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Abstract We explore thermodynamic properties of a new
class of Horndeski black holes whose action contains a non-
minimal kinetic coupling of a massless real scalar and the
Einstein tensor. Our treatment is based on the well-accepted
consideration, where the cosmological constant is dealt with
as thermodynamic pressure and the mass of black holes as
thermodynamic enthalpy. We resort to a newly introduced
intensive thermodynamic variable, i.e., the coupling strength
of the scalar and tensor whose dimension is length square,
and thus yield both the generalized first law of thermodynam-
ics and the generalized Smarr relation. Our result indicates
that this class of Horndeski black holes presents rich ther-
modynamic behaviors and critical phenomena. Especially in
the case of the presence of an electric field, these black holes
undergo two phase transitions. Once the charge parameter
exceeds its critical value, or the cosmological parameter does
not exceed its critical value, no phase transitions happen and
the black holes are stable. As a by-product, we point out,
the coupling strength acts as the thermodynamic pressure in
thermodynamics.
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1 Introduction

General relativity and quantum mechanics have become two
pillars of modern physics. Meanwhile, due to constant devel-
opments of technologies, increasingly accurate observations
mostly indicate that the Einstein theory of general relativity
has passed all experimental tests with flying colors, espe-
cially in the weak-field or slow-motion regime [1]. More
attractively, black holes, which can probably be regarded as
a tie of connecting general relativity and quantum mechan-
ics [2], have been getting more and more attentions. In par-
ticular, the thermodynamics of black holes in anti-de Sitter
(AdS) spacetime [3-5] has acquired great progress since the
AdS/CFT duality plays a pivotal role in recent developments
of theoretical physics [6,7].

Conversely, some of the funniest strong-field predictions
of the Einstein’s theory of general relativity still remain dif-
ficult to understand and verify. In this sense, black holes
are ideal candidates to be used as probes of Einstein theory.
Most theoretical and observational issues, such as the high-
curvature corrections, the origin of curvature singularities,
the cosmological constant problem, the dark energy/matter,
and so on, strongly recommend that the Einstein theory of
general relativity should be modified, i.e., the so-called mod-
ified gravity [8,9]. What is worth mentioning is that Horn-
deski [10] proposed the most general scalar—tensor modi-
fied gravity action which generates equations of motion with
second-order derivatives. The Horndeski scalar—tensor mod-
ified gravity theory has widely been investigated in astro-
physics and cosmology [11-13]. In the investigation of a
locally stable solution of Horndeski black holes, the action
containing a non-minimal kinetic coupling of one scalar and
Einstein tensor has received considerable attention, and some
important progress has been made. A spherically symmetric
and static solution has been obtained in Ref. [14] for the case
of a vanishing cosmological constant, and in Refs. [15,16]
for the case of a negative cosmological constant. The no-hair
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theorem for scalar—tensor gravity theory has been shown in
Refs. [17,18]. Moreover, the black hole solution in the pres-
ence of an electric field [19-21], the BTZ black hole solu-
tion with a Horndeski source [22], and the slowly rotating
black hole solutions [23] have been studied. Furthermore,
the black hole solution with a time-dependent scalar [24,25]
and the exact wormhole solutions with a non-minimal kinetic
coupling [26] have also been found. For the topics in other
relevant aspects, see, for instance, Refs. [27-34].

In this paper we revisit thermodynamic properties of Horn-
deski black holes with a non-minimal kinetic coupling in the
presence of an electric field along the line of Refs. [35-39],
namely by considering the cosmological constant as thermo-
dynamic pressure and the mass of black holes as thermody-
namic enthalpy. A few thermodynamic quantities have been
calculated [14—16] for Horndeski black holes, showing that
the first law of thermodynamics is satisfied, but the Smarr
relation is violated. Hence, we wish to fill up this deficiency
from the point of view of thermodynamics. If we take the non-
minimal kinetic coupling strength of scalar and tensor fields
into account, the relevant term should appear in the Smarr
relation and its variation should be included in the first law
of thermodynamics. As a result, we obtain the generalized
Smarr relation and the first law of thermodynamics in the
extended phase space that includes the coupling strength and
its conjugate. In other words, we shall deal with thermody-
namic behaviors of Horndeski black holes in a new extended
phase space. It has been known that the Born—Infeld parame-
ter [40,41], the Gauss—Bonnet coupling constant [42], and the
noncommutative parameter [43] can be dealt with as a kind of
thermodynamic pressure. Our result further indicates that the
coupling strength acts as the thermodynamic pressure in the
behavior of thermodynamics. Meanwhile, we show that the
class of Horndeski black holes with a non-minimal kinetic
coupling present rich critical phenomena.

The paper is organized as follows. In Sect. 2, the ther-
modynamics of Horndeski black holes with a non-minimal
derivative coupling is analyzed. This section contains two
subsections which correspond to the scenarios without and
with charge, respectively. Finally, we devote Sect. 3 to draw-
ing our conclusion. The geometric units, i = ¢ = kg =
G = 1, are adopted throughout this paper.

2 Thermodynamics of Horndeski black holes

At the beginning, we proceed to investigate the class of
Horndeski black holes whose action contains a non-minimal
kinetic coupling of the massless real scalar ¢ and the Einstein
tensor G ,,. This action, in the presence of an electric field,
has the following form [19,21]:
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1 1
X |:(R —2A) — E(Olgp.v - ﬂGuv)vﬂd’VU(f’ - ZF;wFlwi| ,

2.1)

where 1 stands for the coupling strength with the dimen-
sion of length square, o a coupling constant, A the negative
cosmological constant, R the scalar curvature, g;,, the met-
ric with mostly plus signatures, and F),, the electromagnetic
field strength defined as F,, = 9,A, — 9,A,, with A, the
vector potential.

Making a variation of the action Eq. (2.1) with respect to
the metric g,,,, the scalar field ¢, and the Maxwell field A,
respectively, one can obtain

1
Guv + Aguy = 3 (T + 18 + Ep) (2.2)
th [(ag;w - TIG,W)VV(P] =0, (2.3)
V. F* =0, 2.4
where T}, 8., and E, are defined as
1 o
T = vu¢vv¢ - Eglva¢v ?, (2.5)
1
Eu = EVMqSVvqu - 2Vp¢V(,L¢Rf) — V”(/)V’\quW)W\

1

—(VuVPP)(VyV,0) + (V, V) O + EGW(Vd))z
1 1

— 8| = 3 (V' VPO, Vi) + 5 (09)?

- Vp¢VA¢R"A], (2.6)

p ! 2
Eyy = FjJFyp — Eg‘”F . 2.7)
In the following we focus on the static solutions with the

spherical symmetry in Eqs. (2.1)—~(2.4), so the metric is sim-
plified to be

ds? = — £ (r)dt*> 4+ g(r)dr? + r*(d6? + sin® 6dp?), (2.8)
F =dA, (2.9
A = Wdt, (2.10)

where f(r) and g(r) are functions to be determined and W is
the electrostatic potential. Under the assumption of spherical
symmetry, we only consider a static and isotropic scalar field,
1.e., the scalar field is a function of the radial coordinate,
¢ = ¢(r). In the two subsections below we shall discuss
thermodynamic properties of such a class of Horndeski black
holes without and with the Maxwell field, respectively, i.e.,
under the considerations of the specific forms of f(r), g(r),
and ¢ (r) in the former subsection, and the specific forms of
f(@), g(r), ¢(r), and W(r) in the latter one.
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2.1 Scenario without charge

For this situation, the analytic solution takes the form [15,16]

_ ar? 2M 3o+ An
fr)= g - 7 «— An
o+ A7 2 tan~! (\/%r)

<a_An) \/Er , .11

n

_ o?[(a — An)r? +2n)?
8= = A+ i) @12
P20 = _2a2r2(a + An)[(a — Ap)r? + 2;7]2’ 2.13)

n(a — Am*(ar? +n)3 f(r)

where M is considered as the mass of black holes, and
Y = ¢', where a prime stands for the first order deriva-
tive with respect to r. This solution requires « and 7 to
have the same sign and « # —An. Once « = —An, the
Schwarzschild—AdS solution is recovered and the scalar field
becomes trivial [16]. For simplicity but without the loss of
generality, we set « > 0 and n > 0 in the following context.
Based on Refs. [15,16], we write the constraint! that
ensures the reality of the scalar field outside the horizon,

o+ An < 0. (2.14)

It is obvious to deduce such a condition from Eqgs. (2.11)
and (2.13). At first, let us see the asymptotic behavior of
Eq. (2.11): f(r) goes to minus infinity under the limitr — 0;
on the other hand, it goes to plus infinity under the limit
r — —4o00. Therefore, the equation f(r) = 0 has at least
one real root and the largest real root can be regarded as the
horizon radius r;. Next, it is evident that f(r) > 0 once
r > ry. Hence, the positivity of Eq. (2.13), i.e., the reality
of ¢(r) in the regime r > ry, leads of course to the above
inequality. In addition, it is necessary to take a close look
at the behavior of the scalar field in the near horizon region
because the scalar field seems to be divergent from Eq. (2.13).
Due to f(rp) = 0 and f'(rp) # 0, one can get the Taylor
expansionof f(r): f(r) = fo+ fi(r—ri)+fa(r—rp)*+---.
As to ¥ (r), see Eq. (2.13), it approximates ——— in this
region, which gives rise to the form of the scalar field, ¢ (r) =
b0+ o1(r —r)' 2+ ¢o(r — rp)3? + -+, As a result, the
scalar field remains finite in the near horizon region.

Now let us revisit the thermodynamic properties of this
class of Horndeski black holes. Along the line of Refs. [36—
39], one can regard the mass of black holes as the thermody-
namic enthalpy,

! This constraint condition does not work on the analysis of thermo-
dynamic properties because we adopt the method of horizon thermo-
dynamics. Incidentally, its corresponding form for the scenario with
charge is given by Eq. (2.30).

M_ar2+(3a+An)rh+1\/W o+ An\?
T o6p 2@—An) 2V a \a—Ang

()
X tan —rp ).
n

The Bekenstein—-Hawking entropy is one-fourth of the event
horizon area,

(2.15)

S =nrf, (2.16)

and the thermodynamic temperature can be calculated to be

(5s)
T, = —
0S A

1 ar,% n(a + An)? 30 4+ An
= —n 4 5 5 .
drp | (ary +n)(a — An) a—An
(2.17)

When the thermodynamic pressure P is regarded as

A
P=——

, 2.18
S (2.18)

the extensive variable conjugate to it, i.e., the thermodynamic
volume V has the form

_(8M> _ l6mwan
P ), s (o — An)3

[ Jater e (f5n)
X | (¢ — An)rp + [ — (¢ + An) tan —rp |-
o n

(2.19)

Next, we introduce a new intensive thermodynamic vari-
able IT in terms of the coupling strength 7,

M= —,

2.20
81 (2.20)

and derive, with the help of Eq. (2.15), the extensive variable
conjugate to it,

oM
o=(22
<3H>P,s

_ 471r2 Znnzrh (a + An)2

3 (x(ozr,% +n)(a — An)?

3 2
5 A
) (2 ()
o o — An n
—1 o
o+ Apy tan ( Frh)

o
i

As aresult, we can write the first law of thermodynamics,

167 An?ry,
(@ — An)?

oa— An

2.21)

dM = T,dS + VdP + 6dII, (2.22)
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and the generalized Smarr relation,

M =2T,S — 2PV — 2116. (2.23)

We thus provide a possibility of making up the gap in
Refs. [14-16], i.e., the Smarr relation can be maintained in
the extended phase space that contains I1 and ©.

The heat capacity at constant pressure is defined by

co_ (MY _ M (3T, !
P=\om ) p ar o)

where the two factors can be calculated to be

(2.24)

oM ar,% n(a + An)? 30 + An
Ezﬁ (ar +n(a—An?  a—An’
ATy, 1 ar} n(a + An)?
arn - _47rr}% |:_T (ar} +n)(o — An)?
3o+ An 20577r,%(05 + An)?
a— An (arf + )2 (o — An)2:| '

The Gibbs free energy is the Legendre transform of
the enthalpy Eq. (2.15), ie. G = M — T,S. Thanks to

Th
0.8

0.6
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I'n

I'n
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Egs. (2.15)—(2.17), we obtain its exact expression,

. _ot_r,? Ba+Amry nra(e + An)?
127 4a—An)  dar}+n)(a— An)?

1 An\?
+= h( +An tan~! grh .
2V o \a—An n

In order to visualize the thermodynamic quantities, we
plot the temperature Eq. (2.17), the heat capacity at constant
pressure Eq. (2.24), and the Gibbs free energy Eq. (2.25) in
Figs. 1, 2, and 3. From the three figures, we can see that the
thermodynamic behaviors are similar for A = 0 and A # 0.
For case A = 0, according to Eq. (2.13), the scalar field
outside the horizon is not real and it can be explained as
an extra degree of freedom, rather than a matter field [14].
Fortunately, for A # 0, i.e., a non-vanishing and nega-
tive cosmological constant, it is possible to obtain the real
scalar field outside the horizon and the scalar field does not
become ghostlike with resorting to Eq. (2.14). Furthermore,
we notice that the thermodynamic behavior of this class of
Horndeski black holes with or without the negative cosmo-
logical constant is similar to that of the Schwarzschild—AdS
black hole. In fact, the negative cosmological constant A
not only plays the role of the thermodynamic pressure, but
also gives the constraint Eq. (2.14) to ensure the reality of
the scalar field outside the horizon. Moreover, in the light

(2.25)
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Fig. 1 When « = 1, plots of the relation of 7}, with respect to ry, for n = 1 (black), 2 (red), 3 (blue), and 4 (purple) at A = 0 (top left), A = —0.5
(top right), A = —1 (bottom left), and A = —1.5 (bottom right), respectively
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Fig. 2 When o = 1, plots of the relation of C, with respect to r, for n = 1 (black), 2 (red), 3 (blue), and 4 (purple) at A = 0 (top left), A = —0.5
(top right), A = —1 (bottom left), and A = —1.5 (bottom right), respectively
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Fig. 3 When « = 1, plots of the relation of G with respect to 7}, for n = 1 (black), 2 (red), 3 (blue), and 4 (purple) at A = 0 (left) and A = —0.5

(right), respectively

of similar behaviors of the three thermodynamic quantities
between the cases of different 1 but fixed A and the cases
of different A but fixed 5, as shown in Figs. 1, 2, and 3,
we can conclude that the newly introduced intensive ther-
modynamic variable Eq. (2.20) plays a similar role to that
of thermodynamic pressure. At the end of this subsection, it
is necessary to mention that the temperature has one local
minimum and the heat capacity at constant pressure under-
goes only one divergence; see Figs. 1 and 2. These behaviors
imply that there exists only one phase transition for the Horn-
deski black holes without charge. In the next subsection, we
shall point out that the Horndeski black holes with the charge
hair present rich thermodynamic behaviors and critical
phenomena.

2.2 Scenario with charge

For the class of Horndeski black holes with an electric field,
the analytic solution reads [19,21]

ar  2M

f(”)zg—T"‘

30+ An
o — An

2,2
a+An+%

a—An \/Er
]
O{2q2 a2q4
+ (@ — An)2r? h 48(ac — An)2rt
O{3q4

@ Springer



638 Page 6 of 10

Eur. Phys. J. C (2016) 76:638

P[4 — Anprt + 8nrt — ngP?

8(r) = 16r4 (a0 — An)2(ar2 + )2 f(r) (2.27)
P2y = _ LTt At 4 gl — Ay + 8or? — ng’)?
- 3205 (e — AP(@r? + )3 () ’
(2.28)
2.2
W(r) = w0+,1€:§§[fﬁﬁiﬁ;ﬁilfjiﬁ;}tan—l<Vﬂ§;>
4 775 o — Ar] n
et T} (229)
dnr(a — An)  12r3(a — An)

where Wy is an integration constant. In order to obtain a
real scalar field outside the horizon, one needs to impose the
following constraint of parameters [19]:
d(a + Anp)rt + an <0, (2.30)
whose derivation is similar to that of the constraint Eq. (2.14);
see the analysis in the above subsection.

From the point of view of thermodynamics, the thermo-
dynamic enthalpy can be written as a function of the horizon
radius ry,

arj  GBa+ Anry,

M=-—L
61 + 2(a — An)

o2q? 2
1 [y [+ An+ = 1 o
- /—| ——— | tan —rp
2V « o — An n
a2q2 Oquél-
2a — A2y 96(a — An)2r;
o3q

+—32n(a A (2.31)
There are four pairs of thermodynamic variables and in each
pair the two variables are conjugate to each other. By fol-
lowing the calculations of Eqgs. (2.17), (2.19), and (2.21), we
derive the first three pairs using Eq. (2.31). The first pair con-
sists of the Bekenstein—-Hawking entropy Eq. (2.16) and the
thermodynamic temperature,

1 arﬁ 3 + An o?q*
Yh - — + 4 P
dmry n a—An 167, (o — An)
a?q?
ri(e — An)?
(x3q4

[?q? + 4n(a + An)]?
16n(ar} + ) — A2 |~
(2.32)

a 16072 (o — An)?

The second pair contains the thermodynamic pressure

Eq. (2.18) and the thermodynamic volume,

aq4(3arg —n) qu
96nr2 2rp

v 16an ( Ay +
=———= (- r,
(@ — A3 W
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+./— tan —rp .
o 3212 n

(2.33)

The last pair is composed of the coupling strength Eq. (2.20)
as a new intensive thermodynamic variable and its conjugate
extensive variable,

ralAnq? 8TaAniq?

B 4nr2
3 6rij(@ — An)®  rp(e — An)?

)

167 An?ry,  watq*(1 —2Aq)
(«—Am?  drp(a — An)’
a2q2
27”72771 o+ An+ 4n
ot(ar;% +n) o — An

2,2
3 fa+An+ 5
0N

o o — An

2.2
n o+ [\n + Q4Z
a  (x—An)3

(/i)
X tan —rp ).
n

In addition, due to the presence of an electric field, the charge
Q of black holes reads

2
(i)
tan —rh
n

(8A172 + 2aA77q2 — a2q3)

(2.34)

aq

Q:a—An’

(2.35)

and its conjugate intensive variable, i.e., the electric potential
@, can be obtained,

(5)
d=("—=
90 /s.pm

1ga (4n(a+An)+a2q2> 1 (\/E )
= — 3 tan —TIp
4 n? oa—An n
3

aqag*+8n)  agq
dnrp(a — An) 1213 (@ — An)’

(2.36)

We notice that Eq. (2.36) shows good agreement with
Eq. (2.29) under the condition of the vanishing integration
constant Wy = 0. Equation (2.29) was obtained by solving
the Maxwell equation of motion Eq. (2.4),i.e., V F*" =0,
while Eq. (2.36) is derived by us through thermodynamic
relations. The consistency of the two equations, Egs. (2.29)
and (2.36), shows that the thermodynamic method we have
adopted is reasonable.

Hence, we give the first law of thermodynamics and the
generalized Smarr relation as follows:

dM = TpdS + VdP + ©dQ + ©dII,

M =2T,S —2PV + ®Q — 2I106. (2.37)
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Fig. 4 Whena = 1,7 =2,and A = —1.5, plots of the relations of 7;, and C, with respect to r;, for g = 0.3 (black), g = 0.4 (red), . = 0.45049

(green), and g = 0.5 (purple), respectively

With the help of Egs. (2.16), (2.31), and (2.32), we can
derive the heat capacity at constant pressure,

IM aM (9T, \ !
C P = —_— = —_— _— s

0T ) p ary \ ory,
where the factors of the numerator and denominator of
Eq. (2.38) can be calculated to be, respectively,

(2.38)

oM ar, n(a + An)?

oy 2 (ar} + (e — An)?
3a + An alqt
a— An 321‘2(0[ — An)?

adq?
2k — A2 32nri(e — An)?’

a2q2

T, 1 ar?  3a+ An
oy 4Am2 | n | a—An
2 2\2
n(ot—}—An—l—%) 30242
(@} +m@— A2 ria— An)?
S5a2q* 3a3g*

16riH (e — An)?  16nr7 (o — An)?
2 o2g? 2
2anr;, (a + An+ W)
(arj +n)?(a — An)?

and the Gibbs free energy,
G=M-T1,S
o2q? 2
ari nry (ot—l—An-I— an )
12 4d(ar} +n)(a — An)?

2
()
tan —rh
n

2.2
L[y foetAnt G

2V o o — An

QGBa + An)ry, 5a2q4 3a2q2
4l —An)  192r} (@ — An)?  Arp(a — An)?
3 3 4
@4 (2.39)

64nry(a — An)? '

We plot the thermodynamic temperature Eq. (2.32), the
heat capacity at constant pressure Eq. (2.38), and the Gibbs
free energy Eq. (2.39) in Figs. 4, 5, 6, and 7. These figures
show rich thermodynamic behaviors and critical phenomena
if we compare to the case of no charge. In Fig. 4, for fixed val-
ues of «, , and A, the thermodynamic temperature presents
one local maximum and one local minimum, and the heat
capacity at constant pressure twice undergoes a divergence
for different values of g. As is well known, black holes are
locally stable for C}, > 0, while unstable for C,, < 0. The
behavior of the heat capacity at constant pressure depicted
by Fig. 4 indicates that the Horndeski black holes undergo
two phase transitions: the first phase transition happens from
a locally stable state to a locally unstable one at the local
maximum temperature, and the other phase transition occurs
from a locally unstable state to a locally stable one at the
local minimum temperature. When ¢ is larger than its criti-
cal value g, = 0.45049, the temperature has no extrema and
the heat capacity at constant pressure has no divergences. In
addition, the characteristic swallowtail behavior of the Gibbs
free energy disappears once g > g, = 0.45049, as shown in
Fig. 6. All of these phenomena imply that no phase transi-
tions happen when the charge parameter g exceeds its critical
value g.. On the other hand, a similar critical phenomenon
appears for different values of A but fixed values of «, 7,
and ¢, as shown in Figs. 5 and 7. When the cosmological
parameter A is less than its critical value A, = —3.1631,
no phase transitions occur. Furthermore, we observe that the
thermodynamic temperature goes to zero at a very small hori-
zon radius. It is the electric charge that provides negative
contributions in Eq. (2.32), which makes it possible that the
thermodynamic temperature vanishes.
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Fig. 6 Wheno = 1,7 =2,and A = —1.5, plots of the relation of G with respect to 7, for different values of g
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Fig. 7 Whena = 1, n = 2, and g = 0.3, plots of the relation of G with respect to 7}, for different values of A

3 Conclusion

Based on the well-accepted consideration [35-39], namely
the cosmological constant as the thermodynamic pressure
and the mass of black holes as thermodynamic enthalpy, we
revisit thermodynamic properties of a new class of Horndeski
black holes whose action contains a non-minimal kinetic
coupling of one massless real scalar and the Einstein ten-
sor. We resort to a new intensive thermodynamic variable;
see Eq. (2.20), which originates from the coupling strength
n with the dimension of length square, and thus deduce both
the generalized first law of thermodynamics and the gener-
alized Smarr relation; see Egs. (2.22), (2.23), and (2.37). By
calculation of some thermodynamic quantities, such as the
thermodynamic temperature, the heat capacity at constant
pressure, and the Gibbs free energy, our result indicates that
this class of Horndeski black holes presents rich thermody-
namic behaviors and critical phenomena. Especially in the
case of the presence of an electric field, the black holes twice
undergo a phase transition: the first phase transition happens
from a locally stable state to a locally unstable one, and the
other phase transition occurs from a locally unstable state to
a locally stable one. Once the charge parameter g exceeds
its critical value g, or the cosmological parameter A does
not exceeds its critical value A, no phase transitions happen
and the black holes are stable. As a by-product, we indicate
that the behavior of the coupling strength acts as that of the
thermodynamic pressure, as shown in Figs. 1, 2, and 3.
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