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Abstract

The Van der Waals-like phase transition is observed in temperature–thermal entropy plane in spherically 
symmetric charged Gauss–Bonnet–AdS black hole background. In terms of AdS/CFT, the non-local ob-
servables such as holographic entanglement entropy, Wilson loop, and two point correlation function of 
very heavy operators in the field theory dual to spherically symmetric charged Gauss–Bonnet–AdS black 
hole have been investigated. All of them exhibit the Van der Waals-like phase transition for a fixed charge 
parameter or Gauss–Bonnet parameter in such gravity background. Further, with choosing various values 
of charge or Gauss–Bonnet parameter, the equal area law and the critical exponent of the heat capacity are 
found to be consistent with phase structures in temperature–thermal entropy plane.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Van der Waals-like behavior of a black hole is an interesting phenomenon in black hole 
physics. It helps us to understand new phase structure in black hole thermodynamics. In the 
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pioneering work [1], it was found that a charged AdS black hole exhibits the Van der Waals-
like phase transition in the T − S plane. As the charge of the black hole increases from small 
to large, the black hole will undergo first order phase transition and second order phase transi-
tion successively before it reaches to a stable phase, which is analogous to the van der Waals 
liquid–gas phase transition. The Van der Waals-like phase transition has also been observed in 
the Q − � plane [2], where Q is electric charge and � is the chemical potential. Further, the 
Van der Waals-like phase transition can be realized in the P − V plane [3–10], where the neg-
ative cosmological constant is treated as the pressure P and the thermodynamical volume V is 
the conjugating quantity of pressure.

By AdS/CFT, [11–14] has investigated holographic entanglement entropy [15,16] in a fi-
nite volume quantum system which is dual to a spherical and charged AdS4 black hole. Their 
results showed that there exists Van der Waals-like phase transition in the entanglement entropy–
temperature plane. This phase transition is analogous with thermal dynamical phase transition. 
The critical exponent of the heat capacity for the second order phase transition was found to be 
consistent with that in the mean field theory. Meanwhile [17] investigated exclusively the equal 
area law in the entanglement entropy–temperature plane and found that the equal area law holds 
regardless of the size of the entangling region. There have been some extensive studies [18–23]
and all the results showed that as the case of thermal dynamical entropy, the entanglement entropy 
exhibited the Van der Waals-like phase transition. These results indicate that there is some in-
trinsic relation between black hole entropy and holographic entanglement entropy. Furthermore, 
expectation value of Wilson loop [24–28] and the equal time two point correlation function of 
heavy operators have some similar properties as the entanglement entropy [29–38] to reveal the 
phase transitions in quantum systems.

In this paper, we would like to extend ideas in [14] to study van der Waals-like phase tran-
sitions in a Gauss–Bonnet–AdS black hole with a spherical horizon in (4+1)-dimensions in 
the framework of holography. Firstly, we observe that the thermal dynamical entropy will un-
dergo the Van der Waals-like phase transition in temperature–thermal entropy plane. We also 
study Maxwell’s equal area law and critical exponent of the heat capacity, which are two char-
acteristic quantities in van der Waals-like phase transition. Secondly, we would like to study 
the holographic entanglement entropy for a fixed size of entangled region to confirm whether 
there is Van der Waals-like phase transition. More precisely speaking, considering that the holo-
graphic entanglement entropy formula should have quantum correction when the bulk theory 
has higher curvature terms. In terms of [39–46], one can study the holographic entanglement 
entropy with higher derivative gravity and see what will happen for the entanglement entropy. 
Further, we study the expectation value of Wilson loop and two point correlation function of 
heavy operator in the dual field theory to check whether these two objects also undergo the Van 
der Waals-like phase transition. We also check the analogous equal area law and critical expo-
nent of the analogous heat capacity, which are to make sure that all these nonlocal quantum 
observables will undergo van der Waals-like phase transition in the field theory dual to spher-
ical Gauss–Bonnet–AdS black holes. Our results confirm the fact that the nonlocal quantum 
objects are good quantities to probe the phase structures of the spherical Gauss–Bonnet–AdS 
black holes.

Our paper is organized as follows. In section 2, we review the black hole thermodynamics 
for the spherically symmetric Gauss–Bonnet–AdS black hole and discuss the Van der Waals-like 
phase transition in the T − S plane. We also check Maxwell’s equal area law and critical expo-
nent of the heat capacity numerically. In section 3, with the holographic entanglement entropy, 
Wilson loop, and two point correlation function, we will show all these quantum objects undergo 
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Van der Waals-like phase transition in the spherical Gauss–Bonnet–AdS black hole. In each sub-
section, the equal area law is checked and the critical exponent of the analogues heat capacity is 
obtained via data fitting. In the final section, we present our conclusions.

Note added: While this paper was close to completion, we have found that [47] also inves-
tigate holographic phase transition for a neutral Gauss–Bonnet–AdS black hole in the extended 
phase space, which partially overlaps with our work.

2. Thermodynamic phase transition in the Gauss–Bonnet gravity

2.1. Review of the Gauss–Bonnet–AdS black hole

The 5-dimensional Lovelock gravity can be realized by adding the Gauss–Bonnet term to 
pure Einstein gravity theory. As a matter field is considered, the theory can be described by the 
following action [48]

I = 1

2�p
3

∫
d5x

√−g

[
R + 12

L2
+ αL2

2
L4 − 4πFμν

μν

]
, (1)

with

L4 = Rμνρσ Rμνρσ − 4RμνR
μν + R2, (2)

where �p is Newton constant, α denotes the coupling of Gauss–Bonnet gravity, L stands for the 
Radius of AdS background, which satisfies the relation L2 = − 6

	
, Fμν = ∂μAν − ∂νAμ is the 

Maxwell field strength with the vector potential Aμ. In this paper, we use geometric units of 
c = G = h̄ = kB = 1. The Gauss–Bonnet–AdS black hole can be written as [49–51]

ds2 = −f (r)dt2 + dr2
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where M is the mass and Q is the charge of the black hole. In the low energy effective action 
of heterotic string theory, α is proportional to the inverse string tension with positive parameter. 
Thus in this paper we will consider the case α > 0 [36,52]. In addition, from (4), one can see that 
there is an upper bound for the Gauss–Bonnet parameter, namely α < L2/4.

In the Gauss–Bonnet–AdS background, the black hole event horizon rh is the largest root of 
the equation f (rh) = 0. At the event horizon, the Hawking temperature can be expressed as [53]
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h
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, (5)

in which we have used the relation 

M = 4L2Q2 + 3π2L2r4
h + 3π2αL2r2

h + 3π2r6
h

8πL2r2
. (6)
h
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The chemical potential in this background is 

� = Q

πr2
h

. (7)

The entropy of the black hole can be written as 

S = π2r3
h

2

(
6α

r2
h

+ 1

)
. (8)

Inserting (8) into (5), we can get the relation between the temperature and entropy T (S, Q). 
Next, we will employ this relation to study the phase structure of the Gauss–Bonnet–AdS black 
hole in the T − S plane.

2.2. Phase transition of thermal entropy

As we know, for a charged AdS black hole, the spacetime undergoes the Van der Waals-like 
phase transition as the charge changes from a small value to a large value. Especially there is a 
critical charge, for which the temperature and entropy satisfy the following relation (

∂T

∂S

)
Q

=
(

∂2T

∂S2

)
Q

= 0. (9)

In our background, the function T (S, Q) is too prolix so that we are hard to get the analytical 
value of the critical charge. We will get the critical charge numerically. In the Gauss–Bonnet 
gravity, it has been found that not only the charge but also the Gauss–Bonnet parameter will affect 
the phase structure of the black hole. When we discuss the effect of α on the phase structure, the 
symbol Q in (9) should be replaced by α.

In order to obtain an analogy with the liquid–gas phase transition in fluids, we can identify 
free energy F of black hole with the Gibbs free energy G = G(P, V ) of the fluid, where the 
P, V correspond to pressure and volume of fluid. In [3], the authors identify cosmology constant 
and curvature in black hole as pressure and volume to study analogy thermal dynamics. In [3], 
(T , S), (�, Q) and (V , P) are interpreted as conjugated variables in AdS black system. For our 
case, one can turn off α to obtain the AdS black hole system studied in [3]. In order to avoid the 
confusion, we choose two kinds of identifications shown in (10). 

Analogy
Fluid Gauss–Bonnet AdS black hole Gauss–Bonnet AdS black hole
Temperature Q α

Pressure, P T (α) T (Q)

Volume, V S(α) S(Q)

(10)

It should be stressed that though the Van der Waals-like phase transition can be constructed 
by transposing intensive with extensive variables with the help of (10), the fluid analogy of the 
Gauss–Bonnet–AdS black hole in our paper is incomplete. We should emphasize that the com-
plete understanding of the fluid analogy and exact definition of extensive variables are given 
in [3]. More precisely, in [3], the cosmological constant is treated as a thermodynamic pres-
sure and its conjugate quantity as a thermodynamic volume. The complete fluid analogy has 
been presented in [3]. In later part of this paper, we are mainly interested in the relation be-
tween the thermodynamic entropy and entanglement entropy. Thus it is convenient to discuss the 
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Fig. 1. Relations between entropy and temperature for different α with a fixed Q. In (a), curves from top to down 
correspond to cases when α varies from 0.015 to 0.035 with step 0.004, while in (b) these curves correspond to cases 
when α varies from 0.0264 to 0.0284 with step 0.0002. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

Van der Waals-like phase transition in the T − S plane and we can compare the phase structure 
of thermodynamic entropy and entanglement entropy transparently.

Firstly, we will fix the charge to discuss how the Gauss–Bonnet parameter affects the phase 
structure. We will set L = 1. For the case Q = 0, we know that in the Einstein gravity, the black 
hole undergoes the Hawking–Page transition. But in our background, we find the black hole 
undergoes the Van der Waals-like phase transition, which is shown in (a) of Fig. 1. 

Exactly, to get the Van der Waals-like phase transition in this case, we should find a critical 
value of the Gauss–Bonnet parameter. For the function T (S, Q) is too prolix, we will get it 
numerically. We plot a series of curves with taking different values of α in the T − S plane 
shown in (a) of Fig. 1, and one can read off the region of critical value of the Gauss–Bonnet 
parameter α which satisfies the condition ( ∂T

∂S
)α = 0. We plot a bunch of curves in the T − S

plane with smaller step so that we can get the precise critical value of α. From (b) of Fig. 1, 
we find the exact critical value of the Gauss–Bonnet parameter should be about 0.0278, which 
is labeled by the red dashed lines in (b) of Fig. 1. Finally, we adjust the value of α by hand to 
find the exact value of α that satisfies ( ∂T

∂S
)α = 0, which produces αc = 0.0277925. Adapting 

the same strategy, we also can get the critical value of the Gauss–Bonnet parameter for the case 
Q = 0.1, which produces αc = 0.01972. The phase structure for a fixed Q is plotted in Fig. 2. 
As α is fixed, we also can investigate how the charge affects the phase structure of the black 
hole. For the case α = 0.01 and α = 0.02, the critical charge Qc is found to be 0.1681103 and 
0.094984 respectively (Fig. 3). The phase structure for a fixed α is plotted in Fig. 4.

From Fig. 2 and Fig. 4, we know that these phase structures are similar to that of the Van der 
Waals phase structure. That is, the black hole endowed with different charges or Gauss–Bonnet 
parameters has different phase structures. As the value of the charge or Gauss–Bonnet parameter 
is smaller than the corresponding critical value, there is a three special phases region where a 
small black hole, large black hole and an intermediate black hole coexist. From data about Tf

Table 1, one can see Tf will increase with increasing charge Q with fixing α (α with fixing 
Q) to the critical Tc. When Tf < Tc, the small black hole will coexist with large black hole. 
One can make use of equal area law to determined Tf which is the temperature of coexistence 
of small black hole and large black hole. While the temperature increases to Tc, the swallow 
tails will shrink to a critical point and equal area will go to vanishing. The large black hole and 
small black hole will go to one black hole. This phenomenon will be analogous with the one in 
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Fig. 2. Relations between entropy and temperature for different α with a fixed Q. In (a), curves from top to down 
correspond to α = 0.02, 0.0277925, 0.035, and in (b) they correspond to α = 0.01, 0.01972, 0.03 respectively. The red 
dashed line and solid line correspond to the first order phase transition temperature Tf and second order phase transition 
temperature Tc . (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 3. Relations between the free energy and temperature.

Fig. 4. Relations between entropy and temperature for different Q with a fixed α. In (a), curves from top to down 
correspond to Q = 0.08, 0.1681103, 0.2, and in (b) they correspond to Q = 0.03, 0.094984, 0.13 respectively. The red 
dashed line and solid line correspond to the first order phase transition temperature Tf and second order phase transition 
temperature Tc . (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
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Table 1
Check of the equal area law in the T − S plane, where the relative error is defined by AL−AR

AR
.

Tf Smin Smax AL AR Relative error
Q = 0 0.4163 0.126349 2.11603 0.828192 0.828303 0.134%
Q = 1 0.4348 0.209455 2.32746 0.920752 0.920907 0.169%
α = 0.01 0.4377 0.152951 2.59566 1.06919 1.06917 0.018%
α = 0.2 0.4145 0.184371 1.95317 0.733093 0.733169 0.010%

Fig. 5. Relations between the free energy and temperature.

Van der Waals fluid below the critical temperature, as the volume decreased a certain pressure is 
reached in which gas and liquid coexist. In our case, we can map small black hole and large black 
hole to liquid phase and gas phase in fluid system in analogy sense. With increasing the value of 
the charge or Gauss–Bonnet parameter to the corresponding critical value, the small black hole 
and the large black hole will merge into one and squeeze out the unstable phase such that an 
inflection point emerges. In this situation, the divergence of the heat capacity implies that there 
is a second order phase transition. For the case that the value of the charge or Gauss–Bonnet 
parameter exceeds the corresponding critical value, the black hole is always stable.

The phase structures can also be observed in the F − T plane, in which F = M − T S is the 
Helmholtz free energy, and M is black hole mass. The pictures for different Q, α are shown in 
Fig. 3 and Fig. 5 We take the case Q = 0.03, α = 0.02 as an example to elaborate their relation. 
From (b) of Fig. 5, we find there is a swallowtail structure, which corresponds to the unstable 
phase in the top curve in (b) Fig. 4. The transition temperature Tf = 0.4145 is apparently the 
value of the horizontal coordinate of the junction between the small black hole and the large 
black hole. When the temperature is lower than the transition temperature Tf , the free energy 
of the small black hole is lowest which means the small hole is stable and dominant. As the 
temperature is higher than Tf , the free energy of the large black hole is lowest, so the large black 
hole dominates thereafter. The non-smoothness of the junction in Fig. 5 indicates that the phase 
transition is first order.

In addition, the critical temperature Tf also satisfies Maxwell’s equal area law 

AL ≡
S3∫

T (S,Q)dS = Tf (S3 − S1) ≡ AR, (11)
S1
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in which T (S, Q) is the analytical function mentioned above, S1 and S3 are the smallest and 
largest roots of the equation T (S, Q) = Tf . For different Q and α, the results are listed in Table 1. 
From this table, we find AL equals to AR within our numerical accuracy. So the equal area law 
still holds in the T − S plane.

For the second order phase transition in Fig. 2 and Fig. 4, we know that near the critical 
temperature Tc, there is always a relation [14]

log | T − Tc | = 3 log | S − Sc | + constant, (12)

in which Sc is the critical entropy corresponding to the critical temperature. With the definition 
of the heat capacity 

CQ = T
∂S

∂T

∣∣∣
Q

, (13)

one can get further CQ ∼ (T − Tc)
−2/3, namely the critical exponent is −2/3, which is the same 

as the one [54] from the mean field theory. Next, we will check whether there is a similar relation 
as (12) to check the critical exponent of the heat capacity in the framework of holography.

3. Phase structure of the non-local observables

Having understood the phase structure of the black hole from the viewpoint of thermodynam-
ics, we will employ the non-local observables such as holographic entanglement entropy, Wilson 
loop, and two point correlation function to probe the phase structure. The main motivation is to 
check whether the non-local observables exhibit the similar phase structure as that of the thermal 
entropy.

3.1. Phase structure probed by holographic entanglement entropy

The holographic entanglement entropy in the Gauss–Bonnet gravity can be proposed as 
[39–46]

SA = 2π

�3
p

∫
M

d3x
√

h
[
1 + αL2R

]
+ 4π

�3
p

∫
∂M

d2x
√

hαL2K. (14)

The first integral in (14) is evaluated on the bulk surface M , the second one is on boundary ∂M , 
which is the boundary of M regularized at r = r0, R is the Ricci scalar for the intrinsic metric 
of M , K is the trace of the extrinsic curvature of the boundary of M and h is the determinant 
of the induced metric on M . The second term in the first integral (14) is present due to higher 
derivative gravity appeared in the background. The minimal value of the functional (14) would 
give the entanglement entropy of the subsystem A.

For our background, the entangling surface is parameterized as a constant θ hypersurface 
θ = θ0 with coordinates 0 ≤ φ ≤ π, 0 ≤ ψ ≤ 2π . In this case, based on (14), we can get the 
equation of motion of r(θ)

π2r(θ)(r ′(θ)2(sin(θ)r(θ)2f ′(r(θ)) − 2 cos(θ)r ′(θ)) − 2r(θ)f (r(θ))(r(θ)(sin(θ)r ′′(θ)

− 3 + cos(θ)r ′(θ)) sin(θ)r ′(θ)2) + 4 sin(θ)r(θ)3f (r(θ))2) = 0, (15)

in which r ′ = dr/dθ . To solve this equation, we will resort to the following boundary conditions
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Fig. 6. Relations between holographic entanglement entropy and temperature for different α at a fixed Q. In (a), curves 
from top to down correspond to α = 0.02, 0.0277925, 0.035, and in (b) they correspond to α = 0.01, 0.01972, 0.03
respectively. The red dashed line and solid line correspond to the first order phase transition temperature Tf and second 
order phase transition temperature Tc . (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 7. Relations between holographic entanglement entropy and temperature for different Q at a fixed α. In (a), curves 
from top to down correspond to Q = 0.08, 0.1681103, 0.2, and in (b) they correspond to Q = 0.03, 0.094984, 0.13
respectively. The red dashed line and solid line correspond to the first order phase transition temperature Tf and second 
order phase transition temperature Tc . (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

r ′(0) = 0, r(0) = r0. (16)

In addition, to avoid the entanglement entropy to be contaminated by the surface that wraps 
the horizon, we will choose a small region A as in [14]. In this paper, we will choose θ0 = 0.2. 
Note that for a fixed θ0, the entanglement entropy is divergent, so it should be regularized by 
subtracting off the entanglement entropy in pure AdS with the same boundary region, denoted 
by S0. To achieve this, we are required to set a UV cutoff, which is chosen to be r0 = r(0.199). 
The regularized entanglement entropy is labeled as δS ≡ SA − S0.

With these assumptions, we can plot the phase structure of entanglement entropy for a fixed 
charge Q or a fixed Gauss–Bonnet parameter α, which are shown in Fig. 6 and Fig. 7. It is 
obvious that Fig. 6 and Fig. 7 resemble Fig. 2 and Fig. 4 respectively. Especially, the first order 
phase transition temperature Tf and second order phase transition temperature Tc are exactly the 
same as that in the T − S plane. We will employ the equal area law to locate the first order phase 



252 S. He et al. / Nuclear Physics B 915 (2017) 243–261
Table 2
Check of the equal area law in the T − δS plane, where the relative error is defined by AL−AR

AR
.

Tf δSmin δSmax AL AR Relative error
Q = 0 0.4163 0.00006408 0.0009523 0.00036975 0.00036984 0.02466%
Q = 0.1 0.4348 0.0001495 0.001124 0.00042361 0.00042367 0.01496%
α = 0.01 0.4377 0.0001149 0.0012467 0.00049540 0.00049571 0.06335%
α = 0.02 0.4145 0.00009349 0.0008822 0.00032692 0.00032696 0.01147%

transition temperature, and critical exponent of the analogous heat capacity to locate the second 
order phase transition temperature.

Similar to (11), the equal area law in T − δS plane can be defined as 

AL ≡
δSmax∫

δSmin

T (δS,Q)dδS = Tf (δSmax − δSmin) ≡ AR, (17)

in which T (δS) is an interpolating function obtained from the numeric data, Tf is the phase 
transition temperature, and δSmin, δSmax are the smallest and largest values of the equation 
T (δS) = Tf . For different Q and α, the calculated results are listed in Table 2. From this table, 
we can see that for the unstable region of the first order phase transition in the T − δS plane, the 
equal area law holds within our numeric accuracy.

In order to investigate the critical exponent of the second order phase transition in the T − δS

plane, we define an analogous heat capacity

C = T
∂δS

∂T
. (18)

Provided a similar relation as shown in (12) is satisfied, one can get the critical exponent of the 
analogous heat capacity immediately. So next, we are interested in the logarithm of the quantities 
T − Tc, δS − δSc, in which Tc is the second order phase transition temperature, and δSc is 
obtained numerically by the equation T (δS) = Tc. The relations between log | T − Tc | and 
log | δS − δSc | for different Q and α are shown in Fig. 8. By data fitting, the straight lines in 
Fig. 8 can be expressed as 

log | T − Tc | =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

20.3652 + 3.00026 log | δS − δSc |, for Q = 0, α = 0.0277925,

20.668 + 3.0015 log | δS − δSc |, for Q = 0.1, α = 0.01972,

20.817 + 3.00773 log | δS − δSc |, for Q = 0.1681103, α = 0.01,

20.8815 + 3.08132 log | δS − δSc |, for Q = 0.094984, α = 0.02.

(19)

It is obvious that for all the lines, the slope is about 3, which resembles that in (12). That is, the 
critical exponent of the analogous heat capacity in T − δS plane is the same as that in the T − S

plane, which once reinforce the conclusion that the phase structure of the entanglement entropy 
is the same as that of the thermal entropy.

3.2. Phase structure probed by Wilson loop

In this subsection, we will employ the Wilson loop to probe the phase structure of the Gauss–
Bonnet–AdS black hole. According to the AdS/CFT correspondence, the expectation value of 
the Wilson loop is related to the string partition function 
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Fig. 8. Relations between log | T − Tc | and log | δS − δSc | for different Q and α.

〈W(C)〉 =
∫

D�e−A(�0), (20)

in which C is the closed contour, �0 is the string world sheet which extends in the bulk with 
the boundary condition ∂�0 = C, and A(�0) corresponds to the Nambu–Goto action for the 
string. In the strongly coupled limit, we can simplify the computation by making a saddle point 
approximation and evaluating the minimal area surface of the classical string with the same 
boundary condition ∂�0 = C, which leads to [55]

〈W(C)〉 ≈ e−A(�), (21)

where � represents the minimal area surface. Next we choose the line with φ = π
2 and θ = θ0 as 

our loop. Then we can employ (θ, ψ) to parameterize the minimal area surface, which is invariant 
under the ψ -direction by our rotational symmetry. Thus the corresponding minimal area surface 
can be expressed as

A = 2π

θ0∫
0

r sin θ

√
r ′2

f (r)
+ r2dθ. (22)

Similar to the case of entanglement entropy, we will also use the boundary condition in (16)
to solve r(θ) with the choice θ0 = 0.2. We label the regularized minimal area surface as δA ≡
A − A0, where A0 is the minimal area in pure AdS with the same boundary region. We plot the 
relation between δA and T for different Q and α in Fig. 9 and Fig. 10. Comparing Fig. 9 and 
Fig. 10 with Fig. 2 and Fig. 4, we find they are the same nearly besides the scale of the horizontal
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Fig. 9. Relations between minimal area surface and temperature for different α at a fixed Q. In (a), curves from top 
to down correspond to α = 0.02, 0.0277925, 0.035, and in (b) they correspond to α = 0.01, 0.01972, 0.03 respectively. 
The red dashed line and solid line correspond to the first order phase transition temperature Tf and second order phase 
transition temperature Tc . (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 10. Relations between minimal area surface and temperature for different Q at a fixed α. In (a), curves from top 
to down correspond to Q = 0.08, 0.1681103, 0.2, and in (b) they correspond to Q = 0.03, 0.094984, 0.13 respectively. 
The red dashed line and solid line correspond to the first order phase transition temperature Tf and second order phase 
transition temperature Tc . (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

coordinate. The result tells us that the similar phase structure also shows up for the minimal 
surface area, which is the same as that of the entanglement entropy.

It is also necessary to check the equal area law for the first order phase transition and critical 
exponent of the analogous heat capacity for the second order phase transition in the T − δA

plane. The equal area law in this case can be defined as 

AL ≡
δAmax∫

δAmin

T (δA,Q)dδA = Tf (δAmax − δAmin) ≡ AR, (23)

in which δAmin, δAmax are the smallest and largest values of the equation T (δA) = Tf , where 
T (δA) is an interpolating function obtained by data fitting. For different Q and α, the calculated 
results are listed in Table 3. Obviously, as that in the T − δS plane, the equal area law also holds 
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Table 3
Check of the equal area law in the T − δA plane, where the relative error is defined by AL−AR

AR
.

Tf δAmin δAmax AL AR Relative error
Q = 0 0.4163 0.00007374 0.0007352 0.0002742 0.0002754 0.4048%
Q = 0.1 0.4348 0.0001110 0.0008404 0.0003172 0.0003171 0.008852%
α = 0.01 0.4377 0.00006426 0.0009327 0.0003785 0.0003801 0.4285%
α = 0.02 0.4145 0.00007167 0.0006778 0.0002513 0.0002512 0.01042%

Fig. 11. Relations between log | T − Tc | and log | δA − δAc | for different Q and α.

within our numeric accuracy, which implies that the minimal area surface owns the same first 
order phase transition as that of the thermal entropy.

For the second order phase transition, we are interested in the logarithm of the quantities 
T − Tc, δA − δAc, in which Tc is the second order phase transition temperature, and δAc is 
obtained numerically by the equation T (δA) = Tc. The relations between log | T − Tc | and 
log | δA − δAc | for different Q and α are shown in Fig. 11. The straight line in each subgraph 
can be fitted as 

log | T − Tc | =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

20.9318 + 2.98393 log | δA − δAc |, for Q = 0, α = 0.0277925,

21.843 + 3.04022 log | δA − δAc |, for Q = 0.1, α = 0.01972,

21.1332 + 3.0174 log | δA − δAc |, for Q = 0.1681103, α = 0.01,

21.5862 + 3.07862 log | δA − δAc |, for Q = 0.094984, α = 0.02.

(24)
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Similar to that of the entanglement entropy, the slope of the fitted straight line is also about 3, 
which implies that the critical exponent of the analogous heat capacity is −2/3 in the T − δA

plane. This result is consistent with that of the thermal entropy too, which reminds that the min-
imal area surface exhibits the same second order phase transition as that of the thermal entropy.

3.3. Phase structure probed by two point correlation function

In this subsection, we would like to study a scalar operator O with large conformal dimension 
� in the dual field theory. Due to the saddle point approximation, the equal time two point 
correlation function can be written as follows [56]〈

O(t, xi)O(t, xj )
〉 ≈ e−�L, (25)

in which L is the length of the bulk geodesic between the points (t, xi) and (t, xj ) on the AdS 
boundary. In our gravity model, we can simply choose (φ = π

2 , θ = 0, ψ = 0) and (φ = π
2 ,

θ = θ0, ψ = π) as the two boundary points. Then with θ to parameterize the trajectory, the 
proper length is given by

L =
θ0∫

0

√
r ′2

f (r)
+ r2dθ. (26)

With the boundary condition in (16), we can get the numeric result of r(θ) and further get L by 
substituting r(θ) into (26). Similarly, we label the regularized geodesic length as δL ≡ L − L0, 
where L0 is the geodesic length in pure AdS with the same boundary region. The relations
between δL and T for different Q and α are shown in Fig. 12 and Fig. 13. It is obvious that Fig. 12
and Fig. 13 resemble Fig. 2 and Fig. 4 respectively besides the scale of horizontal coordinate, 
which implies that the geodesic length owns the same phase structure as that of the thermal 
entropy. Especially they have the same first order phase transition temperature and second order 
phase transition temperature, which will be checked next by investigating the equal area law for 
the first order phase transition and critical exponent for the second order phase transition.

In the T − δL plane, the equal area law can be defined as 

AL ≡
δLmax∫

δLmin

T (δL,Q)d δL = Tf (δLmax − δLmin) ≡ AR, (27)

in which δLmin, δLmax are the smallest and largest values of the equation T (δL) = Tf , where 
T (δL) is also an interpolating function. For different Q and α, the results are listed in Table 4. We 
can see that in the T − δL plane, the equal area law holds within a reasonable numeric accuracy.

For the second order phase transition, we will investigate the relation between log | T − Tc |
and log | δL − δLc | for different Q and α, which are shown in Fig. 14. The straight lines in this 
figure can be fitted respectively as

log | T − Tc | =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

31.3704 + 3.02888 log | δL − δLc |, for Q = 0, α = 0.0277925,

32.1586 + 2.99908 log | δL − δLc |, for Q = 0.1, α = 0.01972,

32.4443 + 3.06135 log | δL − δLc |, for Q = 0.1681103, α = 0.01,

32.494 + 3.05543 log | δL − δLc |, for Q = 0.094984, α = 0.02.

(28)
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Fig. 12. Relations between geodesic length and temperature for different α at a fixed Q. In (a), curves from top to down 
correspond to α = 0.02, 0.0277925, 0.035, and in (b) they correspond to α = 0.01, 0.01972, 0.03 respectively. The red 
dashed line and solid line correspond to the first order phase transition temperature Tf and second order phase transition 
temperature Tc . (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 13. Relations between geodesic length and temperature for different Q at a fixed α. In (a), curves from top to down 
correspond to Q = 0.08, 0.1681103, 0.2, and in (b) they correspond to Q = 0.03, 0.094984, 0.13 respectively. The red 
dashed line and solid line correspond to the first order phase transition temperature Tf and second order phase transition 
temperature Tc . (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Table 4
Check of the equal area law in the T − δL plane, where the relative error is defined by AL−AR

AR
.

Tf δLmin δLmax AL AR Relative error

Q = 0 0.4163 2.1207 × 10−6 0.00002072 7.7104 × 10−6 7.7418 × 10−6 0.4058%
Q = 0.1 0.4348 3.2756 × 10−6 0.00002398 9.0415 × 10−6 9.0402 × 10−6 0.0147%
α = 0.01 0.4377 2.0984 × 10−6 0.00002661 0.00001051 0.000010727 1.9899%
α = 0.02 0.4145 1.3642 × 10−6 0.00001894 7.3222 × 10−6 7.2869 × 10−6 0.4820%

It is obvious that the slope of the fitted straight line is also about 3, which implies that the critical 
exponent of the analogous heat capacity is −2/3 in the T − δL plane. The phase structures 
shown by equal time two heavy operators correlation function are consistent with that given by 
the holographic entanglement entropy and expectation value of Wilson loop.
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Fig. 14. Relations between log | T − Tc | and log | δL − δLc | for different Q and α.

4. Conclusions

In this paper, we have studied the thermal entropy of a (4+1)-dimensional spherical Gauss–
Bonnet–AdS black hole and found that there is van der Waals-like phase transition in the T − S

plane for a fixed charge Q or a fixed Gauss–Bonnet parameter α. For the case Q = 0, the neural 
spherical Gauss–Bonnet–AdS black hole still undergoes the van der Waals-like phase transition 
rather than the Hawking–Page phase transition appeared in the Einstein gravity, which have been 
studied intensively.

For spherical AdS black hole in Einstein gravity, [14] has observed that holographic entan-
glement entropy will also undergo van der Waals-like phase transition which is much analogous 
to that in thermal entropy. We extended this observation to (4+1)-dimensional spherical Gauss–
Bonnet–AdS black hole and found there is a similar phenomenon. We apply AdS/CFT to study 
some non-local observables such as holographic entanglement entropy, Wilson loop, and two 
point correlation function, which are dual to the minimal volume, minimal area, and geodesic 
length respectively in the conformal field theory. For a fixed charge or a fixed Gauss–Bonnet 
parameter, all these quantities show that there exist van der Waals-like phase transitions, which 
happen in thermal entropy already. Below the critical charge or critical Gauss–Bonnet parameter, 
there exists phase which is composed by a small black hole, large black hole and an intermediate 
black hole. In this phase, the intermediate black hole will be not stable and the small black hole 
will directly jump to the large black hole as the temperature increases to the first order phase tran-
sition temperature Tf . More precisely, we checked Maxwell’s equal area law and found it was 
valid for all the charges and Gauss–Bonnet parameters to confirm the first order phase transition. 
As the value of the charge or Gauss–Bonnet parameter increases to the critical value, the small 
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black hole and the large black hole merges into one and the intermediate black hole disappears
at transition temperature Tc. For this case, phase transition will be the second order. The critical 
exponent of the analogous heat capacity is found to be consistent with that of the mean field 
theory. The black hole is always stable as the value of the charge or Gauss–Bonnet parameter is 
larger than the critical value. Our results confirm the fact that all the nonlocal quantities exhibit 
van der Waals-like phase transitions in the dual field theory regardless of the dual gravity model.
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