(q<—>t,u)>
i:l ) b
r—1 .
=D (=07 [si4Clpyis st s p, ) + 5iClpy iy ust, g, p, 1) (7.15)
i=1 p€{1,2,...,i—1}

W{r—1,...,i+1}
- Sitc<p7 i? tv q,u,p, T) - Sitc<p7 i? tv u,q,p, T)] )

which translates to the amplitude relation (7.7). The second term ~ s; gt fg’ ~ in the

first line requires the rearrangement C(p, q,t,u) = —C(p,t,q,u) — C(p,t, u, q) of the
four-particle Parke-Taylor factor to cancel the numerator ~ oy .

For two cycles of arbitrary length, we obtain

jgnYnMr}( oo rrl oo n)==C(1,2,...,r)C(r+1,... XZ Z UJ’TZIJ”
i=1j=r+2 by Orrtl
r—1 n
= (1) sy > > Clpi g, r+1,7), (7.16)
i=1 j=r+2 pe{1,2,...,i—1} TE{j+1,...,n}

w{r—1,..,i+1} w{j—1,..,r+2}

which translates to the most general double-trace amplitude relation (7.4). The
Parke-Taylor factor C(r+1,...,j,...,n) has been expressed in a KK-basis of
C(...,j,r+1) to cancel 0,41 in the numerator.

7.3 An alternative representation

Similar to the observations in section 4.2, KK-relations (4.11) give rise to a variety of equiv-

alent representations of double-trace amplitude relations. Repeating the above rewritings

of (7.2) in a frame where o,, — 0o leads to the following alternative representation of (7.4):

r—1 n
AEYM(LQ"-'7T|T+]~7"'7n) :72 Z (71)71_[5]‘5
j=1t=r+2

Xy > Ao g1, (7.17)

re{rt2,.. -1} oc{l,2,....j—1}
w{n,n—1,..., 441} wi{r+1,7,£}
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Note that the sets 7 from the first sum over shuffies enter the summation range of . The
special cases of (7.17) with a small number of gluons in one of the cycles,

AEYM(LQa s T |p7 Zsjq Z -'4 0 ] ]+1 ) (718)

oe{p,q}
w{1,2,....j—1}

AEYM(1727"')T|p7Qa Zsjq Z A Uj j+1 )_(th) (719)

0€{pt q}

wq{1,2,..., j—1}
r—1
AEYM(1,2,--',T|p7q7t7U):Z{Sjt Z A(U7j7j+17"'7r) (720)
j=1 oe{p,q,u,t}

w{1,2,....5—1}

— Sjq Z A(G,j,j+1,...,r)}+(q<—>u),
oe{pu,t,q}
w{1,2,....5—1}

are related to (7.5) to (7.7) by a sequence of KK relations.

7.4 A double-trace counterpart of BCJ-relations
While BCJ relations among single-trace amplitudes can be written in the form [77]

n—1

> (p-m)A,2,.. . Lpl+1,...,n) =0, (7.21)

=1

double-trace amplitudes satisfy a modified version of this relation,

r—1
0= Z(p'xl)AEYM(1,2,...,l,p,l+1,...,T|T+1,...,n)
=1
n—1
+ Y (pra)Apym(L,2, |l Lp 1L ) (7.22)
l=r+1
r—1 n
- (p : .’L‘r) Z Z (_)i_jsij Z Z A(T> UviajaTa T+17p) s
=1 j=r+2 oe{1,2,...,i—1}  1€{j—1,7—2,...,r+2}

w{r—1,7r—2,...,i+1}  w{j+1,5+2,...,n}

with a single-trace admixture in the last line. For small numbers of particles, (7.22) spe-
cializes to

0= (p z1)Aeym(1,p,213,4) + (p- z3)Agym(1,2|3,p,4) + (p - x2)s144(2,1,4, 3, p) (7.23)
0=(p-21)Arym(1,p,2,314,5) + (p- x2)Arym(1,2,p,314,5) + (p- 24) Arym(1,2,3]4,p,5)

+ (p- x3)[5254(3,1,2,5,4,p) — s15A(3,2,1,5,4,p)] (7.24)
0= (p-z1)Aeym(1,p,2(3,4,5) + (p- x3)Agym(1,2]3,p,4,5) + (p - ¢4) Apym(1,2]3,4,p,5)

+ (p-w2)[514A(2,1,4,5,3,p) — s15A4(2,1,5,4,3,p)] . (7.25)

Any instance of (7.22) can be verified by converting the double-trace amplitudes to single-
trace expressions via (7.4) and expanding the latter in a BCJ basis. In its general form,
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however, (7.22) remains conjectural at this point. All cases involving A(...) of multiplicity
n < 7 have been checked in generic dimensions, and we additionally performed numerical
checks in four-dimensional MHV helicity configurations for up to nine points.

8 Double-trace amplitude relations with one graviton

Following our discussion in the previous section, we shall now present the double-trace con-
tributions to EYM amplitudes Agynm({1,2,...,7|r+1,...,n}, p) with one graviton labelled
by {€p, kp = p}. As will be derived in the remainder of this section, these mixed amplitudes
boil down to their purely gluonic counterparts through the all-multiplicity formula

r—1
Apym({1,2,...,7|r+1,...,n},p) = Z(ep‘:cl).AEYM(l,Q,...,l,p,l+1,...,r|r+1,...,n)
=1
r—=1 n
- Ep er Z Z JS] Z Z A(Ta UvivjvTa 7“—|—1,p)
= F’"” wir sy TS
n—1
+ ) (- a) Apym(L,2, .. v P41, Lp, I+, n), (8.1)
l=r+1

with both single-trace and double-trace contributions on the right hand side. At low
multiplicity, (8.1) specializes to

A (11,213,4},p) = (- 21) Awyaa (1, ,2|3,4) (8.2)
+ (61) 1'3) AEYM(la 2 | 37p7 4) + (ep : 'TQ) S14 A(2a 154737p>

Apym({1,2,3]4,5},p) = (p - 1) Arym(1,p,2,3|4,5) + (6 - 22) Agym(1,2,p,3[4,5) (8.3)
+ (ep - x4) Apym(1,2,314,p,5) + (ep - x3) [525 A(3,1,2,5,4,p) — s15.A(3,2,1, 5747]9)]

Apym({1,2]3,4,5},p) = (€ - x1) Apym(1,p,2]3,4,5) + (& - x3) Arym(1,2|3,p,4,5) (8.4)
+ (ep - xa) Apym(1,2]3,4,p,5) + (e - 2) [814 A(2,1,4,5,3,p) — s15.A(2,1,5, 4, 3,p)]

Note that the zero-graviton double-trace EYM amplitudes in (8.1) can be further reduced
to a basis of single-trace amplitudes in YM by using the relation (7.4) from the previous
section.

8.1 The integrand

The above formula (8.1) originates from the CHY integrand [51] for EYM double-trace
amplitudes with Tr; = {1,2...,r} and Tro = {r+1,...,n}:

jgiMr}+1({172,...,r\r—f—l,...,n},p) =C(1,2,...,r)C(r+1,...,n)

) [(z’“>_ ko) [y oa) (s ko) (5o

ag a. g
i=1 icTr; P icTry Jop icTr; Pt icTry 7P

—C(1,2,...,7)C(r+1,. [Z M Fil

g;
=1 j=1+1 ipIp.j

+ s12..r Cpp . (85)
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In proceeding to the last line we have introduced a shorthand for the tensor structure

Fij = (ki -p)(kj - p) — (ki - €p) (ks - p) , (8.6)

which is built from the linearized field-strength pte; — p” ey and therefore gauge invariant.
In order to spell out the CHY integrand (8.5), one of the traces has to be singled out in the
general formula of [51]. That is why the symmetry {1,2,...,r} <> {r+1,...,n} under ex-
change of the color traces is obscured in (8.1). Verifying this hidden exchange symmetry for
explicit examples such as (8.2) to (8.4) serves as a stringent consistency check of our results.

Similar to the strategy in the previous sections, the goal is to incorporate the o-
dependence from the square bracket of (8.5) into the Parke-Taylor factors C(1,2,...,7)

and C(r+1,...,n). Repeating the techniques from earlier sections, one can easily arrive at

jgzlhfr}+l({1,2,...,r|r+1, ,n},p) = Z }"”ZC 2, ., Lp 41 ) C(r+1,...,n)
1=i<j

+512___T{ Z e -21)C(1,2,...,L,p 41, ...,r)C(r+1,...,n) (8.7)

+ (ep-xl)C(l,Q,...,r)C(r—i—l,...,l,p,l—l—l,...,n)
Orr+1
+ (ep-acr)C(l,?,...,r)C(r—!—l,...,n)} .

e The factors of ——=.— along with Fj; only interact with the legs in C(1,2,...,7). KK
relations can be apphed to expand the latter in a basis of C(...,1,7) Wthh paves the
way for the insertion of the graviton leg and leads to the first line of (8.7).

e In the usual expansion of Cy,, for a single graviton,

r—1
Oii41 O4i41 Orr41
O = (e 2 =24 T () Ty g0 O (g
i—1 TipOpi+tl T Ti,pTp,i+1 Or,pOp,r+1
all of the terms except for the last one conspire with one of C(1,2,...,r) or

C(r+1,...,n) to yield an insertion of the graviton leg. This builds up the second
and third line of (8.7).

e The last term in (8.8) requires special attention since
C(1,2,...,7) %C(rqtl .,n) does not relate to products of Parke-Taylor
factors in an obvious manner. In the next section, we fill fix its net contribution to

the amplitude relation (8.1) indirectly by imposing gauge invariance.

8.2 From the integrand to amplitudes

In contrast to the simple conversion rule C(1,2,...,n) — A(1,2,...,n) for single-
trace amplitudes under the CHY measure, the products of Parke-Taylor factors
n (8.7) require an additional Mandelstam variable si2 ,.C(1,2,...,7)C(r+1,...,n) —
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Apym(1,2,...,7|r+1,...,n) to yield double-trace amplitudes via (7.2). In the third line
of (8.7), the prefactor of sj2_, is manifestly compatible with the partition of legs among
the Parke-Taylor factors, but the first two lines require a more careful analysis. Leaving
the overall C(r+1,...,n) aside, we have

_ Z }"WZC 2, Lpd+l,..7) (8.9)

1= 1<]
= Z [(p- ) (ep-a1) — (€ - xn)(p-21)] C(1,2,..., L, 41, ...,7),

after rewriting (8.6) in terms of (¢y-z;). This can be straightforwardly proven by considering
each Parke-Taylor factor in the sum, for instance C(1,...,l,p,l+1,...,7), and checking that
the €,-dependent coefficient of this particular Parke-Taylor factor is identical on both sides
of the equation. We can take advantage of (8.9) to rearrange the first two lines of (8.7):

r j—1 r—1
=D FD CL2, L Lp L) sz ey (epa) C(L, L, Lp, I+, ) (8.10)
1=i<j  I=i =1
r—1 r—1 1
= Sp7]_2mTZ(€p ) C(1,....Lp,l+1,. (ep-xT)ZZspj C(L,....0,pl4+1,....7r) .
=1 =1 j=1

With (8.10) and the third line of (8.7), we arrive at the following partial answer for the
desired amplitude relation

1

r

Apym({L,2,...,r[r+1,....n},p)=> (& -x) Agym(l,....Lp, I+1,...,r|r+1,...,n)
=1
n—1
+ Y (ep ) Apym(L. o[ Lp L n) + (6 ) (), (8.11)
l=r+1

where the unevaluated coefficient of (e, - x,) stems from the fourth line of (8.7) and the
last term of (8.10). Although the associated o-dependences can be similarly rearranged
via scattering equations, here we proceed with an alternative method by imposing gauge
invariance under €, — p. Hence, the ellipsis in (8.11) along with (e, - ;) can be inferred
as the unique gauge invariant completion

1
AEYM({17 27 A 7’r ’ T+17 e 7n}7p) }(ep'z‘l‘) = _(p . xr)
r—1
> (- x) Apym(L,2, . Lp, I+, |, n) (8.12)

=1

n—1
+ Z (p-x) Aeym(1,2,. .,r]T—H,...,l,p,l—i—l,...,n)}

l=r+1
r—1
Z .o
Z JSZ] Z Z .A(T, 0,1,7, T, T+1ap) .
1= 1] 7‘—|—2 oce{l1,2,..., i—1} 7re{j—1,..., r+2}

w{r—1,..., i+1} w{j+1,..., n—1,n}

— 21 —



In proceeding to the last line, we have used the relation (7.22) between gluon amplitudes
of single- and double-trace type to cancel the spurious pole as (p - x,) — 0. Hence, (8.11)
and (8.12) complete the derivation of the general amplitude relation (8.1).

9 Conclusion and outlook

In this work, we have presented new relations to reduce EYM amplitudes involving up
to three gravitons and up to two color traces to partial amplitudes of pure YM theories.
From their derivation in the dimension-agnostic CHY formalism, the results are valid for
external bosons in any number of spacetime dimensions. Moreover, the CHY formula for
gluonic YM amplitudes from a Pfaffian is supersymmetrized® by the open-string correlators
in pure-spinor superspace [11, 46]. Hence, our results extend to any superamplitude which
descends from ten-dimensional SYM coupled to half-maximal supergravity.

This work raises a variety of follow-up questions: most obviously, it would be desirable
to extend the amplitude relations to any number of color traces and graviton states
potentially uncovering a recursive structure. Another interesting direction is to consider
the generalization of such relations at loop level. It is actually easy to see that the
simple identity (1.1) should be violated at loop level for instance by considering the
simplest one-loop amplitude in four dimensions: the four-point all-plus helicity amplitude.
For this particular case, we see that the right hand side of (1.1) is in fact not gauge
invariant. This follows either from the explicit form of four-point all-plus helicity gluon
amplitude at one loop [78] or from the known fact that the amplitudes generated from
the higher-dimensional term F* [75, 79] do not obey the BCJ relations. One can draw
the same conclusion by considering the IR divergent part of loop amplitudes. Finally, it
would be interesting to re-derive the results of this work from the heterotic string and
compare the additional string corrections with the open-string results of [10, 23, 24]. One
might speculate about new connections between the tree amplitudes among gluons and
gravitons in different string theories along the lines of [74, 80].
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A Further details on the four-graviton case

In this appendix, we provide some more details for the special case of four gravitons in
section 6. Specifically we present the key steps to express the most nontrivial term in (6.2)
along with (e, - €;)(€, - €) in terms of (n+4)-particle Parke-Taylor factors.

5This has been established in [66] by comparing the vertex operators and their operator product expan-
sions in the pure-spinor incarnation of the CHY formalism [65] and the open pure-spinor superstring [40].
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For this tensor structure, the accompanying dependence on the o-variables takes the

form,
Spg S S 1 S S "
pq °rt pq tp tq ti
C(1,2,...,n)—=2L =7 :C(1,2,...,n)2<+—|—2), (A1)

05,0, OhqOrt \ Ot Ot — Ot
g it P,q YT \ﬁ \;q/ i—1 Y

~——

Ar Az As

where the sum of terms { A1, A, A3} inside the parenthesis results from using the scattering
equation with respect to the particle labeled ¢ to rearrange the term % We note that
Aq is related to As via p <> ¢. So we just discuss the simplification of the last two terms
below.

Second term Aj: as in our previous discussions we will choose a frame ¢, — oo, for

which the Parke-Taylor factor in (A.1) is denoted as C(1,2,...,7). Using this frame and

the scattering equation for particle p in %, the As-contribution to (A.1) can be written as,
p,q

n—1

Spg S s s s S;

pq ~rt tq rp tp Jp -

C(1,2,...,n)—— 5 3 —><++E '>C(1,2,...,n), (A.2)
OpqOrt A2 OrtOtqOpqg \Orp Otp = TOjp

NN

b, q
B1 B v
Bs

where the first term B; can be identified as s¢q ., C(r,t,p,q) C(1,2,...,n) and rewritten

in terms of (n+4)-particle Parke- Taylor factors via (7.15). Moreover, by repeated use

of the partial-fraction identity =1 4+ _1 -, the third term Bjs can also be

Oq bo'b Oa,cO0b,c Ta,b0a

simplified to

C(1,2,...,n) S”q o

s = 514 Z Sjp Z Clo,7,j+1,...,n) . (A.3)

oe{rt,q,p}
w{1,2,....j—1}

Finally, the second term B> can be addressed using the identity

n—1
ag.
$pqriC(1,2, ... ,n)ﬁC(t,p, Q)= (z-1)C(L2, ... .Lrl+1,....n)C(t,p,q) (A4)
n,rvr, =1
n—1 )
+Y (= (siqC(n,a,ivq,p,t,r)*sz-pC(n,a,i,p,q,t,r)),
=1 c€{1,2,...,i—1}

w{n—1,...,i+1}

which is implicit in the analysis of section 8.2. The second line is already of the desired
Parke-Taylor type, and the products in the first line can be brought into the same form
via (7.14).

Last term Ag: in a frame where o, — 00, the techniques of section 4.3 can be applied
to the last term As in (A.1),

S S

pq °rt

C(1,2,...,n)—5—
O'pqO't

—S”qzsm Y Clovisitl,...,n). (A.5)

Az pq =1 oce{r,t}
w{1,2,...i—1}
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Any term on the right hand side is a product of the form C(p,¢)C(...) and can then be
written in terms of single Parke-Taylor factor of length n+4 via (7.13). These are all the
terms needed to simplify the contribution ~ (€, - €4) (€ - €) to the four-graviton case.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] H. Kawai, D.C. Lewellen and S.-H. Henry Tye, A relation between tree amplitudes of closed
and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

[2] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes,
Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[3] Z. Bern, T. Dennen, Y.-T. Huang and M. Kiermaier, Gravity as the square of gauge theory,
Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] INSPIRE].

[4] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy
of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

[5] Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop
integrands and ultraviolet divergences of gauge theory and gravity amplitudes,
Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].

[6] Z. Bern, S. Davies, T. Dennen and Y.-T. Huang, Absence of three-loop four-point divergences
in N =4 supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423] INSPIRE].

[7] Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet properties of
N = 4 supergravity at four loops, Phys. Rev. Lett. 111 (2013) 231302 [arXiv:1309.2498]
[INSPIRE].

[8] Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in N =5 supergravity
at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].

[9] N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory
amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INnSPIRE].

[10] S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211
[INSPIRE].

[11] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude I.
Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].

[12] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude
II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461
[arXiv:1106.2646] [INSPIRE].

[13] B. Feng, R. Huang and Y. Jia, Gauge amplitude identities by on-shell recursion relation in
S-matriz program, Phys. Lett. B 695 (2011) 350 [arXiv:1004.3417] [INSPIRE].

[14] Y.-X. Chen, Y.-J. Du and B. Feng, On tree amplitudes with gluons coupled to gravitons,
JHEP 01 (2011) 081 [arXiv:1011.1953] [INSPIRE].

[15] Y.-X. Chen, Y.-J. Du and B. Feng, A proof of the explicit minimal-basis expansion of tree
amplitudes in gauge field theory, JHEP 02 (2011) 112 [arXiv:1101.0009] INSPIRE].

— 24 —


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(86)90362-7
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B269,1%22
http://dx.doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3993
http://dx.doi.org/10.1103/PhysRevD.82.065003
https://arxiv.org/abs/1004.0693
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0693
http://dx.doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0476
http://dx.doi.org/10.1103/PhysRevD.85.105014
https://arxiv.org/abs/1201.5366
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5366
http://dx.doi.org/10.1103/PhysRevLett.108.201301
https://arxiv.org/abs/1202.3423
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3423
http://dx.doi.org/10.1103/PhysRevLett.111.231302
https://arxiv.org/abs/1309.2498
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2498
http://dx.doi.org/10.1103/PhysRevD.90.105011
https://arxiv.org/abs/1409.3089
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.3089
http://dx.doi.org/10.1103/PhysRevLett.103.161602
https://arxiv.org/abs/0907.1425
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1425
https://arxiv.org/abs/0907.2211
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2211
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.023
https://arxiv.org/abs/1106.2645
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2645
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.022
https://arxiv.org/abs/1106.2646
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2646
http://dx.doi.org/10.1016/j.physletb.2010.11.011
https://arxiv.org/abs/1004.3417
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3417
http://dx.doi.org/10.1007/JHEP01(2011)081
https://arxiv.org/abs/1011.1953
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1953
http://dx.doi.org/10.1007/JHEP02(2011)112
https://arxiv.org/abs/1101.0009
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0009

[16]

[17]

[18]

[19]

[20]

C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace
and components, JHEP 03 (2016) 097 [arXiv:1510.08846] [INSPIRE].

K.G. Selivanov, SD perturbiner in Yang-Mills + gravity, Phys. Lett. B 420 (1998) 274
[hep-th/9710197] [INSPIRE].

K.G. Selivanov, Gravitationally dressed Parke-Taylor amplitudes,
Mod. Phys. Lett. A 12 (1997) 3087 [hep-th/9711111] [NSPIRE].

Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter,
Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].

M. Chiodaroli, M. Giinaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2
Mazwell-Finstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081
[arXiv:1408.0764] [NSPIRE].

M. Chiodaroli, M. Giinaydin, H. Johansson and R. Roiban, Spontaneously broken
Yang-Mills- Einstein supergravities as double copies, arXiv:1511.01740 [INSPIRE].

M. Chiodaroli, Simplifying amplitudes in Maxwell-FEinstein and Yang-Mills- Finstein
supergravities, arXiv:1607.04129 [INSPIRE].

S. Stieberger and T.R. Taylor, New relations for Finstein- Yang-Mills amplitudes,
Nucl. Phys. B 913 (2016) 151 [arXiv:1606.09616] [INSPIRE].

S. Stieberger and T.R. Taylor, Disk scattering of open and closed strings (I),
Nucl. Phys. B 903 (2016) 104 [arXiv:1510.01774] [INSPIRE].

L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].

J.M. Henn and J.C. Plefka, Scattering amplitudes in gauge theories,
Lect. Notes Phys. 883 (2014) 1 [INSPIRE].

H. Elvang and Y.-T. Huang, Scattering amplitudes, Cambridge University Press, Cambridge
U.K. (2015) [arXiv:1308.1697] [INSPIRE].

J.M. Drummond and J.M. Henn, All tree-level amplitudes in N =4 SYM,
JHEP 04 (2009) 018 [arXiv:0808.2475] [INSPIRE].

J.M. Drummond, M. Spradlin, A. Volovich and C. Wen, Tree-level amplitudes in N = 8
supergravity, Phys. Rev. D 79 (2009) 105018 [arXiv:0901.2363] INSPIRE].

R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in
Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the
N =4 super Yang-Mills S-matriz, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097]
[INSPIRE].

N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?,
JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion relations, generating functions and
unitarity sums in N =4 SYM theory, JHEP 04 (2009) 009 [arXiv:0808.1720] nSPIRE].

L.J. Dixon, J.M. Henn, J. Plefka and T. Schuster, All tree-level amplitudes in massless QCD,
JHEP 01 (2011) 035 [arXiv:1010.3991] [iNSPIRE].

J.L. Bourjaily, Efficient tree-amplitudes in N = 4: automatic BCFW recursion in
Mathematica, arXiv:1011.2447 [INSPIRE].

— 25 —


http://dx.doi.org/10.1007/JHEP03(2016)097
https://arxiv.org/abs/1510.08846
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08846
http://dx.doi.org/10.1016/S0370-2693(97)01514-1
https://arxiv.org/abs/hep-th/9710197
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710197
http://dx.doi.org/10.1142/S0217732397003204
https://arxiv.org/abs/hep-th/9711111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711111
http://dx.doi.org/10.1103/PhysRevLett.84.3531
https://arxiv.org/abs/hep-th/9912033
http://inspirehep.net/search?p=find+EPRINT+hep-th/9912033
http://dx.doi.org/10.1007/JHEP01(2015)081
https://arxiv.org/abs/1408.0764
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0764
https://arxiv.org/abs/1511.01740
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01740
https://arxiv.org/abs/1607.04129
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.04129
http://dx.doi.org/10.1016/j.nuclphysb.2016.09.014
https://arxiv.org/abs/1606.09616
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.09616
http://dx.doi.org/10.1016/j.nuclphysb.2015.12.002
https://arxiv.org/abs/1510.01774
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.01774
https://arxiv.org/abs/hep-ph/9601359
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9601359
http://dx.doi.org/10.1007/978-3-642-54022-6
http://inspirehep.net/record/1283046
https://arxiv.org/abs/1308.1697
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1697
http://dx.doi.org/10.1088/1126-6708/2009/04/018
https://arxiv.org/abs/0808.2475
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2475
http://dx.doi.org/10.1103/PhysRevD.79.105018
https://arxiv.org/abs/0901.2363
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.2363
http://dx.doi.org/10.1103/PhysRevLett.94.181602
https://arxiv.org/abs/hep-th/0501052
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501052
http://dx.doi.org/10.1103/PhysRevD.78.125005
https://arxiv.org/abs/0807.4097
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4097
http://dx.doi.org/10.1007/JHEP09(2010)016
https://arxiv.org/abs/0808.1446
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1446
http://dx.doi.org/10.1088/1126-6708/2009/04/009
https://arxiv.org/abs/0808.1720
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1720
http://dx.doi.org/10.1007/JHEP01(2011)035
https://arxiv.org/abs/1010.3991
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3991
https://arxiv.org/abs/1011.2447
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2447

[36] T. Schuster, Color ordering in QCD, Phys. Rev. D 89 (2014) 105022 [arXiv:1311.6296]
[INSPIRE].

[37] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop
integrand for scattering amplitudes in planar N =4 SYM, JHEP 01 (2011) 041
[arXiv:1008.2958] [INSPIRE].

[38] F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons,
Nucl. Phys. B 306 (1988) 759 [INSPIRE].

[39] M.B. Green, J.H. Schwarz and L. Brink, N =4 Yang-Mills and N = 8 supergravity as limits
of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].

[40] N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018
[hep-th/0001035] [INSPIRE].

[41] C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM
n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].

[42] C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor
BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] INSPIRE].

[43] C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and
supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].

[44] S. Lee, C.R. Mafra and O. Schlotterer, Non-linear gauge transformations in D = 10 SYM
theory and the BCJ duality, JHEP 03 (2016) 090 [arXiv:1510.08843] [INSPIRE].

[45] C.R. Mafra and O. Schlotterer, PSS: from pure spinor superspace to components webpage,
http://www.damtp.cam.ac.uk /user/crm66/SYM/pss.html.

[46] C.R. Mafra, O. Schlotterer and S. Stieberger, Fxplicit BCJ numerators from pure spinors,
JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].

[47] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye
orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] INSPIRE].

[48] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions,
Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [InSPIRE].

[49] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and
gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

[50] F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering
equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].

[61] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to
Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].

[52] L. Mason and D. Skinner, Ambitwistor strings and the scattering equations,
JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].

[53] E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New ambitwistor string
theories, JHEP 11 (2015) 038 [arXiv:1506.08771] INSPIRE].

[54] W. Siegel, Amplitudes for left-handed strings, arXiv:1512.02569 [INSPIRE].

[65] Y.-T. Huang, W. Siegel and E.Y. Yuan, Factorization of chiral string amplitudes,
JHEP 09 (2016) 101 [arXiv:1603.02588] [INSPIRE].

— 26 —


http://dx.doi.org/10.1103/PhysRevD.89.105022
https://arxiv.org/abs/1311.6296
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.6296
http://dx.doi.org/10.1007/JHEP01(2011)041
https://arxiv.org/abs/1008.2958
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2958
http://dx.doi.org/10.1016/0550-3213(88)90442-7
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B306,759%22
http://dx.doi.org/10.1016/0550-3213(82)90336-4
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B198,474%22
http://dx.doi.org/10.1088/1126-6708/2000/04/018
https://arxiv.org/abs/hep-th/0001035
http://inspirehep.net/search?p=find+EPRINT+hep-th/0001035
http://dx.doi.org/10.1103/PhysRevD.83.126012
https://arxiv.org/abs/1012.3981
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3981
http://dx.doi.org/10.1002/prop.201400076
https://arxiv.org/abs/1410.0668
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0668
http://dx.doi.org/10.1007/JHEP10(2015)124
https://arxiv.org/abs/1505.02746
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.02746
http://dx.doi.org/10.1007/JHEP03(2016)090
https://arxiv.org/abs/1510.08843
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08843
http://www.damtp.cam.ac.uk/user/crm66/SYM/pss.html
http://dx.doi.org/10.1007/JHEP07(2011)092
https://arxiv.org/abs/1104.5224
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5224
http://dx.doi.org/10.1103/PhysRevD.90.065001
https://arxiv.org/abs/1306.6575
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6575
http://dx.doi.org/10.1103/PhysRevLett.113.171601
https://arxiv.org/abs/1307.2199
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2199
http://dx.doi.org/10.1007/JHEP07(2014)033
https://arxiv.org/abs/1309.0885
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0885
http://dx.doi.org/10.1007/JHEP01(2015)121
https://arxiv.org/abs/1409.8256
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8256
http://dx.doi.org/10.1007/JHEP07(2015)149
https://arxiv.org/abs/1412.3479
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3479
http://dx.doi.org/10.1007/JHEP07(2014)048
https://arxiv.org/abs/1311.2564
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2564
http://dx.doi.org/10.1007/JHEP11(2015)038
https://arxiv.org/abs/1506.08771
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.08771
https://arxiv.org/abs/1512.02569
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02569
http://dx.doi.org/10.1007/JHEP09(2016)101
https://arxiv.org/abs/1603.02588
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.02588

[56] E. Casali and P. Tourkine, On the null origin of the ambitwistor string, arXiv:1606.05636
[INSPIRE].

[57] T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one
loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].

[58] E. Casali and P. Tourkine, Infrared behaviour of the one-loop scattering equations and
supergravity integrands, JHEP 04 (2015) 013 [arXiv:1412.3787] [INSPIRE].

[59] T. Adamo and E. Casali, Scattering equations, supergravity integrands and pure Spinors,
JHEP 05 (2015) 120 [arXiv:1502.06826] [iNSPIRE].

[60] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop integrands for scattering amplitudes
from the Riemann sphere, Phys. Rev. Lett. 115 (2015) 121603 [arXiv:1507.00321]
[INSPIRE].

[61] S. He and E.Y. Yuan, One-loop scattering equations and amplitudes from forward limit,
Phys. Rev. D 92 (2015) 105004 [arXiv:1508.06027] [INSPIRE].

[62] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann
sphere, JHEP 03 (2016) 114 [arXiv:1511.06315] [INSPIRE].

[63] C. Cardona and H. Gomez, Elliptic scattering equations, JHEP 06 (2016) 094
[arXiv:1605.01446] [INSPIRE].

[64] C. Cardona and H. Gomez, CHY-graphs on a torus, arXiv:1607.01871 [INSPIRE].

[65] N. Berkovits, Infinite tension limit of the pure spinor superstring, JHEP 03 (2014) 017
[arXiv:1311.4156] [INSPIRE].

[66] H. Gomez and E.Y. Yuan, N-point tree-level scattering amplitude in the new Berkovits’
string, JHEP 04 (2014) 046 [arXiv:1312.5485] [NSPIRE].

[67] J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and
superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] InSPIRE].

[68] C.R. Mafra, Berends-Giele recursion for double-color-ordered amplitudes,
JHEP 07 (2016) 080 [arXiv:1603.09731] INSPIRE].

[69] R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders,
Nucl. Phys. B 312 (1989) 616 [INSPIRE].

[70] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at
tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].

[71] C. Cardona, B. Feng, H. Gomez and R. Huang, Cross-ratio identities and higher-order poles
of CHY-integrand, JHEP 09 (2016) 133 [arXiv:1606.00670] [INSPIRE].

[72] F. Cachazo and H. Gomez, Computation of contour integrals on My ,,, JHEP 04 (2016) 108
[arXiv:1505.03571] [INSPIRE].

[73] H. Gomez, A scattering equations, JHEP 06 (2016) 101 [arXiv:1604.05373] [INSPIRE].

[74] Y.-T. Huang, O. Schlotterer and C. Wen, Universality in string interactions,
JHEP 09 (2016) 155 [arXiv:1602.01674] INSPIRE].

[75] C.R. Mafra and O. Schlotterer, The structure of n-point one-loop open superstring
amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] INSPIRE].

[76] C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor
BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].

— 27 —


https://arxiv.org/abs/1606.05636
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.05636
http://dx.doi.org/10.1007/JHEP04(2014)104
https://arxiv.org/abs/1312.3828
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3828
http://dx.doi.org/10.1007/JHEP04(2015)013
https://arxiv.org/abs/1412.3787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3787
http://dx.doi.org/10.1007/JHEP05(2015)120
https://arxiv.org/abs/1502.06826
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06826
http://dx.doi.org/10.1103/PhysRevLett.115.121603
https://arxiv.org/abs/1507.00321
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00321
http://dx.doi.org/10.1103/PhysRevD.92.105004
https://arxiv.org/abs/1508.06027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06027
http://dx.doi.org/10.1007/JHEP03(2016)114
https://arxiv.org/abs/1511.06315
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06315
http://dx.doi.org/10.1007/JHEP06(2016)094
https://arxiv.org/abs/1605.01446
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01446
https://arxiv.org/abs/1607.01871
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.01871
http://dx.doi.org/10.1007/JHEP03(2014)017
https://arxiv.org/abs/1311.4156
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4156
http://dx.doi.org/10.1007/JHEP04(2014)046
https://arxiv.org/abs/1312.5485
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5485
http://dx.doi.org/10.1002/prop.201300019
https://arxiv.org/abs/1304.7267
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7267
http://dx.doi.org/10.1007/JHEP07(2016)080
https://arxiv.org/abs/1603.09731
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.09731
http://dx.doi.org/10.1016/0550-3213(89)90574-9
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B312,616%22
http://dx.doi.org/10.1016/S0550-3213(99)00809-3
https://arxiv.org/abs/hep-ph/9910563
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9910563
http://dx.doi.org/10.1007/JHEP09(2016)133
https://arxiv.org/abs/1606.00670
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00670
http://dx.doi.org/10.1007/JHEP04(2016)108
https://arxiv.org/abs/1505.03571
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03571
http://dx.doi.org/10.1007/JHEP06(2016)101
https://arxiv.org/abs/1604.05373
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.05373
http://dx.doi.org/10.1007/JHEP09(2016)155
https://arxiv.org/abs/1602.01674
http://inspirehep.net/search?p=find+EPRINT+arXiv:1602.01674
http://dx.doi.org/10.1007/JHEP08(2014)099
https://arxiv.org/abs/1203.6215
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6215
http://dx.doi.org/10.1007/JHEP07(2014)153
https://arxiv.org/abs/1404.4986
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4986

[77] L. de la Cruz, A. Kniss and S. Weinzierl, The CHY representation of tree-level primitive
QCD amplitudes, JHEP 11 (2015) 217 [arXiv:1508.06557] [INSPIRE].

[78] Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity,
Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].

[79] J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for
amplitudes from higher-dimension operators, JHEP 10 (2012) 091 [arXiv:1208.0876]
[INSPIRE].

[80] S. Stieberger and T.R. Taylor, Closed string amplitudes as single-valued open string
amplitudes, Nucl. Phys. B 881 (2014) 269 [arXiv:1401.1218] [INSPIRE].

— 28 —


http://dx.doi.org/10.1007/JHEP11(2015)217
https://arxiv.org/abs/1508.06557
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06557
http://dx.doi.org/10.1016/0550-3213(96)00078-8
https://arxiv.org/abs/hep-ph/9511336
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9511336
http://dx.doi.org/10.1007/JHEP10(2012)091
https://arxiv.org/abs/1208.0876
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0876
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.005
https://arxiv.org/abs/1401.1218
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.1218

	Introduction
	CHY representation of scattering amplitudes
	One graviton
	Two gravitons
	Two-graviton contributions (epsilon(p)cdot x(i)) (epsilon(q)cdot x(j))
	Two-graviton contributions (epsilon(p)cdot x(i)) (epsilon(q)cdot p)
	Two-graviton contributions (epsilon(p)cdot epsilon(q))
	Amplitude relations for n gluons and two gravitons

	Three gravitons
	Three-graviton contributions (epsilon(p) cdot epsilon(q))(epsilon(r) cdot q)
	Three-graviton contributions (epsilon(p) cdot epsilon(q)) (epsilon(r) cdot x(j)) 
	Three-graviton contributions (epsilon(p) cdot (q+r)) ( epsilon(q) cdot r) (epsilon(r) cdot x(j))
	Three-graviton contributions ( epsilon(r) cdot p) (epsilon(p) cdot x(i)) (epsilon(q) cdot x(j))
	Three-graviton contributions  (epsilon(p) cdot x(i)) (epsilon(q) cdot x(j))(epsilon(r) cdot x(k))
	Amplitude relations for n gluons and three gravitons

	Four and more gravitons
	Towards multitrace contributions
	Double-trace amplitude relations without gravitons
	The derivation
	An alternative representation
	A double-trace counterpart of BCJ-relations

	Double-trace amplitude relations with one graviton
	The integrand
	From the integrand to amplitudes

	Conclusion and outlook
	Further details on the four-graviton case

