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1 Introduction

It has been realised in the last few years, beginning with the pioneering work of Mack

[1, 2] (see also [3]), that Mellin space provides the natural setting for the study of Confor-

mal Field theories (CFTs). The Mellin transform of a CFT correlator is a meromorphic

function in the Mellin variables. In particular, for a four point function, the isolated sim-

ple poles indicate the conformal dimensions of the operators in the spectrum whereas the

residues at these poles contain information about the 3-point couplings. Thus the CFT

data (operator dimensions and OPE coefficients) is at once made manifest in the Mellin

space representation. Mellin amplitudes are also conformally invariant making conformal

symmetry manifest in Mellin space.

Usually in quantum field theory, we Fourier transform the position space correlators

to write Feynman rules in momentum space. The important advantage in doing so is that

translation invariance leads to momentum conservation and the position space integrals

are reduced to simple products in momentum space at tree level. In momentum space,

conformal transformations have a non-linear action and as a result the conventional way of

doing perturbative QFT in momentum space is not so advantageous for CFTs.

Various important features of QFT such as locality, causality and unitarity can be

understood in terms of the analytic properties of momentum space amplitudes. The isolated

poles of the momentum space propagator correspond to single-particle states and the branch

cuts on the real axis give the multi-particle states (Kählen Lehmann spectral representation)

and the amplitudes factorise on residues at the poles to lower point amplitudes. In a CFT,

we do not have single particle states characterised by the masses since mass is a dimensionful

parameter. Hence the propagators in momentum space have branch cuts extending to the

origin. In the radial quantization of CFT, the dilatation operator acts as the Hamiltonian.

The eigenvalues of this operator are discrete for d > 2. This discrete set of operators appear

in the operator product expansion (OPE) as the exchanged primaries and descendants in

an interacting CFT (in d > 2) . So it is desirable to have a representation for correlation

functions in CFTs that makes this discrete spectrum manifest. As shown by Mack, it turns

out that Mellin space provides such a representation.

The analogy of the Mellin space CFT correlators with scattering amplitudes is also

striking. This has been explored in the context of the AdS/CFT correspondence. Following

Mack, the application of the Mellin representation of conformal correlation functions was

explored at strong coupling for large N CFTs using tree level Witten diagrams in AdS [4–10].

While at tree level, there seem to be a set of Feynman rules to write the Mellin amplitudes,

the loop level seems to be significantly more involved. In the flat space limit of AdS/CFT ,

a relation between the bulk scattering amplitude and the CFT Mellin amplitudes was also

suggested in [4, 7] and later put on a firm footing in [8, 11–13] (see also [14]). To be precise,
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the flat space S-matrix is expressed as an integral transform of the CFT Mellin amplitude

and the Mellin variables, in the flat space limit, turn into flat space kinematic invariants

(the Mandelstam variables). This scheme also relates the S-Matrix program in QFTs to

the Bootstrap program in CFTs. Our work, however, has a different focus and does not use

AdS/CFT. We consider weakly coupled CFTs and attempt to formulate Feynman rules in

Mellin space for perturbative field theory computations.

The Mellin representation for tensor operators and the factorization of Mellin ampli-

tudes was studied in [13]. The Mellin representation has also been explored in the context

of minimal model CFTs in [15] and for open string amplitudes in [16]. It was explored in the

weak coupling regime in [17, 18] in the context of SYM and has also been used to calculate

corrections beyond the planar limit to the 4-point function of a primary in N = 4 SYM in

[19]. For some more applications in the context of N = 4 SYM, see also [20–24]. Feynman

rules for tree level diagrams in the Mellin space were stated in [17, 18] after considering a

few examples. However a proof of these rules for a general tree level Feynman diagram was

not provided.

The goal of our note is to further explore the suitability of the Mellin representation for

studying perturbative CFTs. We consider an exactly marginal perturbation around a free

CFT and investigate whether it is possible to obtain a set of Feynman rules that can be used

to calculated Mellin amplitudes. For simplicity, we restrict to scalar operators throughout

the paper. We present a complete derivation of the Feynman rules associated to tree level

amplitudes in complete generality. For this purpose, we also develop a diagrammatic algo-

rithm to write down the Mellin amplitude for any Feynman diagram (upto arbitrary loop

order) as an integral over Schwinger parameters corresponding to the internal propagators

in the diagram. We further relax the conformality of the integrals, we consider, to study

Mellin amplitudes in free CFTs with a generic perturbation. It turns out that when we

consider integrals that enjoy a scale covariance only (as opposed to the full conformal co-

variance) the corresponding “Mellin amplitudes” can be interpreted as “off-shell” quantities

that reduce to the “on-shell” conformal Mellin amplitudes under an LSZ like prescription.

For application to many well-known conformal field theories (say, N = 4 Super-Yang

Mills), we need to extend these rules to tensor and fermionic operators as well. We leave

this along with the task of obtaining Feynman rules for loop amplitudes to future work.

The plan of this note is as follows. In section 2, we give a quick review of the Mellin

amplitude for conformal field theories. In section 3, we consider some simple tree level

Feynman diagrams involving only scalar fields and derive their Mellin amplitude. This is to

introduce the general strategy that we follow for deriving the Mellin amplitude of a general

tree level Feynman diagram. In section 4, we provide a general derivation for the Feynman

rules for tree level diagrams. To this end, we develop an algorithmic method for writing

down the Mellin amplitude for an arbitrary Feynman diagram (tree as well as loops) as

an integral over the Schwinger parameters for the internal propagators. In section 5, we

consider the Mellin amplitudes for loop diagrams involving scalar fields. Even though we

can write an integral expression for the Mellin amplitude for such diagrams, we have not
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been able to perform these integrals so as to obtain a set of Feynman rules. In section

6, we extend the notion of Mellin amplitude to include generic scalar deformations of a

free CFT which may break conformal invariance. In particular, we consider a tree level

diagram with a single internal line (involving scalar fields) in Mellin space for such theories.

The appendices elaborate on our notations and conventions, contain some properties of the

Mellin transform and a few useful identites. Many elaborate details of the calculations are

also relegated to the appendices.

Throughout the draft, the space-time Lorentz indices will be suppressed. We shall use

the indices {i, j, · · · } for external vertices and the indices {a, b, · · · } for internal vertices. For

convenience, we shall use the upstair indices for denoting the external vertices and the lower

indices for denoting the internal vertices. This turns out to be useful for us mainly because

of the fact that our analysis does not depend on how many external legs are attached to a

given internal vertex. This will become clear when we consider explicit calculations. More

details on the notations and convention can be found in the appendix A.

2 Mellin Amplitude

The Mellin amplitude for an arbitrary n-point function is defined by the Mellin transfor-

mation of the position space correlation function [1, 2]

A
(

{xi}
)

=
∏

1≤i<j≤n

(
∫ i∞

−i∞

dsij

2πi
Γ
(

sij
) (

xi − xj
)−2sij

) n
∏

i=1

δ



∆i −
n
∑

j=1

sij



M
(

{sij}
)

(2.1)

Here sij are the Mellin variables and M
(

{sij}
)

is defined to be the Mellin amplitude. The

variable ∆i is the scaling dimension of the operator inserted at xi. One strips M
(

{sij}
)

of the factors of Γ(sij) for convenience. This turns out to be particularly useful for large

N gauge theories (in the context of the AdS/CFT correspondence) where these Gamma

functions account for the poles corresponding to the multi-particle states whereas M
(

{sij}
)

accounts for poles corresponding to the single particle states.

The following are some important points to be noted:

1. The delta function constraints in the definition of Mellin amplitude (2.1) ensure the

covariance of A({xi}) under conformal transformations. More precisely, under inver-

sion

(

xi − xj
)2 →

(

xi − xj
)2

(xi)2(xj)2

The correlation function A
(

{xi}
)

transforms as

A
(

{xi}
)

→
[

n
∏

i=1

(xi)−2∆i

]

A
(

{xi}
)

The delta function constraints
∑

j 6=i

sij = ∆i ensure that both sides of (2.1) transform

in the same way.
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2. The Mellin amplitude M({sij}) is manifestly conformally invariant. The conformal

transformations act on the position space variables xi. The xi dependence of the

expression (2.1) and the delta functions imposing constraints on the Mellin variables

ensure that A({xi}) is conformally covariant.

3. The Mellin variables sij are symmetric in i and j. So the number of Mellin variables

sij is n(n − 1)/2. However, due to the n delta function constraints, the number of

independent Mellin variables is only n(n−3)
2 . This is also the number of independent

cross-ratios for n points and the number of Mandelstam invariants for an n−point

scattering amplitude.

4. The delta function constraints can be solved in terms of the “dual Mellin momenta”

[1] with sij = ki · kj and (ki)2 = −∆i and overall Mellin momentum conservation
∑

i k
i = 0. These are fictitious momenta associated with each xi. We refer to (ki)2 =

−∆i as the “on-shell” condition for Mellin momenta.

5. Using the dual Mellin momenta mentioned above, one can define “dual Mandelstam

variables” and express the Mellin amplitude in terms of these. To see an explicit

example [25], we consider a 4-point function and define the Mandelstam variables s

and t as

s ≡ −(p1 + p2)2 = ∆1 +∆2 − 2s12 , t ≡ −(p1 + p3)2 = ∆1 +∆3 − 2s13

In terms of these Mandelstam variables, we can express the 4-point amplitude as

A(xi) =





∏

i<j

(xij)−2∆ij



 A(u, v)

where, ∆ij ≡ ∆i −∆j, u and v are the usual 4-point cross ratios and A(u, v) is the

inverse Mellin transform with respect to the above Mandelstam variables

A(u, v) =

∫ i∞

−i∞

dt

2πi

∫ i∞

−i∞

ds

2πi
M(s, t)u

s
2 v−

s+t
2 Γ

[

∆1 +∆2 − s

2

]

Γ

[

∆1 +∆3 − t

2

]

Γ

[

∆3 +∆4 − s

2

]

Γ

[

∆2 +∆4 − t

2

]

Γ

[

s+ t−∆2 −∆3

2

]

Γ

[

s+ t−∆1 −∆4

2

]

The above equation illustrates the fact that the position space correlator can be

expressed as the inverse Mellin transform of the Mellin amplitude and that the kine-

matical variables in the Mellin space are analogous to the Mandelstam variables.

3 Some Examples of Tree Diagrams

In this section we consider a few simple tree level examples which will illustrate the general

strategy we shall follow for deriving the Mellin amplitude of Feynman diagrams involving

only scalar fields. Specifically, we shall be looking at the contact interaction diagram, the

diagram with one internal propagator and the diagram with two internal propagators. The
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Mellin amplitude for the contact interaction diagram and one propagator diagram were

presented in [17]. We begin with these examples for pedagogy and completeness of our

presentation.

3.1 Contact Interaction

The position space Feynman diagram for the contact interaction is shown in Figure 1. In

this diagram, N external lines are meeting at the vertex u. We denote the scaling dimension

of the field correponding to the external vertex xi by ∆i. As mentioned earlier, we choose

to place the index upstairs to keep the notation compact when we discuss more complicated

Feynman diagrams.

u

x2 x3

xNx1

Figure 1. Contact Interaction Diagram

The position space correlation function corresponding to the contact interaction is given

by

I =

∫

dDu

2(2π)D/2

[

N
∏

i=1

(xi − u)−2∆i
Γ(∆i)

]

(3.1)

The factors of Γ(∆i) and π have been included for the sake of convenience1 later on. We

follow these conventions throughout the draft.

The expression is covariant under conformal transformations provided we impose the

following ‘conformality condition’ on the conformal dimensions

N
∑

i=1

∆i = D (3.2)

1In the rest of the draft, we denote the measure as

d
D
u

2(2π)D/2
≡ Du
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We now introduce a Schwinger parameter for each propagator via the identity

1

(x− y)2∆
=

1

Γ(∆)

∫ ∞

0
dα α∆−1 exp

[

−α(x− y)2
]

(3.3)

Using this identity in (3.1) gives,

I =

N
∏

i=1

[∫ ∞

0
dαi(αi)∆

i−1

] ∫

dDu

2(2π)D/2
exp

[

−
(

N
∑

i=1

αi(xi − u)2

)]

The factors of Γ(∆i) present in (3.1) are cancelled by the corresponding factors in (3.3).

Performing the Gaussian integration over u, we obtain

I =
1

2

N
∏

i=1

∫ ∞

0
dαi







(αi)∆
i−1

(
∑

i
αi)

D
2






exp



− 1
∑

i
αi





∑

j

∑

i<j

αiαj(xij)2







 (3.4)

where, xij ≡ xi − xj.

We shall now render (3.4) particularly suitable for imposing the conformality conditions

(3.2). For this, we insert the following partition of unity in (3.4)

1 =

∫ ∞

0
dv δ

(

v −
∑

i

αi

)

We then rescale the Schwinger parameters, αi → √
v αi and perform the integration over

the auxiliary variable v using delta function. The end result is

I =

N
∏

i=1

[∫ ∞

0
dαi(αi)∆

i−1

]

(

∑

i

αi

)

∑

i
∆i−D

exp



−
∑

j

∑

i<j

αiαj(xij)2



 (3.5)

We now impose the conformality condition (3.2) on equation (3.5) to obtain

I =
N
∏

i=1

[
∫ ∞

0
dαi(αi)∆

i−1

]

exp



−
∑

j

∑

i<j

αiαj(xij)2



 (3.6)

To proceed further, we now use the inverse Mellin transform representation of the expo-

nential function

e−x =
1

2πi

∫ i∞

−i∞
ds Γ(s)x−s (3.7)

The contour of integration is along the imaginary axis with an infinitesimal dent at the

origin so as to put the pole at the origin to the left of the contour.

Using (3.7) for the exponential factor in (3.6), we obtain,

I =
∏

j

∏

i<j

[∫ i∞

−i∞
[dsij](xij)−2sijΓ(sij)

] N
∏

i=1

[∫ ∞

0
dαi(αi)ρ

i−1

]

(3.8)
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where sij (corresponding to xij) are our Mellin variables and

ρi ≡ ∆i −
N
∑

j=1
j 6=i

sij , [dsij] ≡ dsij

2πi

The integral over each of the Schwinger parameters in (3.8) is an integral of an oscil-

latory function and due to this, each Schwinger parameter integral gives a delta function.

More specifically, we can use

∫ i∞

−i∞
[ds]f(s)

∫ ∞

0
dt ts−s0−1 =

∫

Re(s0)+i∞

Re(s0)−i∞
[ds]f(s) (2πiδ(s − s0))

This can be taken as an identity in Mellin space (and only in Mellin space). We prove this

in the Appendix B.2.

Using the identity above, the expression (3.8) becomes

I = (2πi)N
∏

j

∏

i<j

[∫ i∞

−i∞
[dsij](xij)−2sijΓ(sij)

]





∏

i

δ



∆i −
∑

j 6=i

sij







 (3.9)

We recognise that the delta function constraints ρi = 0 are precisely the constraints on

the Mellin variables discussed in section 2. These constraints originate from the fact that

the position space correlation function is covariant under conformal transformations. We

also note that these constraints reduce the number of independent Mellin variables from

N(N − 1)/2 to N(N − 3)/2 which is also the number of independent cross-ratios for N

points2.

We can now read off the Mellin ampltitude corresponding to the Feynman diagram in

Figure 1. Comparing (3.9) with the defining expression of Mellin amplitude (2.1), we find

that the Mellin amplitude for contact interaction is just 1, which as promised is conformally

invariant.

A careful look at (3.9) tells us that the N delta functions force the (xij)−2sij terms

to combine and form N(N−3)
2 cross ratios between the external vertices xi and some extra

factors that give appropriate transformation properties to the position space correlator.

3.2 Tree With One Internal Propagator

The next Feynman diagram that we consider (Figure 2) involves two internal vertices con-

nected by an internal propagator. This example will give us the expression for the scalar

propagator in Mellin space. γ denotes the scaling dimension of the internal propagator.

The position space expression for this diagram is given by

I =

∫

Du1 Du2

[

∏

i∈1

(xi1 − u1)
−2∆i

1Γ(∆i
1)
∏

j∈2

(xj2 − u2)
−2∆j

2Γ(∆j
2)(u2 − u1)

−2γ

]

2This is true in generic dimensions. In special cases, the number of independent cross ratios may be

different
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u1 u2

x
N1

1 x1
2

x
N2

2x1
1

γ

Figure 2. Two vertex

The conformality conditions for the two interaction vertices in this diagram are,

∑

i∈1

∆i
1 + γ = D ,

∑

i∈2

∆i
2 + γ = D (3.10)

We again use the identity (3.3) and introduce the Schwinger parameters for each propagator

(internal as well as external)

I =

[

∏

i∈1

∫ ∞

0
dαi

1(α
i
1)

∆i
1−1

∏

j∈2

∫ ∞

0
dαj

2(α
j
2)

∆j
2
−1 1

Γ(γ)

∫ ∞

0
dt tγ−1

]

∫

Du1 Du2

exp

(

−
∑

i∈1

αi
1(x

i
1 − u1)

2 −
∑

j∈2

αj
2(x

j
2 − u2)

2 − t(u2 − u1)
2

)

where t is the Schwinger parameter for the internal propagator.

Performing the u1 integration, we obtain

I =
1

2Γ(γ)

2
∏

a=1

∏

i∈a

(∫

dαi
a(α

i
a)

∆i
a−1

)∫ ∞

0
dt tγ−1

∫

Du2 exp

(

−
∑

j∈2

(xj2 − u2)
2

)

(

∑

i∈1

αi
1 + t

)−D/2
exp

(

−
(

∑

i∈1

αi
1 + t

)−1
{

∑

(i,j)∈1

αi
1α

j
1(x

ij
11)

2 + t
∑

i∈1

αi
1(x

i
1 − u2)

2

}

)

(3.11)

Next, we insert the partition of unity

1 =

∫ ∞

0
dy δ

(

y −
∑

i∈1

αi
1 − t

)

in the integral of (3.11), rescale the Schwinger parameters

αi
1 →

√
y αi

1 , t → √
y t (3.12)
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and perform the integration over the variable y using the delta function. The result is

I =
1

Γ(γ)

2
∏

a=1

∏

i∈a

[

∫ ∞

0
dαi

a(α
i
a)

∆i
a−1

]

∫ ∞

0
dt tγ−1

(

∑

i∈1

αi
1 + t

)

∑

i∈1

∆i
1
+γ−D

exp

(

−
∑

(i,j)∈1

αi
1α

j
1(x

ij
11)

2

)

∫

Du2 exp

(

−
∑

j∈2

αj
2(x

j
2 − u2)

2 − t
∑

i∈1

αi
1(xi − u2)

2

)

Next, we perform the u2 integration, insert the following partition of unity in the integral

1 =

∫ ∞

0
dy δ

(

y −
∑

i∈2

αi
2 − t

∑

i∈1

αi
1

)

,

carry out similar rescalings as in (3.12) (but this time, with the variables αi
2 and t) and

perform the integration over the auxiliary variable y. This gives,

I =
1

Γ(γ)

∏

i∈1

[∫ ∞

0
dαi

1(α
i
1)

∆i
1−1

]

∏

j∈2

[∫ ∞

0
dαj

2(α
j
2)

∆j
2
−1

] ∫ ∞

0
dt tγ−1

exp

(

−(1 + t2)
∑

(i,j)∈1

αi
1α

j
1(x

ij
11)

2 −
∑

(i,j)∈2

αi
2α

j
2(x

ij
22)

2 + t
∑

i∈1

∑

j∈2

αi
1α

j
2(x

ij
12)

2

)

(

(

1 + t2
)

∑

i∈1

αi
1 + t

∑

i∈2

αi
2

)

∑

i∈1

∆i
1+γ−D

(

∑

i∈2

αi
2 + t

∑

i∈1

αi
1

)

∑

i∈2

∆i
2
+γ−D

We impose the conformality conditions (3.10), and then use the identity (3.7) for each

exponential factor. After some rearrangement, we obtain,

I =
1

Γ(γ)

∏

(i,j)∈1+2

(

∫ i∞

−i∞
[dsijab]Γ(s

ij
ab)
(

(xijab)
2
)−sijab

)

∏

i∈1

(

∫ ∞

0
dαi

1(α
i
1)

ρi
1
−1

)

∏

j∈2

(

∫ ∞

0
dαj

2(α
j
2)

ρj
2
−1

)

∫ ∞

0
dt tγ−s12−1(1 + t2)−s11 (3.13)

where,

ρi1 ≡ ∆i
1 −

∑

j∈1

sij11 −
∑

j∈2

sij12 , (i ∈ 1)

ρi2 ≡ ∆i
2 −

∑

j∈2

sij22 −
∑

j∈1

sji12 , (i ∈ 2)

s12 ≡
∑

i∈1

∑

j∈2

sij12 ; saa ≡
∑

1≤i<j≤Na

sijaa , a = 1, 2

Once again, the integrals over the Schwinger parameters αi
1 and αi

2 act as delta functions

in the Mellin space (see appendix B.2). This means that the Mellin variables satisfy the

constraints

ρi1 = 0 = ρi2 ∀ i (3.14)
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These reduce the number of independent Mellin variables from (N1 +N2)(N1 +N2 − 1)/2

to (N1+N2)(N1+N2−3)/2. Summing over i and using the conformality conditions (3.10)

gives useful relations between the Mellin variables

∑

i∈1

∆i
1 = 2s11 + s12 = D − γ ,

∑

i∈2

∆i
2 = 2s22 + s12 = D − γ (3.15)

By comparing (3.13) with the definition of Mellin amplitude (2.1) (taking into account the

constraints (3.14)), we can easily read off the Mellin amplitude to be

M(s12) =
1

Γ(γ)

∫ ∞

0
dt tγ−s12−1(1 + t2)−s11 =

1

2Γ(γ)
β
(γ − s12

2
,
D

2
− γ
)

(3.16)

where we have used (3.15) to simplify the arguments of beta function.

The physical interpretation of the amplitude is clear. We can identify the beta function

to be the Mellin space propagator. Moreover, the poles of the beta function have clear

physical interpretation. At this stage, it is convenient to introduce dual Mellin momenta.

If the Mellin momentum flowing into the internal propagator through the external vertex

xia be kia (where we have suppressed the dual spacetime index), then the full momentum

propagating through the internal propagator is

k =
∑

i∈1

ki1 = −
∑

i∈2

ki2

and the kinematical variable entering into the propagator is

s12 =
∑

i∈1

∑

j∈2

sij12 =

(

∑

i∈1

ki1

)

·





∑

j∈2

kj2



 = −k2

This means that the poles of the propagator appear at particular values of the k2, namely

s12 = −k2 = γ + 2n ; n = 0, 1, 2, · · ·

These poles correspond to the primary (n = 0) and descendant (n > 0) propagating states.

3.3 Tree With Two Internal Propagators

In order to check our interpretation of the result (3.16) as the propagator in Mellin space,

we consider one more example before generalising to arbitrary tree level diagrams. We

consider a Feynman diagram with two internal propagators. The position space expression

for this is given by

I =

∫

Du1Du2Du3

[

∏

i∈1

{

(xi1 − u1)
−2∆i

1Γ(∆i
1)
}

∏

i∈2

{

(xi2 − u2)
−2∆i

2Γ(∆i
2)
}

×
∏

i∈3

{

(xi3 − u3)
−2∆i

3Γ(∆i
3)
}

(u2 − u1)
−2γ12(u2 − u3)

−2γ23

]
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In this case, the conformality conditions are

∑

i∈a

∆i
a = D − γa,a+1 − γa−1,a , 1 ≤ a ≤ 3

where, γ01 = 0 = γ34.

For extracting the Mellin amplitude, we follow the same strategy as in the previous

examples. However, now we have to choose an ordering of the vertices ua for conducting

the manipulations. All the choices lead to the same result eventually3. We follow the order

u1 → u2 → u3. The final result turns out to be

I =

3
∏

a=1

3
∏

b=a

(

∏

(i,j)∈a+b

∫ i∞

−i∞

[

dsijab

]

Γ(sijab)
(

xijab
)−2sijab

)

3
∏

a=1

(

∏

i∈a

∫ ∞

0
dαi

a(α
i
a)

ρia−1

)

M(sab)

where,

ρia ≡ ∆i
a −

∑

j∈a

sijaa −
3
∑

b=1
b6=a

(

∑

j∈b

sijab

)

, 1 ≤ a ≤ 3

Again, the integration over the variables αi
a impose the constraints ρia = 0 which can be

re-written as (using the conformality conditions)

∑

i∈a

∆i
a = 2saa +

3
∑

b=1
b6=a

sab = D − γa−1,a − γa,a+1 , 1 ≤ a ≤ 3

Due to these constraints, the number of independent Mellin variables are only N(N − 3)/2

(where N is total number of external states). The Mellin amplitude is given by

M(sab) =
1

Γ(γ12)Γ(γ23)

∫ ∞

0
dt12(t12)

γ12−s12−s13−1

∫ ∞

0
dt23(t23)

γ23−s13−s23−1

(

1 + t212(1 + t223)
)−s11

(

1 + t223

)−s22−s12
(3.17)

=

[

1

2Γ(γ12)
β
(γ12 − s12 − s13

2
,
D

2
− γ12

)

][

1

2Γ(γ23)
β
(γ23 − s23 − s13

2
,
D

2
− γ23

)

]

This result, being a product of two beta functions with appropriate arguments, is

consistent with our interpretation of the Mellin space propagator (3.16). Moreover, the

poles of the propagator occur when the negative of the total Mellin momenta squared

flowing through it is equal to the conformal dimension of the primary and descendants.

This is easily seen by introducing the dual Mellin momenta and writing the arguments of

beta functions in terms of these momenta.

3The different choices for this ordering lead to integrals over the Schwinger parameters which are not

manifestly equal. For diagrams with higher number of interaction vertices, it can often be difficult to show

that these different integrals corresponding to the same Feynman diagram are all equal.
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4 General Tree Level Feynman Diagrams

We now consider general tree level Feynman diagrams. We shall show that the Mellin

amplitude for an arbitrary tree diagram is given by the product over internal propagators.

For each internal propagator, we obtain a factor of beta function with appropriate arguments

consistent with the examples considered in the previous section.

In subsection 4.1, we present a diagrammatic algorithm to write down the Mellin am-

plitude (in terms of integrals over the Schwinger parameters) for any diagram involving

only scalar operators. In subsection 4.2, we consider a tree diagram with n internal vertices

such that one can go from one end of the diagram to the other end without encountering

any branches (figure 9). Finally, in subsection 4.3, we consider a completely general tree

diagram.

4.1 Diagrammatic Rules for Writing Mellin Amplitude

In this subsection, we present a diagrammatic technique which will be helpful in directly

writing down the Mellin space amplitudes as integrals over the Schwinger parameters. These

rules can be used for any tree as well as loop diagrams and will allow us to avoid going

through all the algebraic manipulations, as described in the examples of the section 3.

Although these rules are quite crucial in our derivation of the Mellin amplitude for a general

tree level Feynman diagram, a casual reader may skip this subsection and commence reading

from subsection 4.2.

For developing these rules, we shall use a simplified way to represent the Feynman

diagrams. In our diagrammatic algorithm, the external lines in a Feynman diagram would

not be playing any significant role. Hence, to simplify the diagrammatic representation, we

represent the set of external lines attached to an interaction vertex by a small hollow circle

at the vertex and the internal propagator by dashed lines. We call this the skeleton of the

Feynman diagram. The skeleton for the single propagator Feynman diagram we considered

earlier, is shown in Figure 3. Note that this way of representing a Feynman diagram is

insensitive to the number of external legs attached to any given interaction vertex.

u1 u2 ≡
u1 u2

Figure 3. Skeleton of the single propagator diagram
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4.1.1 Motivating the rules

To illustrate the diagrammatic rules, it is best to consider an explicit example. We consider

the two propagator case of section 3 for this purpose. The skeleton of this Feynman diagram

is shown in Figure 4.

u1 u2 u3

Figure 4. Tree level three vertex

For integrating over the position space vertices, we choose the ordering u1 → u2 → u3.

From the derivation given in the previous section, it is clear that when we integrate over a

vertex and perform the associated steps, all the lines connected to that vertex get connected

among themselves in the sense

∫

Du
∏

i

(

xi − u
)−2∆i

−→
∏

(

xi − xj
)−2sij

We represent this by replacing the small hollow circle associated to that vertex with a

bigger circle and the dashed lines connecting the adjacent un-integrated vertices with solid

lines. We associate a weight 1 with this bigger circle and a weight t12 with the solid line

(which is the Schwinger parameter associated with the line joining the vertices 1 and 2).

Diagrammatically, we can represent this step as in Figure 5 (from now on, we won’t write

the vertex indices ua)

1

t12

Figure 5. Diagrammatic representation of integration over vertex 1

Next, we perform the integration over the u2 vertex. The effect of integration over this

vertex is represented by replacing the small circle around it with a bigger circle, replacing

the dashed line connecting it with u3 vertex with a solid line and making one more circle

around the u1 vertex. Moreover, we also connect the vertices u1 and u3 by a different solid

line. Following the derivation, we see that we need to associate a weight 1 with the circle

around u2 vertex, a weight t23 with the solid line connecting u2 and u3 vertices, a weight

t12t23 with the solid line connecting u1 and u3 and a weight t212 with the new circle around

u1. This step, combined with the first step, can be represented as in Figure 6.

Finally, we integrate over the third vertex. The effect of this integration is represented

by making the small circle around that vertex bigger. Drawing another circles around

the first two vertices each and drawing another solid line connecting the first and second

vertices. We associate a weight of 1 for the circle around the third vertex, a weight of t223
for the new circle around the second vertex, a weight of t212t

2
23 for the new circle around the
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1

1

t212

t12 t23

t12t23

Figure 6. Diagrammatic representation of integration over second vertex

first vertex and a weight of t12t
2
23 for new solid line connecting the first two vertices. This

is shown in Figure 7.

11

1

1

t223

t212t
2
23 t212

t12 t23

t12t
2
23

t12t23

Figure 7. Diagrammatic representation of integration over third vertex

Next, we replace the two lines between the first two vertices by a single line and

associate a weight which is sum of the weights of previous two lines. Similarly, we replace

the multiple circles at each vertex by a single circle and associate a weight which is sum of

the weights of all circles initially present. After combining multiple lines and circles, Figure

7 has been redrawn in Figure 8.

To write the Mellin amplitude,

1. For each initial dashed line between the vertices ua and ub, we associate an integral

1

Γ(γab)

∫ ∞

0
dtab (tab)

γab−1

2. For each solid line and circle in the final diagram, we include in the integrand, the

corresponding weight factor raised to the power of sab where a and b are the two

vertices associated with the line or the circle (in which case a = b).

Following the steps described above, the Mellin amplitude for the three vertex tree can be
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1

1 + t223

1 + t212(1 + t223)
t12 + t12t

2
23 t23

t12t23

Figure 8. Final step for writing the Mellin amplitude

obtained to be

M(sab) =
1

Γ(γ12)Γ(γ23)

∫ ∞

0
dt12(t12)

γ12−1

∫ ∞

0
dt23(t23)

γ23−1

[

1 + t212(1 + t223)
]−s11[

1 + t223

]−s22[

t12(1 + t223)
]−s12[

t12t23

]−s13[

t23

]−s23

This is same as the expression (3.17) given in the previous section.

4.1.2 General Rules

We now state the general rules for writing down the Mellin amplitude for any given Feynman

diagram involving scalar fields. We start with the skeleton and follow the following steps for

each interaction vertex, one at a time. For a general Feynman diagram there is a freedom

to choose the order in which the different vertices are integrated over one by one. This

procedure works for any chosen ordering.

Diagrammatic representation of integrating over an interaction vertex

At any interaction vertex on the skeleton (which has not been integrated yet), in general,

there will be a small hollow circle denoting the external lines, and dashed and solid lines

for the internal propagators. To represent the effect of integration over this vertex, we do

the following:

1. Replace the small circle with a bigger circle and associate a weight 1.

2. If this vertex is connected by a solid line (with weight t) to another vertex which

already has a circle with some weight, draw another circle at that vertex. Associate

a weight t2 to this new circle.

3. If this vertex (that is being integrated over) is connected to another vertex with a

dashed line, we replace that dashed line with a solid line and associate a weight equal

to the Schwinger parameter for this internal line.

4. After the third step, if this vertex (which is being integrated over) happens to be

connected to two or more vertices {a} by solid lines with weights {ta}, then we join
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each pair of those vertices by a solid line as well. To the new line joining vertex a and

b, we associate the weight tatb.

5. If any two vertices are connected by multiple lines (or any vertex has multiple circles)

with each line (or circle) being associated with some weight, we replace them with a

single line (or a single circle) with a weight equal to the sum of the weights of the

individual lines (or circles). The final diagram should have a single line between any

two vertices and a single circle at each vertex.

6. If the vertex (which is being integrated over) is only connected with internal lines but

no external lines (in other words, it does not have small circle), then we do not make

a bigger circle around it. However, the steps 2-5 are still applicable.

Writing the Mellin amplitude

1. For each initial dashed line between the points a and b, we write an integral

1

Γ(γab)

∫ ∞

0
dtab (tab)

γab−1

2. For each solid line between the interaction vertices a and b (and a circle at a) in the

final diagram, we include in the integrand a factor equal to the corresponding weight

raised to the power sab (saa for the circle).

Although the output of this procedure is always the Mellin amplitude which is unique,

the exact expression for the integrand (function of the Schwinger parameters for the internal

lines) depends on the order we choose for integrating over the vertices. Also, it is not easy

to show by direct evaluation of the integrals that these different integrals are in fact equal.

For our purposes, we shall choose the order for integrating over the vertices that leads to

the simplest integral.

4.2 n-Vertex Simple Tree

In this subsection, we consider a tree level diagram with any number of interaction vertices

such that all the internal propagators are connected as a single chain. In other words, there

are no branches on the skeleton as shown in Figure 9. We refer to this diagram as the

simple n-vertex tree. The examples considered in section 3 are special cases of this.

u1 u2 u3 un

Figure 9. Simple tree with n vertices
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The position space amplitude for this diagram is given by the following integral expres-

sion

I =

n
∏

a=1

[

∫

Dua

{

∏

i∈a

(xia − ua)
−2∆i

aΓ(∆i
a)

}{

(ua − ua+1)
−2γa,a+1

}]

This expression can be brought to the standard form

I =

n
∏

a=1

n
∏

b=a

(

∏

(i,j)∈a+b

∫ i∞

−i∞

[

dsijab

]

Γ(sijab)
(

xijab
)−2sijab

)

n
∏

a=1

∏

i∈a

(

2πiδ(ρia)

)

M(sab) (4.1)

where, ρia ≡ ∆i
a −

∑

j∈a

sijaa −
n
∑

b=1
b6=a

(

∑

j∈b

sijab

)

, 1 ≤ a ≤ n (4.2)

For the standard order of integration over the position space vertices (namely, u1 → u2 →
· · · → un), the Mellin amplitude M(sab) in (4.1) is given by

M(sab) =
1

n−1
∏

a=1
Γ(γa,a+1)

n−1
∏

a=1

{

∫ ∞

0
dta,a+1

(

ta,a+1

)Ra−1
(

Gn
a

)−Qa

}

(4.3)

where,

Ra = γa,a+1 −
n
∑

b=a+1

a
∑

c=1

scb , Qa =

a
∑

b=1

sba , 1 ≤ a ≤ n− 1 (4.4)

Gb
a = 1 + t2a,a+1(1 + t2a+1,a+2(· · · · · · + t2b−1,b)) 1 ≤ a ≤ n− 1, a ≤ b (4.5)

To evaluate this integral, we start with the Schwinger variable tn−1,n and make a

coordinate transformation and a rescaling simultaneously

1 + t2n−1,n = yn−1 , yn−1t
2
n−2,n−1 → t2n−2,n−1

By making a further coordinate transformation yn−1− 1 → yn−1, the integration over yn−1

can be recognised as a beta function and we obtain

M(sab) =
1

n−1
∏

a=1
Γ(γa,a+1)

n−2
∏

a=1

{

∫ ∞

0
dta,a+1

(

ta,a+1

)Ra−1
(

Gn−1
a

)−Qa

}

1

2
β
(Rn−1

2
,
Rn−2 −Rn−1

2
+Qn−1

)

We iteratively perform similar steps in order to integrate over the remaining Schwinger

parameters and make necessary simplifications to obtain,

M(sab) =
1

n−1
∏

a=1
Γ(γa,a+1)

n−1
∏

a=1

1

2
β

(γa,a+1 −
∑

b∈La,a+1

∑

c∈Ra,a+1

sbc

2
,
D − 2γa,a+1

2

)

(4.6)
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where,

∑

b∈La,a+1

∑

c∈Ra,a+1

sbc ≡
a
∑

b=1

n
∑

c=a+1

sbc

The La,a+1 and Ra,a+1 appearing in above two equations stand for Left and Right respec-

tively. If we cut the diagram 9 along the propagator ta,a+1, the vertices will get divided in

two sets. The set La,a+1 includes all the vertices which lie to to left of the cut and the set

Ra,a+1 includes all the vertices which lie to the right of the cut. An example for n = 4 is

given in Figure 10 in which the sets L3,4 and R3,4 have been shown.

1 2 3 4

Left Right

Cutting the line t34

L3,4 = {1, 2, 3} R3,4 = {4}

Figure 10. Left and Right of a cut line

The result (4.6) is consistent with the previous examples as the Mellin amplitude is a

product over all the propagator factors (each of which is a beta function with appropriate

arguments). We can again introduce dual Mellin momenta and replace the Mellin variables

in the arguments of beta functions in favour of the total Mellin momenta flowing through the

propagator. The propagators develop a pole when the negative of total Mellin momenta

squared flowing through it becomes equal to the conformal dimension of a primary or

descendant flowing through it.

4.3 General Tree

In this section, we consider a completely general tree Feynman diagram and show that the

Mellin amplitude for it can be written in a simple form as product over all the internal

propagator factors.

The derivation of Mellin amplitude for such arbitrary tree Feynman diagrams is a

graph theoretic exercise and does not shed any light on the physical significance of the

result itself. Hence, in this section, we shall only state the final result and discuss it’s

physical significance. The details of the derivation have been presented in the appendix

D.1.

From the diagrammatic rules given in section 4.1, we know that the amplitude can be
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Figure 11. Example of a general tree level Feynman diagram (skeleton)

written in the following form

M ({sab}) =
∏

[
∫ ∞

0
dtab

(tab)
γab−1

Γ(γab)

]

F
(

{tab}, {sab}
)

(4.7)

The product runs over all the internal lines4. F is function of the Schwinger parameters

and the Mellin variables.

The function F depends on the order of integration of the position space vertices and,

in general, is a very complicated function of the Schwinger parameters. It turns out that

for the tree diagrams, it is possible to make a choice for the order in which the vertices are

integrated over such that the integral (4.7) can be performed easily. This has been described

in detail in the appendix D.1. With such a choice, the function F can be expressed as

F =
∏

all propagators

(tab)
−Pab(Aab)

−Qab

where,

Pab =
∑

c∈Lab

∑

d∈Rab

scd ; Qab =
∑

c∈Lab
c 6=a

∑

d∈L̃ab
d6=a

scd +
∑

d∈Lab

sad

The term involving the double sum in Qab is absent if there is no branching at the vertex

a in the skeleton. The tilde in one of the L in this double sum denotes the fact that we

should not include terms of the type scd where c and d are on the same branch in the set

Lab.

To define the function Aab, we shall need a reference vertex which can be chosen freely

from any one of the end vertices (a vertex with only one dashed line attached to it) on the

4Since we are considering a general tree which may have brances, it is not necessary that neighbouring

vertices will always be labelled with consecutive integers.
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skeleton. Let that vertex be P (see figure 15 and the related discussion in appendix D.1),

then

Aab ≡ 1 + t2ab
(

1 + t2bc
(

1 + ...(1 + t2oP)...
))

b,c,...,o are all on the shortest continuous route from a to the reference vertex P.

The final result, after integrating over all the Schwinger parameters in (4.7), turns out

to be a product of beta functions with one beta function for each internal propagator. The

arguments of beta functions involve the Left and Right part of the propagator as in the

case of simple tree in previous subsection. Since there may be branches in our tree, we need

to specify what Left and Right of a cut line mean in this context. As a rule, we refer to the

part of the diagram (after the cut) having the reference vertex P as the Right. With this,

we can write the Mellin amplitude for a completely general tree as

M ({sab}) =
∏ 1

2Γ(γab)
β







γab −
∑

c∈Lab

∑

d∈Rab

scd

2
,
D

2
− γab






(4.8)

The product is over all the internal propagators of the diagram.

The physical interpretation of the above result becomes clear if we again consider

the dual Mellin momenta. As before, we denote the Mellin momentum flowing into the

diagram through the external vertex xia by kia. We first note that the constraints on the

Mellin variables are automatically satisfied if the total Mellin momentum is conserved. The

constraint satisfied by the Mellin variables is

∑

b

(

∑

j∈b

sijab

)

= ∆i
a =⇒ kia ·

(

∑

b

∑

j∈b

kjb

)

= 0

where, we have used ∆i
a = −(kia)

2.

The simplest way to satisfy the above equation is by demanding that the total Mellin

momenta is conserved, namely
∑

b

∑

j∈b

kjb = 0.

Now, the full Mellin momentum propagating through an internal propagator, joining

the vertices a and b, is

k =
∑

c∈Lab

∑

i∈c

kic = −
∑

c∈Rab

∑

i∈c

kic

and the kinematical variable in the propagator is

∑

c∈Lab

∑

d∈Rab

scd =
∑

c∈Lab

∑

d∈Rab

∑

i∈c

∑

j∈d

sijcd =





∑

c∈Lab

∑

i∈c

kic



 ·





∑

d∈Rab

∑

j∈d

kjd



 = −k2

In terms of the Mellin momenta, the expression for the propagator can be written as

1

2Γ(γab)
β

(

1

2

(

γab + k2
)

,
D

2
− γab

)

=
1

Γ(γab)

∞
∑

n=0

Γ
(

γab − D
2 + 1 + n

)

n!Γ
(

γab − D
2 + 1

)

1

k2 + γab + 2n
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This shows that the total Mellin momentum (squared) flowing through the propagator

has poles at −γab−2n. These correspond to the propagation of a primary field (n = 0) and

the corresponding descendants (n > 0). The above sum representation of the propagator

is analogous to the Kählén Lehmann spectral representation in ordinary quantum field

theories.

The Feynman rules for tree level Feynman diagrams in perturbative CFT for scalar

fields is now obvious. The propagator for any internal line is given by (4.8) and we simply

multiply all the propagator factors of the diagram.

We would like to wrap up this discussion with a brief recapitulation of the most impor-

tant points we have learnt so far. Mellin space provides a manifest conformally invariant

representation for correlation functions in a CFT. At tree level, there exist a set of Mellin

space Feynman rules that can be associated with Feynman diagrams involving scalar op-

erators. Some linear combinations of the Mellin variables that appear in the propagators

can be interpreted as Mandelstam variables constructed out of the (hypothetical) external

Mellin momenta flowing into the diagram. The invariance of the amplitude under special

conformal transformation allows for a statement of conservation of Mellin momentum. All

the Mellin variables (or equivalently all the Mandelstam variables) are not independent and

the number of independent Mellin variables is equal to the number of independent cross

ratios between the external vertices in the diagram. Mellin space also allows a spectral

representation for the correlation functions as any propagator in the diagram has a discrete

infinite set of poles corresponding to the exchanged primary field and its descendants.

5 One-Loop Feynman Diagram

After deriving the Mellin space Feynman rules for tree level diagrams, the next step is to

consider loop diagrams. We have not yet been able to derive the Feynman rules for loop

diagrams. In this section, we shall content ourselves with the expression for the one-loop

Mellin amplitude as an integral over the internal Schwinger parameters. It may be possible

to derive the loop Feynman rules in Mellin space using an approach similar to the one

presented in appendix D.2 which treats the n-vertex simple tree in a way different from

what we have already seen in section 4.

The position space amplitude for the loop Feynman diagram in figure (12) is given by

I =

n
∏

a=1

[

∫

Dua
∏

i∈a

{

(xia − ua)
−2∆i

aΓ(∆i
a)
}

]

n
∏

b=1

(ub − ub+1)
−2γb,b+1 (5.1)

where n+ 1 ≡ 1.

5.1 One-Loop Mellin Amplitude

The Mellin amplitude for the n-vertex one-loop diagram can be derived using the position

space amplitude (5.1) by following the same procedure as in the previous sections for tree
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1

2 3

n− 1n

Figure 12. One loop diagram with n internal vertices

diagrams. The Mellin amplitude is written as integral over the Schwinger parameters and

the integrand depends upon the order in which we perform the integration over the inter-

action vertices in position space. For the cyclic order of integration (u1 → u2 → · · · → un),

the Mellin amplitude turns out to be

M(sab) =
n
∏

a=1

[∫ ∞

0
dta,a+1

(ta,a+1)
γa,a+1−1

Γ(γa,a+1)

] n−1
∏

a=1

n
∏

b=a

(

H̃b
a + K̃aK̃b

)−sab
(5.2)

where,

H̃b
a ≡ ta,a+1 · · · tb−1,bG

n−1
b 1 ≤ a < b ≤ n− 1

H̃a
a ≡ Gn−1

a 1 ≤ a ≤ n− 1

H̃n
a ≡ 0 1 ≤ a ≤ n

K̃a ≡
(

t1nt12 · · · ta−1,aG
n−1
a + ta,a+1 · · · tn−1,n

)

1 ≤ a ≤ n− 1

K̃n = 1

We have defined Gb
a in eq. A.1.

5.2 A Consistency Check

For the consistency of the diagrammatic algorithm (which works for any Feynman diagram)

given in section 4.1, the one loop amplitude considered above should reduce to the n-vertex

simple tree amplitude when we cut a propagator of the loop.5 This indeed turns out to be

the case which is a sanity check for the result (5.2).

It turns out that removing different propagators corresponds to the tree result written in

different forms. These different forms correspond to choosing different order of integration

for the position space vertices of the tree. For example, setting ta,a+1 to zero gives the

corresponding result for n vertex simple tree for which the integration has been performed

5Operationally, this can be done by “removing” the integration over the corresponding Schwinger pa-

rameter.
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in the order ua+1 → ua+2 → · · · → un → u1 → · · · → ua. As a special case, the limit

t1n → 0 gives the result for the standard order of integration (u1 → · · · → un) over the

position space vertices.

5.3 Special Case: Loop With 3 Internal Vertices

The conformal Mellin amplitude of one loop diagram with 3 internal vertices ( “delta”

diagram) can be exactly evaluated in terms of a tree amplitude (“star” tree diagram). This

happens due to the standard “star-delta” relation in an analogy with a similar result in

electrical circuits.

4

1

2 3

1

2 3

Figure 13. Skeleton of the “star” and the “delta”

The position space expression for the star diagram is

Istar =

∫

Du4

3
∏

a=1

[

∫

Dua

{

∏

i∈a

(xia − ua)
−2∆i

aΓ(∆i
a)

}

(ua − u4)
−2γ′

a,4

]

To show the equivalence with the 3 vertex loop, we need to perform the integration over

the central vertex u4. For this vertex, we perform the standard algebraic steps as in section

3.1 and obtain

Istar =
3
∏

a=1

{

∫

Dua
∏

i∈a

(xia − ua)
−2∆i

aΓ(∆i
a)

}

3
∏

a=1

(

∫ ∞

0
dta,4

(ta,4)
γ′

a,4−1

Γ(γ′a,4)

)

(

3
∏

a=1

∫

[dsa]Γ(sa)

)

{

t14t24(u1 − u2)
}−2s3{

t14t34(u1 − u3)
}−2s2{

t24t34(u2 − u3)
}−2s1

Integration over the Schwinger parameters ta,4 give 3 delta functions. We can thus per-

form the 3 integrals over sa. The resulting expression is proportional to the 3 vertex loop

amplitude in position space, i.e.

Istar =
Γ(γ12)Γ(γ23)Γ(γ13)

3
∏

a=1
Γ(γ′a,4)

3
∏

a=1

{

∫

Dua
∏

i∈a

(xia − ua)
−2∆i

aΓ(∆i
a)

}

× (u1 − u2)
−2γ12(u1 − u3)

−2γ13(u2 − u3)
−2γ23
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where,

γ′14 = γ12 + γ13 , γ′24 = γ12 + γ23 , γ′34 = γ13 + γ23

Thus, if we represent the internal propagator of 3 vertex loop by γab and those of the star

diagram by γ′a4, then the above relation says

Istar(sab, γ
′
ab) =

Γ(γ12)Γ(γ23)Γ(γ13)

Γ(γ′14)Γ(γ
′
24)Γ(γ

′
34)

× Idelta(sab, γab)

The star diagram is a tree diagram and its Mellin space amplitude can be easily written

down using the Feynman rules given in the previous sections. Thus, we find the 3 vertex

loop amplitude in Mellin space to be

Idelta =
1

8Γ(γ12)Γ(γ23)Γ(γ13)
β

(

γ12 + γ13 − s12 − s13
2

,
D

2
− γ12 − γ13

)

β

(

γ12 + γ23 − s12 − s23
2

,
D

2
− γ12 − γ23

)

β

(

γ13 + γ23 − s13 − s23
2

,
D

2
− γ13 − γ23

)

6 Non-Conformal Mellin Amplitudes

In this section, we revisit some of the tree level Feynman diagrams we have been considering

so far. However, this time we relax the conformality conditions imposed on them. The

motivation for defining these “non-conformal Mellin amplitudes” comes from noting that

exactly marginal deformations of CFTs are rare (generally arising only in some special

supersymmteric gauge theories).

We have been considering CFTs whose Lagrangian descriptions are in terms of scalar

fields. Since the couplings generically run with the energy scale, the beta function is non-

zero and conformal invariance is broken. Thus, even a classically marginal perturbation

generally breaks conformal invariance once quantum effects are included6. We thus study

these non-conformal Mellin amplitudes by considering a generic scalar perturbation around

a free CFT that may not preserve any of the conformal or scale symmetry. At an operational

level, we relax the conformality conditions that we have been imposing at each interaction

vertex.

6.1 Some Examples

As a concrete example, we consider the simple n-vertex tree of figure 9. The conformal

Mellin amplitude for this diagram was given in (4.3). If we do not impose the conformality

conditions, then instead of (4.1), we obtain

I =
n
∏

a=1

n
∏

b=a

(

∏

(i,j)∈a+b

∫ i∞

−i∞

[

dsijab

]

Γ(sijab)
(

xijab
)−2sijab

)

M̃(sab)

6We would like to thank R. Loganayagam for discussions on this issue.
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where,

M̃(sab) =

n
∏

a=1

(

∏

i∈a

∫ ∞

0
dαi

a(α
i
a)

ρia−1

)

n−1
∏

a=1

{

∫ ∞

0

dta,a+1

Γ(γa,a+1)

(

ta,a+1

)Ra−1
(

Gn
a

)−Qa

}

×
n
∏

a=1

{

a−1
∑

b=1

(

H a
b

∑

i∈b

αi
b

)

+

n
∑

b=a

(

H b
a

∑

i∈b

αi
b

)}−λa

≡ δ

(

n
∑

a=1

(λa − ρa)

)

M(sab) (6.1)

where ρia is defined in equation (4.2) and

Gc
a = 1 + t2a,a+1(1 + t2a+1,a+2(· · · · · · + t2c−1,c)) 1 ≤ a ≤ n− 1

H b
a = ta,a+1ta+1,a+2 · · · tb−1,bG

n
b , H a

a = G n
a

λa = D −
∑

i∈a

∆i
a − γa−1,a − γa,a+1 , 1 ≤ a ≤ n

ρa =
∑

i∈a

ρia , 1 ≤ a ≤ n

It is a simple exercise to extract the overall delta function from the expression of M̃(sab)

as we have done in equation (6.1). We shall take M(sab) in (6.1) to be the definition of the

“non-conformal Mellin amplitude” for n-vertex simple tree7.

One crucial limitation of this treatment that should be noted here is that the delta

function in (6.1) is graph dependent and consequently the definition of M(sab) is also

graph dependent. Therefore, although we can calculate M(sab) for individual diagrams,

that is not exactly equal to doing perturbation theory in Mellin space. The delta function

emerges in this context from the fact that the position space integrals still scale in a given

way, although this scaling property depends on the particular graph being considered and

may not refer to any symmetry of the theory itself.

The conformality condition amounts to setting all λa equal to zero. However, we work

with non zero λa. We have not been able to obtain any simple set of Feynman rules from

the general expression given in (6.1). We shall content ourselves with the special cases of

n = 1 and n = 2 which give us some interesting results.

6.1.1 Contact Interaction

For a single vertex (i.e. n = 1), the expression (6.1) gives

M̃(sij) =

N
∏

i=1

(

∫ ∞

0
dαi(αi)ρ

i−1

)

(

N
∑

i=1

αi
)

N∑

i=1

∆i−D

7We are using the same symbol M(sab) to denote both conformal as well as non-conformal Mellin

amplitudes. However, the distinction should be clear from the context.
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All symbols have their usual meaning as used previously. In the conformal case, the expres-

sion above just gives delta function constraints on the Mellin variables. We now evaluate

this in the non conformal case. For this, we insert the partition of unity

1 =

∫ ∞

0
dq δ

(

q −
N
∑

i=1

αi

)

in the above integral, make the coordinate transformations αi = q yi and use the identity

N
∏

i=1

∫ ∞

0
dxi (xi)ρ

i−1δ

(

1−
N
∑

i=1

xi

)

=

N
∏

i=1
Γ(ρi)

Γ

(

N
∑

i=1
ρi
) (6.2)

Using the expression for ρi, we finally obtain,

M(sij) =

N
∏

i=1
Γ






∆i −

N
∑

j=1
j 6=i

sij







Γ

(

D −
N
∑

i=1
∆i

) (6.3)

We have used the constraint arising from the overall delta function (see the definition (6.1))

to simplify the arguments of the Gamma function in denominator.

6.1.2 Tree With One Internal Propagator

We next consider the tree diagram with one internal propagator (i.e. n = 2). For n = 2,

the expression (6.1) reduces to

M̃(sab) =
1

Γ(γ)

2
∏

a=1

∏

i∈a

(

∫ ∞

0
dαi

a(α
i
a)

ρia−1

)

∫ ∞

0
dt (t)γ−s12−1

(

1 + t2
)−s11

(

(

1 + t2
)

∑

i∈1

αi
1 + t

∑

i∈2

αi
2

)−λ1
(

∑

i∈2

αi
2 + t

∑

i∈1

αi
1

)−λ2

(6.4)

where, we have relabelled t12 → t and γ12 → γ to match with our notation in section 3.

After some manipulations (see Appendix E), the non-conformal Mellin amplitude can be

extracted to be,

M(sab) =

3F2

(

γ − D

2
+ λ1 + λ2 ,

R1 + ρ1 − λ1

2
,
R1 + ρ2 − λ2

2
;
R1 + ρ1 + λ1

2
,
R1 + ρ2 + λ2

2
; 1

)

× 1

2Γ(γ)

2
∏

a=1

[

∏

i∈a

Γ(ρia)

]





Γ
(

R1+ρ1−λ1

2

)

Γ
(

R1+ρ2−λ2

2

)

Γ
(

R1+ρ1+λ1

2

)

Γ
(

R1+ρ2+λ2

2

)



 (6.5)

where, R1 = γ − s12 and λa = D − γ −∑
i∈a

∆i
a.

We now look at the pole structure and the conformal limit of the expression (6.5).
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Pole Structure

The poles of the amplitude (6.5) occur when the arguments of the gamma functions in the

numerator in second line are zero or negative integers (3F2 does not give rise to any pole).

Thus, as a function of the Mellin variables, the poles of the amplitude lie at

R1 + ρ1 − λ1

2
= −n =⇒ s11 + s12 =

∑

i∈1

∆i
a + γ − D

2
+ 2n

and,

R1 + ρ2 − λ2

2
= −n′ =⇒ s22 + s12 =

∑

i∈2

∆i
a + γ − D

2
+ 2n′

where, n, n′ are zero or arbitrary positive integers, i.e. 0, 1, 2, · · · .
This shows that in the non-conformal case there are two sets of poles, which in the

conformal limit λa → 0, coalesce to give the one set of poles we had earlier. It would be

interesting to find the physical interpretation, if any, of these two sets of poles.

Conformal Limit

In the conformal limit, we have λ1, λ2 → 0. To impose this limit, we first take λ1 → 0

keeping λ2 fixed and non-zero. In this limit, two of the arguments of the 3F2 hypergeometric

function in (6.5) will become identical and it will thus reduce to a 2F1 hypergeometric

function

M̃(sab) =
1

2Γ(γ)

2
∏

a=1

[

∏

i∈a

Γ(ρia)

]





Γ
(

R1+ρ2−λ2

2

)

Γ
(

R1+ρ2+λ2

2

)



 δ
(

ρ1 + ρ2 − λ2

)

2F1

(

γ − D

2
+ λ2 ,

R1 + ρ2 − λ2

2
;
R1 + ρ2 + λ2

2
; 1

)

Now using the Gauss identity (C.9), we obtain after some simplification

M̃(sab) =
1

2Γ(γ)

2
∏

a=1

[

∏

i∈a

Γ(ρia)

]





δ
(

ρ1 + ρ2 − λ2

)

Γ (λ2)



 β

(

R1 + ρ2 − λ2

2
,
D

2
− γ

)

If we now take the limit λ2 → 0, we recover the Mellin amplitude (3.16) for the conformal

case along with the delta function constraints (3.14) on the Mellin variables.

6.2 Scale Invariant Amplitudes and Off-Shell Interpretation

In usual QFTs, we often consider correlation functions in which the external legs are off-

shell. One puts these external legs on-shell via the LSZ procedure. It turns out that we

can define analogous “off-shell” objects for conformal field theories in Mellin space as well.

For this purpose, we consider position space correlation functions with scale covariance

(as in a theory with scale symmetry) 8 although they need not have the full conformal

8 In our notations, this would be equivalent to setting
∑

a

λa = 0 although individual λa need not be

equal to 0.
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covariance. We expect any physically interesting scale invariant theory to be conformally

invariant as well (see [26] and the references therein). However, it is still interesting to

consider this case, since as we shall argue below, the corresponding “Mellin amplitudes” seem

to be “off-shell” quantities that reduce to the “on-shell” Mellin amplitudes9 of conformally

invariant theories through an LSZ like procedure.

We can imagine extending the definition of the Mellin amplitude to scale invariant

theories in the following manner

A
(

xi
)

=
∏

i<j

(
∫ i∞

−i∞

dsij

2πi
Γ(sij)(xi − xj)−2sij

)

δ





∑

i

∆i −
∑

i 6=j

∑

j

sij



M
(

sij
)

As opposed to the N (number of external lines) delta function constraints for the conformal

amplitude (2.1), in this case we only have one overall constraint on the Mellin variables

resulting from the covariance under scale transformations. Therefore, the number of Mellin

variables in this case is only N(N−1)/2−1 which is also the correct number of independent

kinematical variables in a scale invariant theory.

For this case also, we can introduce the dual Mellin momenta in exactly the same

manner as before (see section 2). In terms of these dual momenta, the overall delta func-

tion constraint translates to the condition
∑

i(k
i)2 = −∑i∆

i which is weaker than the

conformal case (ki)2 = −∆i. However, we can still demand the conservation of these dual

momenta, i.e.
∑

i k
i = 010.

The contact interaction diagram has only one interaction vertex and ensuring scale

invariance automatically ensures conformal invariance as well. However, for more than one

interaction vertices, there is a difference between the scale and conformally invariant Mellin

amplitudes and the expressions for the former can be obtained by imposing
∑

a λa = 0 on

the corresponding non-conformal Mellin amplitudes. For example, for the single propagator

case, to obtain the scale invariant Mellin amplitude, we would need to impose λ1 + λ2 = 0

on (6.5).

From the examples given in subsection 6.1, we can see that each amplitude has a factor

involving the product over Gamma functions, namely,
∏

i Γ(ρ
i) (we have suppressed the

label for the internal vertices). We also know that the conformal Mellin amplitudes involve

product over delta functions with the same arguments, namely,
∏

i δ(ρ
i). In terms of dual

Mellin momenta, we can write

ρi = ∆i −
∑

j 6=i

sij = (ki)2 +∆i

Thus, in the conformal case, the delta functions impose a set of constraints (ki)2 +∆i = 0

which is the “on-shell” condition for the Mellin momenta. In contrast, for the scale invariant

amplitudes, we have Gamma functions with the same arguments for each external leg. In

the space of Mellin momenta, the “on-shell point” (or equivalently the conformal theory)

9(ki
a)

2 = −∆i
a being the on-shell condition.

10This is not possible when the scale covariance is also absent.
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lies at the pole of the Gamma function (where its argument vanishes). This motivates us

to interpret these Gamma functions as external leg factors. It is in this sense that the scale

invariant amplitudes are “off-shell” objects and imposing the conformality conditions is akin

to an LSZ prescription in which the external leg factors are replaced by the corresponding

delta functions. It would be very nice to take this observation further and put it on a more

rigorous footing.

7 Discussion

In this note, we have taken some steps in formulating Feynman rules in Mellin space for

weakly coupled CFTs. For simplicity, we have restricted to scalar operators. We considered

first the case when the weakly coupled CFT is defined as an exactly marginal perturbation

of a free CFT. In this context, we were able to prove in complete generality that the Mellin

amplitude for any tree level Feynman diagram involving only the scalar operators factorises

into a product of beta functions (with appropriate arguments involving Mellin variables)

each of which is associated with a propagator. The meromorphy of the Mellin amplitudes

and the identification of its poles with the exchanged primary and its descendants is manifest

from this result. We also gave a diagrammatic algorithm to write down the Mellin amplitude

of any diagram (tree as well as loops) in terms of integrals over the internal Schwinger

parameters. These are the main results of this note.

Thereafter, we undertook the study of one loop conformal Mellin amplitudes. However,

we have not been able, so far, to generalize the tree level Feynman rules to loops. We

discussed the scenario where a generic scalar perturbation about a free CFT breaks the

conformality of the theory. In particular, even if we add a classically marginal perturbation,

the loop corrections will, in general, break the marginality of the interaction rendering the

perturbative interacting theory non-conformal. We extended the definition of the Mellin

amplitudes as provided by Mack [1] to such a setting where we have only one constraint

restricting the number of independent Mellin variables. We calculated some simple examples

of these non-conformal Mellin amplitudes. The Beta function conformal propagator uplifts

to a 3F2 hypergeometric function in the non-conformal case. We also considered position

space correlators in theories with scaling symmetry but not the full conformal symmetry.

The corresponding Mellin amplitudes seem to be like “off-shell” objects which are related

to the “on-shell” conformal Mellin amplitudes through an LSZ like prescription.

One can compare these results at weak coupling to those at strong coupling obtained

using Witten diagrams in the dual bulk theory in AdS in [4, 5, 7]. As an example, we look

at the result obtained in [5] for the 4-point function exchange Witten diagram involving

scalars as shown in Figure 14.
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Figure 14. 4-point exchange Witten diagram

The Mellin amplitude for this diagram is given by (for a coupling constant g),

M(s12) =
1

2

g2

(s12 − γ)

Γ

(

∆1
1+∆2

1+γ−D
2

2

)

Γ

(

∆1
2+∆2

2+γ−D
2

2

)

Γ
(

1 + γ − D
2

)

3F2

(

2−∆1
1 −∆2

1 + γ

2
,
2−∆1

2 −∆2
2 + γ

2
,
γ − s12

2
;
2 + γ − s12

2
, 1 + γ − D

2
; 1

)

This Mellin amplitude has the same analytic structure as our corresponding result (3.16)

for the weak coupling case which is proportional to β
(γ−s12

2 , D2 − γ
)

.

It would be interesting to understand the extrapolation of the weak coupling results

to the strong coupling results (in the particular example we have considered, how the beta

function of the weakly coupled regime extrapolates to the 3F2 hypergeometric function in

the strong coupling regime). In the maximally supersymmetric case, it may be possible to

use the integrability of the boundary field theory as well as the string theory in the bulk to

understand this interpolation between the results at strong coupling and at weak coupling.

Our analysis throughout was somewhat limited as it dealt only with scalar operators.

It is important to extend this perturbative formalism to include tensor and spinor operators

as well. There are examples of 2 dimensional CFTs which only involve scalar fields11. For

such theories, one can try to apply this formalism. However, for application to higher

dimensional CFTs, the formalism needs to be extended as mentioned above. It will also be

nice if the tree level Feynman rules can be generalized to loop diagrams. One may expect,

in analogy with standard momentum space Feynman rules, that the loop amplitudes can be

expressed as an integral over undetermined loop variables, with a product of beta functions

(with appropriate arguments) in the integrand. If this is the case, it should be possible

11We would like to thank R. Loganayagam for drawing our attention to this.
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to systematically develop conformal perturbation theory in Mellin space to arbitrary loop

order.
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A Notations and Conventions

Notations for Most Used Variables

1. Mellin variable ≡ s

2. Internal Schwinger parameters ≡ t

3. External Schwinger parameters ≡ α

4. Conformal dimension of internal lines ≡ γ

5. Conformal dimension of external lines ≡ ∆

6. Coordinates of external vertices ≡ x

7. Coordinates of internal vertices ≡ u

8. Number of space-time dimensions ≡ D

Convention for Indices

1. The vertices are labeled by indices a, b, · · ·

2. The co-ordinate of the vertices are ua, ub, · · ·

3. The co-ordinate of all external points attached to the ath vertex are xia (we suppress

the spacetime Lorentz index)

4. The conformal dimension of the operator inserted at xia is ∆i
a
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5. The squared distance between two points xia and xjb is

(xia − xjb)
2 ≡ (xijab)

2 = (xjiba)
2

6. The Mellin variable dual to xijab is denoted by sijab which satisfies

sijab = sjiba and siiaa ≡ 0

Convention for Summations and Products

1. If there are Na external lines meeting at the ath vertex, then we denote

∑

i∈a

≡
Na
∑

i=1

= sum over all external lines connected to the vertex ua

∏

i∈a

≡
Na
∏

i=1

= product over all external lines connected to the vertex ua

2. For the double summation and products (which avoid over counting), we use the

notations
∑

1≤i<j≤Na

∑

≡
∑

(i,j)∈a

;
∏

1≤i<j≤Na

∏

≡
∏

(i,j)∈a

3. If the upper index is not mentioned then it implies that upper indices have been

summed over all possible values. e.g. for the Mellin variables, we shall use

saa ≡
∑

(i,j)∈a

sijaa ; sab = sba ≡
∑

i∈a

∑

j∈b

sijab , (a 6= b)

Some Other Conventions

1. Mellin measure [dsij ] ≡ dsij
2πi

2. Position space measure Du ≡ dDu
2(2π)−D/2

3. Mellin space delta function δM (s − s0) ≡ 2πi δ(s − s0)

Shorthand Notations

The Schwinger parameters in the integral expression of Mellin amplitude, for n-vertex

simple tree and one loop diagrams we consider in this draft, appear in a nice structure. It

is useful to introduce a short hand notations for these functions of Schwinger parameters.

These notations turn out to be especially convenient for various manipulations. Along with

these, we shall also introduce some functions of the Mellin variables.

Set 1 : Gc
a

Gc
a ≡ 1 + t2a,a+1(1 + t2a+1,a+2(· · · · · · + t2c−1,c)) 1 ≤ a ≤ n− 1

Ga
a ≡ 1 1 ≤ a ≤ n− 1 (A.1)

The value of the upstair index c will be greater than or equal to the lower index.
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Set 2 : H̃b
a

H̃b
a ≡ ta,a+1 · · · tb−1,bG

n−1
b 1 ≤ a < b ≤ n− 1

H̃a
a ≡ Gn−1

a 1 ≤ a ≤ n− 1

H̃n
a ≡ 0 1 ≤ a ≤ n

H̃b
a is not symmetric in its indices. A good mnemonic worth remembering is that upstairs

index is always larger than or equal to the downstairs index.

Set 3 : Ka and K̃a

Ka ≡ ta,a+1 · · · tn−1,n 1 ≤ a ≤ n− 1

Kn ≡ 1

K̃a ≡
(

t1nt12 · · · ta−1,aG
n−1
a +Ka

)

1 ≤ a ≤ n− 1

K̃n = 1

Set 4

Ra ≡ γa,a+1 −
n
∑

c=a+1

a
∑

b=1

(sbc) ; 1 ≤ a ≤ n− 1

B Mellin Transformation

B.1 Definition and Example

The Mellin transformation of a complex valued function f(x) of real variable x, is defined

as

M{f(x)} ≡ F (s) =

∫ ∞

0
xs−1f (x) dx (B.1)

The complex Mellin variable s is restricted to those values for which the above integral is

convergent. In general, the Mellin transform of f(x) exists in a vertical strip in the complex

s plane (analytic extension is usually possible).

The inverse Mellin transformation is given by

f (x) =

∫ c+i∞

c−i∞
[ds] F (s)x−s

where the constant c lies within the vertical strip in which the integral in (B.1) converges.

One well known example of the Mellin transform is the Gamma function which can be

represented as the Mellin transformation of e−x

Γ(s) =

∫ ∞

0
dx xs−1e−x

with the inverse transformation given by Cahen-Mellin integral

exp
(

−x
)

=

∫ c+i∞

c−i∞
[ds] Γ(s) x−s, c > 0
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B.2 Mellin Space Delta Function

In this section we want to show that under certain conditions (specified below), we have

I =

∫ i∞

−i∞
[ds]f(s)

∫ ∞

0
dt ts−so−1 ≡

∫

Re(s0)+i∞

Re(s0)−i∞
[ds]f(s)

(

2πi δ(s − s0)
)

(B.2)

i.e. inside the contour integral, the real integral
∫∞
0 dt ts−s0−1 behaves as the delta function

as long we can shift the contour (as done in the equation above) without crossing any poles.

In order to prove our claim, we perform a change of variable t = ex to get

I =

∫ i∞

−i∞
[ds]f(s)

∫ ∞

−∞
dx e(s−s0)x

Now, we note that the contour of integration for the complex variable s is along the imagi-

nary axis from −i∞ to i∞. If we shift the contour from Re(s) = 0 to Re(s) =Re(so) then,

the x integral becomes an oscillatory integral. For this to be valid, we need to ensure that

we don’t encounter any poles of f(s) while shifting the contour. For our purpose, this turns

out to be valid. Now, using the delta function representation

δ(y − a) =
1

2π

∫ ∞

−∞
dp ei(y−a)p

we obtain the desired result

I =

∫ i∞

−i∞
[ds]f(s)

[

2πδ
(

−i(s− s0)
)]

=

∫

Re(s0)+i∞

Re(s0)−i∞
[ds]f(s)

(

2πiδ
(

s− s0
)

)

C Some Useful Identities

1. The following Mellin-Barnes representation turns out to be very useful

1

(1 + z)a
=

1

Γ(a)

∫ i∞

−i∞
[ds] z−sΓ(a− s)Γ(s) (C.1)

2. The first Barnes lemma is
∫ c+i∞

c−i∞
[ds] β(a+ s, b− s)β(c+ s, d− s) = β(a+ d, b+ c) (C.2)

3. An useful rearrangement identity involving the product of beta functions is

β(a− u, u)β(d − u, k) = β(d− u, u)β(d, k) ; provided a = d+ k (C.3)

4. The recursive integral form of product of beta functions is

m−1
∏

a=1

∫ ∞

0
dta,a+1

(

ta,a+1

)Na−1
(

Gm
a

)−La

=
m−1
∏

a=1

1

2
β
(Na

2
, La +

Na−1 −Na

2

)

(C.4)

where N0 ≡ 0 and Gm
a is defined in appendix A.
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5. The definition of the Hypergeometric function is

pFq

(

a1, · · · , ap ; b1, · · · , bq ; x
)

=
Γ(b1) · · ·Γ(bq)
Γ(a1) · · ·Γ(ap)

∞
∑

n=0

Γ(a1 + n) · · ·Γ(ap + n)

Γ(b1 + n) · · ·Γ(bq + n)
xn (C.5)

with |x| < 1.

6. The recursive integration formula for hypergeometric functions is

β (ap+1, bq+1 − ap+1) p+1Fq+1

(

a1, · · · , ap+1 ; b1, · · · , bq+1 ; x
)

=

∫ 1

0
dt (t)ap+1−1(1− t)bq+1−ap+1−1

pFq

(

a1, · · · , ap ; b1, · · · , bq ; tx
)

(C.6)

7. Following identities relate two 3F2 hypergeometric functions with different arguments

3F2(a1, a2, a3; b1, b2; 1) = 3F2(a1, b2 − a2, b2 − a3; b2, b1 + b2 − a1 − a3; 1)

× Γ(b1)Γ(b1 + b2 − a1 − a2 − a3)

Γ(b1 − a1)Γ(b1 + b2 − a2 − a3)
(C.7)

and,

3F2(a1, a2, a3; b1, b2; 1)

= 3F2(b1 − a1, b2 − a1, b1 + b2 − a1 − a2 − a3; b1 + b2 − a1 − a2, b1 + b2 − a1 − a3; 1)

× Γ(b1)Γ(b2)Γ(b1 + b2 − a1 − a2 − a3)

Γ(a1)Γ(b1 + b2 − a1 − a2)Γ(b1 + b2 − a1 − a3)
(C.8)

8. The Gauss identity is

2F1(a1, a2; b1; 1) =
Γ(b1)Γ(b1 − a1 − a2)

Γ(b1 − a1)Γ(b1 − a2)
(C.9)

9. An integral representation of 2F1 is

2F1(a, b; c; z) =
1

B(b, c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt (C.10)

10. Following identity relates two 2F1 Hypergeometric function with different arguments

2F1(a, b; c; z) = (1− z)−a
2F1

(

a, c− b; c;
z

z − 1

)

(C.11)
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D Details of Some Tree Level Calculations

D.1 Mellin Amplitude of a Completely General Tree

In this appendix, we carry out the derivation of Mellin amplitude for an arbitrary tree

Feynman diagram and show that the amplitude is given by product of beta functions with

one beta function for each internal propagator.

From the diagrammatic rules described in section 4.1, we know that a general Mellin

amplitude takes the form

M ({sab}) =
∏

[
∫ ∞

0
dtab

(tab)
γab−1

Γ(γab)

]

F
(

{tab}, {sab}
)

(D.1)

The tab is the Schwinger parameter for the propagator joining the internal vertices a and b

and the product is over all the internal propagators of the Feynman diagram. The function

F is, in general, an arbitrary function of the Schwinger parameters tab and the Mellin

variables sab.

As mentioned earlier, the function F , for any given graph, depends on the order of

integration over the position space vertices. For a straight chain of propagators (as in

section 4.2), the natural choice is to go from one end to the other without any jumps. This

results in the simplest expression for F . For a tree with branches, this option is absent. We

shall, however, prescribe an order that gives an expression for F such that the integration

over the Schwinger parameters can be performed easily.

To specify the ordering, we first choose any one of the vertices, with only one edge

attached, to be the reference vertex P (see figure 15) on the skeleton diagram. In our

prescription, the integration over this vertex will be carried out after performing integration

over all the other vertices. For all the other vertices, the order is indicated by some arrows

on the lines. For drawing these arrows, one needs to follow two rules. The first rule is that,

among all the lines meeting at a vertex, there should be only one line with an outgoing

arrow. All the other lines attached to that vertex should have ingoing arrows. The second

rule is that any given vertex is integrated only after all the other vertices connected to it

by (lines with) ingoing arrows have been integrated over. Thus, P is the only vertex with a

single line which has an ingoing arrow and according to our prescription, it is integrated in

the end. Figure 15 gives an example of a compatible ordering using arrows. In this example,

an order allowed by the above rules is 1 → 3 → 2 → 4 → 5 → 6 → 7 → 8 → 9 → 10. This,

however, is not the only ordering consistent with our rules and all such allowed orderings

are equally good for our purpose.

We can now write down the function F for this prescribed order of integration for any

Feynman diagram using the diagrammatic rules described in section 4.1. We state the result

here in a graph independent manner. From the diagramatic rules, we know that each pair

of vertices a, b (which may be the same point also) of the Feynman diagram contributes a

multiplicative factor raised to −sab to F . In other words, if we denote this factor by Fab,
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4

5

6 7

8

9

10

P

Figure 15. Order of integration over the vertices depicted by the numbers (in increasing order)

then the function F is given by,

F =

N
∏

a=1

N
∏

b=1

(Fab)
−sab (D.2)

where N is the total number of internal vertices.

We now describe the functional dependence of F on Schwinger parameters. For this,

we draw the shortest continuous line (without raising the pen) between the two vertices a

and b on the skeleton diagram (via the vertices that come on the way). We refer to the set

of vertices that we cross as Aab. Since we are considering a tree, there will exist a vertex

in this set that is nearest to the reference vertex P. The set of vertices on the continuous

route from this vertex to P is denoted by Bab.

To see an example, let us consider the pair of points (3,5) in figure 15. Here, A35 =

{3, 4, 6, 5}. The vertex in the set A35 nearest to P is 6 and B35 = {6, 7, 9, 10}.
Since the vertices in the sets Aab and Bab form individual chains, there is always a line

on the skeleton diagram connecting the consecutive vertices in each of these sets. Below,

we shall make use of the Schwinger parameters corresponding to the propagators in these

lines.

The functional dependence of Fab on the Schwinger parameters can now be easily

written down by following the diagrammatic rules of section 4.1 and is given by

Fab =





|Aab|−1
∏

i=1

tAab(i)Aab(i+1)



Kab (D.3)

where |Aab| denotes the number of vertices in the set Aab and the product in the bracket is

over those propagators which lie along the shortest continuous line joining the two vertices

a and b. The function Kab is given by

Kab ≡ 1 + t2Bab(i)Bab(i+1)KBab(i+1)Bab(i+2) ; KBab(|Bab|−1)Bab(|Bab|) ≡ 1
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It should be emphasized that the above form of Fab is true only for the chosen order of

integration and will be different if we change the order.

As an example, for the Feynman diagram in figure 15, the factor F3,5 is given by

F3,5 = t34t46t65
(

1 + t267
(

1 + t279
(

1 + t29,10
)))

By using (D.3) in (D.2) and rearranging the terms, we can write a simplified expression

for the function F as

F =
∏

all propagators

(tab)
−Pab(Aab)

−Qab (D.4)

where,

Aab ≡ 1 + t2ab
(

1 + t2bc
(

1 + ...(1 + t2op)...
))

b,c,...,o are all on the shortest continuous route from a to the reference vertex P. In other

words, for each propagator on the skeleton graph, we draw the shortest continuous line

connecting it with the propagator containing the reference vertex P. tab, tbc, · · · , top are the

Schwinger parameters of the successive propagators on this line.

The functions Pab and Qab in (D.4) are given by

Pab =
∑

c∈Lab

∑

d∈Rab

scd ; Qab =
∑

c∈Lab
c 6=a

∑

d∈L̃ab
d6=a

scd +
∑

d∈Lab

sad

The Lab (Rab) in the above definition refer to the set of vertices which lie to the left (right)

of the propagator joining the vertex a and b. By convention, we call the set of vertices

which include the reference vertex P as Rab. The term involving the double sum in Qab is

absent if not more than two lines meet at the vertex a in the skeleton graph. The tilde in

one of the L in this double sum denotes the fact that we should not include terms of the

type scd where c and d are on the same branch in the set Lab.

Finally, we now need to integrate over the Schwinger parameters in (D.1). Since the

integrals are not factorised, we shall have to carry out one integral at a time and we shall

do that in an order compatible with the arrows on the skeleton (integrating over the line

involving the reference vertex P in the end). For example, for the figure 15, a compatible

order is t12 → t24 → t34 → t46 → t56 → t67 → t89 → t79 → t9,10. Carrying out these

integrals in exactly the same way as in the simple tree case in section 4.2 and using the

conformality conditions, we obtain the desired result (4.8).

D.2 Mellin-Barnes Approach to n-Vertex Tree

In this appendix, we present an alternative derivation of the factorization of n vertex tree

diagram. This derivation makes use of the Barnes’ first identity and shows the usefulness
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of the Barnes integrals for Mellin space.

We start by noting that the Mellin amplitude of n vertex simple tree of section (4.2)

can be written in a form which closely resembles the loop amplitude (5.2)

Mn(sab) =

n−1
∏

a=1

[
∫ ∞

0
dta,a+1(ta,a+1)

γa,a+1−1

] n
∏

b=c

n−1
∏

c=1

(

H̃b
c +KcKb

)−scb

where, the functions H̃b
a and Ka are defined in the appendix (A).

The basic idea is to use the identity (C.1) to convert the terms involving sum as products

of Mellin Barnes integrals. We then perform the integration over Schwinger parameters.

The Mellin Barnes integrations are performed in the end by making repeated use of Barnes

first lemma.

Using the identity (C.1) and noting that H̃n
a ≡ 0 ( which means that we only need to

introduce n(n− 1)/2 Barnes variables wab ), we obtain after making use of the definitions

of H̃b
a and Ka

M(sab) =

n−1
∏

b=1

n−1
∏

c=b

(∫ i∞

−i∞
[dwbc]β(sbc −wbc, wbc)

)∫ ∞

0
dtn−1,n

(

tn−1,n

)Rn−1−1

n−2
∏

a=1

(

∫ ∞

0
dta,a+1(ta,a+1)

Ra−1(Gn−1
a )−Qa

)

where,

Ra ≡ Ra − 2

a
∑

b=1

wbb − 2

a
∑

b=1

b−1
∑

c=1

wbc ; 1 ≤ a ≤ n− 1

Qa ≡
a
∑

b=1

(

sab − wab

)

; 1 ≤ a ≤ n− 1

tn−1,n integral is straightforward and it gives a Mellin space delta function. For integra-

tion over other Schwinger parameters, we use the identity (C.4). After simplifying the

expressions by making use of the conformal conditions, we obtain

M(sab) =
n−1
∏

b=1

{

n−1
∏

c=b

∫ i∞

−i∞
[dwbc] β(sbc −wbc, wbc)

}

n−2
∏

a=1

1

2
β
(Ra

2
,
D − 2γa,a+1

2

)

δM

(

Rn−1

)

(D.5)

where, γ01 ≡ 0 ≡ R0.

We note that we have obtained beta functions for only n− 2 propagators. The missing

propagator is hidden in the Mellin-Barnes integrals and the Mellin space delta function as
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we shall show below.

To perform the integration over the wab variables, we rewrite (D.5) as

M(sab) =

n−2
∏

b=1

{

n−2
∏

c=b

∫ i∞

−i∞
[dwbc] β(sbc − wbc, wbc)

}

n−2
∏

a=1

1

2
β
(Ra

2
,
D − 2γa,a+1

2

)

n−1
∏

b=1

{∫ i∞

−i∞
[dwb,n−1] β(sb,n−1 −wb,n−1, wb,n−1)

}

δM

(

Rn−1

)

(D.6)

The first line does not involve the wa,n−1 variables (note that for n vertex case, only

Rn−1 involves the wa,n−1 variables). This helps in performing the integration over wa,n−1

variables. We first use the delta function to get rid of integration over wn−1,n−1 and then

use the identity (C.2) to perform integration over other wa,n−1 variables. After carefully

keeping track of various terms, we obtain

M(sab) =
1

2

n−2
∏

b=1

{

n−2
∏

c=b

∫ i∞

−i∞
[dwbc] β(sbc − wbc, wbc)

}

n−2
∏

a=1

1

2
β
(Ra

2
,
D − 2γa,a+1

2

)

β

(

n−1
∑

a=1

sa,n−1 −
Rn−1 −Rn−2 +Rn−2

2
,

Rn−1 −Rn−2 +Rn−2

2

)

(D.7)

The factor of 1
2 in front arises due to the delta function in (D.6).

To proceed further, we note that the conformal condition at vertex 1 can be expressed

in following way

s11 =
R1

2
+

D

2
− γ12

This allows us to use the rearrangement identity(C.3) as

β (s11 − w11, w11)β

(R1

2
,
D − 2γ12

2

)

= β

(

R1

2
,
D − 2γ12

2

)

β

(

R1

2
− w11, w11

)

Using this, we can rewrite (D.7) as

M(sab) =
1

22
β
(R1

2
,
D − 2γ12

2

)

∫ i∞

−i∞
[dw11]β

(

R1

2
− w11, w11

)

∫ i∞

−i∞
[dw12]β (s12 − w12, w12)

∫ i∞

−i∞
[dw22]β (s22 − w22, w22)

n−2
∏

b

{

n−2
∏

c

∫ i∞

−i∞
[dwbc] β(sbc − wbc, wbc)

}

n−2
∏

a=2

1

2
β
(Ra

2
,
D − 2γa,a+1

2

)

β

(

n−1
∑

a=1

sa,n−1 −
Rn−1 −Rn−2 +Rn−2

2
,

Rn−1 −Rn−2 +Rn−2

2

)

(D.8)

The integrals in the third line do not include the integrations over the (w11, w12, w22)

variables. Moreover, these variables appear only in the form of sum ( i.e. w11 +w12 +w22)
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in the beta functions of last two lines. Hence, it is useful to use a new set of coordinates as

follows

{w11, w12, w22} → {w11, w22, u1} ; u1 ≡ w11 + w12 + w22

After this coordinate change, the last two lines of (D.8) do not include w12 or w22 variables

anywhere. They just appear in the first two lines. Performing the integration over these

variables using Barnes first lemma gives

M =
1

23
β
(R1

2
,
D − 2γ12

2

)

∫ i∞

−i∞
[du1]β

(

R1

2
+ s12 + s22 − u1, u1

)

β
(R2

2
− u1,

D − 2γ23
2

)

n−2
∏

b

{

n−2
∏

c

∫ i∞

−i∞
[dwbc] β(sbc − wbc, wbc)

}

n−2
∏

a=3

1

2
β
(Ra

2
,
D − 2γa,a+1

2

)

β

(

n−1
∑

a=1

sa,n−1 −
Rn−1 −Rn−2 +Rn−2

2
,

Rn−1 −Rn−2 +Rn−2

2

)

In the next step we use the conformal condition at the vertex 2 to use the rearrangement

identity (C.3) for the two beta functions inside the integration in the first line of the

above expression. After this, we note that the u1 variable appears in the combination

u1 + w13 + w23 + w33 in all but one of the beta function. We exploit this by trading the

u1 variable for a new variable u2 defined as u2 = u1 + w13 + w23 + w33. This allows us

to perform the integrations over w13, w23 and w33 variables using the Barnes’ first lemma.

The end result after this step is

M =
1

23
β
(R1

2
,
D − 2γ12

2

)

β
(R2

2
,
D − 2γ12

2

)

∫ i∞

−i∞
[du2]β

(

R2

2
+ s13 + s23 + s33 − u2, u2

)

n−2
∏

b

{

n−2
∏

c

∫ i∞

−i∞
[dwbc] β(sbc − wbc, wbc)

}

n−2
∏

a=3

1

2
β
(Ra

2
,
D − 2γa,a+1

2

)

β

(

n−1
∑

a=1

sa,n−1 −
Rn−1 −Rn−2 +Rn−2

2
,

Rn−1 −Rn−2 +Rn−2

2

)

Continuing this process iteratively, i.e. combining the beta functions and then making

a change of coordinate (such that only two beta functions involve the appropriate wab

variables), we obtain the desired result. We need to make repeated use of the identity

(conformal condition at ath vertex)

Ra

2
+

a+1
∑

b=1

sb,a+1 =
Ra+1

2
+

D

2
− γa+1,a+2 (D.9)
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In the end step, we obtain the desired result

M(sab) =
1

2

[

n−2
∏

a=1

1

2
β
(Ra

2
,
D − 2γa,a+1

2

)

]

∫ i∞

−i∞
[dun−3]β

(Rn−2

2
− un−3 , un−3

)

× β

(

n−1
∑

a=1

sa,n−1 −
Rn−1

2
+ un−3 ,

Rn−1

2
− un−3

)

=

n−1
∏

a=1

1

2
β
(Ra

2
,
D − 2γa,a+1

2

)

where, we have used the identity (D.9) for a = n− 1 after performing the un−3 integration.

E Details of Calculation in Section 6.1.2

In this appendix, we present the details of the calculation leading to the equation (6.5).

Our starting expression is (6.4). We insert a partition of unity in this expression in the

form

1 =

∫

dqa δ

(

qa −
∑

i∈a

∆i
a

)

; a = 1, 2

and make the coordinate transformations αi
a = qa yia (a = 1, 2) and then use the identity

(6.2) to obtain

M̃(sab) =
1

Γ(γ)

2
∏

a=1







∏

i∈a
Γ(ρia)

Γ (ρa)







∫ ∞

0
dt (t)R1−1

(

1 + t2
)−s11

∫ ∞

0
dq1 (q1)

ρ1−1

∫ ∞

0
dq2 (q2)

ρ2−1
(

q1
(

1 + t2
)

+tq2
)−λ1

(

t q1 + q2

)−λ2

where,

R1 ≡ γ − s12 and ρa ≡
∑

i∈a

ρia ; a = 1, 2

To proceed further, we rescale q2 → tq1q2 and obtain,

M̃(sab) =
1

Γ(γ)

2
∏

a=1







∏

i∈a
Γ(ρia)

Γ (ρa)







∫ ∞

0
dt (t)R1+ρ2−λ2−1

(

1 + t2
)−s11

∫ ∞

0
dq1dq2

(q1)
ρ1+ρ2−λ1−λ2−1 (q2)

ρ2−1
(

1 + t2 + t2q2

)−λ1
(

1 + q2

)−λ2

Integration over q1 gives a delta function using the identity (B.2). We now take out the

factor of 1 + t2 from the term containing the single power of λ1, rescale t2 → t and make a

further change of coordinates

q2 =
u

1− u
, t =

v

1− v
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This gives,

M̃(sab) =
1

2Γ(γ)

2
∏

a=1







∏

i∈a
Γ(ρia)

Γ (ρa)






δ
(

ρ1 + ρ2 − λ1 − λ2

)

∫ 1

0
du

∫ 1

0
dv (v)

R1+ρ2−λ2
2

−1

(u)ρ2−1
(

1− u
)λ2−ρ2−1(

1− v
)s11+λ1−

1

2
(R1+ρ2−λ2)−1

(

1 +
uv

1− u

)−λ1

Now, using the identities (C.10) and (C.11), we obtain

M̃(sab) =
1

2Γ(γ)

2
∏

a=1







∏

i∈a
Γ(ρia)

Γ (ρa)






δ
(

ρ1 + ρ2 − λ1 − λ2

)

β

(

R1

2
+

ρ2 − λ2

2
,
D

2
− γ

)

∫ 1

0
du (u)ρ2−1

(

1− u
)ρ1−1

2F1

(

λ1 ,
D

2
− γ ; s11 + λ1 ; u

)

We have also used

s11 + λ1 −
1

2
(R1 + ρ2 − λ2) =

D

2
− γ

Next, we use the identity (C.6) for a = 2, b = 1 and the identity (C.7) to obtain

M̃ (sab) =
1

2Γ(γ)

2
∏

a=1







∏

i∈a
Γ(ρia)

Γ (ρa)






β

(

R1

2
+

ρ1 − λ1

2
,
D

2
− γ

)

β
(

ρ1, ρ2

)

3F2

(

D

2
− γ , λ2 , ρ1 ; s11 + ρ1, λ1 + λ2 ; 1

)

δ
(

ρ1 + ρ2 − λ1 − λ2

)

In writing the above expression, we have used the fact that 3F2 is symmetric in first set of

three indices and the second set of two indices.

The above expression is not symmetric in the two vertices. We can put it in a symmetric

form by using the identity (C.8). After some simplification, we obtain the desired result

(6.5).
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