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Abstract

The Van der Waals-like phase transition is observed in temperature-thermal
entropy plane in spherically symmetric charged Gauss-Bonnet-AdS black hole
background. In terms of AdS/CFT, the non-local observables such as holo-
graphic entanglement entropy, Wilson loop, and two point correlation function
of very heavy operators in the field theory dual to spherically symmetric charged
Gauss-Bonnet-AdS black hole have been investigated. All of them exhibit the
Van der Waals-like phase transition for a fixed charge parameter or Gauss-
Bonnet parameter in such gravity background. Further, with choosing various
values of charge or Gauss-Bonnet parameter, the equal area law and the critical
exponent of the heat capacity are found to be consistent with phase structures
in temperature-thermal entropy plane.
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1 Introduction

The Van der Waals-like behavior of a black hole is an interesting phenomenon in black hole
physics. It helps us to understand new phase structure in black hole thermodynamics. In
the pioneering work [1], it was found that a charged AdS black hole exhibits the Van der
Waals-like phase transition in the T"— S plane. As the charge of the black hole increases
from small to large, the black hole will undergo first order phase transition and second
order phase transition successively before it reaches to a stable phase, which is analogous
to the van der Waals liquid-gas phase transition. The Van der Waals-like phase transition
has also been observed in the ) — ® plane [2], where @ is electric charge and ® is the
chemical potential. Further, the Van der Waals-like phase transition can be realized in the
P —V plane [3, 4, 5,6, 7, 8,9, 10]. Where the negative cosmological constant is treated as
the pressure P and the thermodynamical volume V' is the conjugating quantity of pressure.

By AdS/CFT [11, 12, 13], [14] has investigated holographic entanglement entropy [15,
16] in a finite volume quantum system which is dual to a spherical and charged AdS, black
hole. Their results showed that there exists Van der Waals-like phase transition in the
entanglement entropy-temperature plane. This phase transition is analogy with thermal
dynamical phase transition. The critical exponent of the heat capacity for the second
order phase transition was found to be consistent with that in the mean field theory.
Meanwhile [17] investigated exclusively the equal area law in the entanglement entropy-
temperature plane and found that the equal area law holds regardless of the size of the
entangling region. There have been some extensive studies [18, 19, 20, 21, 22, 23] and
all the results showed that as the case of thermal dynamical entropy, the entanglement
entropy exhibited the Van der Waals-like phase transition. These results indicate that
there are some intrinsic relation between black hole entropy and holographic entanglement
entropy. Furthermore, expectation value of Wilson loop [24, 25, 26, 27, 28] and the equal
time two point correlation function of heavy operators have some similar properties as the



entanglement entropy [29, 30, 31, 32, 33, 34, 35, 36, 37, 38] to reveal the phase transitions
in quantum systems.

In this paper, we would like to extend ideas in [14] to study van der Waals-like phase
transitions in a Gauss-Bonnet-AdS black hole with a spherical horizon in (4+41)-dimensions
in the framework of holography. Firstly, we observe that the thermal dynamical entropy
will undergo the Van der Waals-like phase transition in temperature-thermal entropy plane.
We also study Maxwell’s equal area law and critical exponent of the heat capacity, which are
two characteristic quantities in van der Waals-like phase transition. Secondly, we would like
to study the holographic entanglement entropy for a fixed size of entangled region to confirm
whether there is Van der Waals-like phase transition. More precisely speaking, considering
that the holographic entanglement entropy formula should have quantum correction when
the bulk theory have higher curvature terms. In terms of [39, 40, 41, 42, 43, 44, 45, 46],
one can study the holographic entanglement entropy with higher derivative gravity and see
what will happen for the entanglement entropy. Further, we study the expectation value of
Wilson loop and two point correlation function of heavy operator in the dual field theory
to check whether these two objects also undergo the Van der Waals-like phase transition.
We also check the analogous equal area law and critical exponent of the analogous heat
capacity, which are to make sure that all these nonlocal quantum observables will undergo
van der Waals-like phase transition in the field theory dual to spherical Gauss-Bonnet-AdS
black holes. Our results confirm the fact that the nonlocal quantum objects are good
quantities to probe the phase structures of the spherical Gauss-Bonnet-AdS black holes.

Our paper is organized as follows. In section 2, we review the black hole thermody-
namics for the spherically symmetric Gauss-Bonnet-AdS black hole and discuss the Van
der Waals-like phase transition in the 7'— S plane. We also check Maxwell’s equal area law
and critical exponent of the heat capacity numerically. In section 3, with the holographic
entanglement entropy, Wilson loop, and two point correlation function, we will show all
these quantum objects undergo Van der Waals-like phase transition in the spherical Gauss-
Bonnet-AdS black hole. In each subsection, the equal area law is checked and the critical
exponent of the analogues heat capacity is obtained via data fitting. In the final section,
we present our conclusions.

Note Added: While this paper was close to completion, we find [47] also investigate
holographic phase transition for a neutral Gauss-Bonnet-AdS black hole in the extended
phase space, which partially overlaps with our work.

2 Thermodynamic phase transition in the Gauss-Bonnet
gravity

2.1 Review of the Gauss-Bonnet-AdS black hole

The 5-dimensional Lovelock gravity can be realized by adding the Gauss-Bonnet term to
pure Einstein gravity theory. As a matter field is considered, the theory can be described



by the following action [48]
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where £, is Newton constant, a denotes the coupling of Gauss-Bonnet gravity, L stands for
the Radius of AdS background, which satisfies the relation L? = —%, F. =0,A, —0,A,
is the Maxwell field strength with the vector potential A,. In this paper, we use geometric
units of ¢ = G = h = kg = 1. The Gauss-Bonnet-AdS black hole can be written as
49, 50, 51]
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where M is the mass and () is the charge of the black hole. In the low energy effective
action of heterotic string theory, « is proportional to the inverse string tension with positive
parameter. Thus in this paper we will consider the case a > 0 [36, 52]|. In addition, from
(4), one can see that there is an upper bound for the Gauss-Bonnet parameter, namely
a< L?/4.

In the Gauss-Bonnet-AdS background, the black hole event horizon 7, is the largest
root of the equation f(ry) = 0. At the event horizon, the Hawking temperature can be
expressed as [53]

(6% T2 2
L? (3%27’2 ( (2 :’;1’) _ 1) — 8aQ2> + 1272ar?
T —

2
204712
12m3a L2r? (2atrd)” 4h)
h r
h

: (5)

in which we have used the relation

4L2Q? + 312 L2r} + 3w« l?r? + 3m%r!
8mL2r? ’ (6)

M =

The chemical potential in this background is

Q

Yy,

P —

no

—~
-

S~—

4



The entropy of the black hole can be written as

2,.3 6
S:W;h(—(;“). (8)

Ty

Inserting (8) into (5), we can get the relation between the temperature and entropy 7°(.S, @).
Next, we will employ this relation to study the phase structure of the Gauss-Bonnet-AdS
black hole in the T"— S plane.

2.2 Phase transition of thermal entropy

As we know, for a charged AdS black hole, the spacetime undergos the Van der Waals-like
phase transition as the charge changes from a small value to a large value. Especially there
is a critical charge, for which the temperature and entropy satisfy the following relation

(5),-(38),

In our background, the function 7'(S, Q) is too prolix so that we are hard to get the
analytical value of the critical charge. We will get the critical charge numerically. In the
Gauss-Bonnet gravity, it has been found that not only the charge but also the Gauss-
Bonnet parameter will affect the phase structure of the black hole. When we discuss the
effect of a on the phase structure, the symbol @ in (9) should be replaced by a.

Firstly, we will fix the charge to discuss how the Gauss-Bonnet parameter affects the
phase structure. We will set L = 1. For the case ) = 0, we know that in the Einstein
gravity, the black hole undergos the Hawking-Page transition. But in our background, we
find the black hole undergos the Van der Waals-like phase transition, which is shown in
(a) of Figure 1.
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Figure 1: Relations between entropy and temperature for different o with a fixed Q). In (a),
curves from top to down correspond to cases « varies from 0.015 to 0.035 with step 0.004, while
in (b) these curves correspond to cases « varies from 0.0264 to 0.0284 with step 0.0002.
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Figure 2: Relations between entropy and temperature for different o with a fixed Q. In (a),
curves from top to down correspond to a = 0.02,0.0277925,0.035, and in (b) they correspond
to a = 0.01,0.01972,0.03 respectively. The red dashed line and solid line correspond to the first
order phase transition temperature 7 and second order phase transition temperature 7¢.
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Figure 3: Relations between the free energy and temperature.

Exactly, to get the Van der Waals-like phase transition in this case, we should find a
critical value of the Gauss-Bonnet parameter. For the function 7'(S, Q) is too prolix, we
will get it numerically. ~ We plot a series of curves with taking different values of « in
the T'— S plane shown in (a) of Figure 1, and one can read off the region of critical value
of the Gauss-Bonnet parameter o which satisfies with the condition (g—g)a = 0. We plot
a bunch of curves in the T"— S plane with smaller step so that we can get the precise
critical value of a. From (b) of Figure 1, we find the exact critical value of the Gauss-
Bonnet parameter should be about 0.0278, which are labeled by the red dashed lines in
(b) of Figure 1. Finally, we adjust the value of a by hand to find the exact value of «
that satisfies (g—g)a = 0, which produces a, = 0.0277925. Adapting the same strategy, we
also can get the critical value of the Gauss-Bonnet parameter for the case () = 0.1, which
produces a. = 0.01972. The phase structure for a fixed @) is plotted in Figure 2. As « is
fixed, we also can investigate how the charge affects the phase structure of the black hole.
For the case a = 0.01 and o = 0.02, the critical charge ). are found to be 0.1681103 and
0.094984 respectively. The phase structure for a fixed « is plotted in Figure 4.

From Figure 2 and Figure 4, we know that these phase structures are similar to that of
the Van der Waals phase structure. That is, the black hole endowed with different charges
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Figure 4: Relations between entropy and temperature for different @) with a fixed . In (a),
curves from top to down correspond to @ = 0.08,0.1681103,0.2, and in (b) they correspond to
@ = 0.03,0.094984, 0.13 respectively. The red dashed line and solid line correspond to the first
order phase transition temperature 7 and second order phase transition temperature 7.

Ty Sin Sma Ap Ag relative error
Q=0 0.4163 | 0.126349 | 2.11603 | 0.828192 | 0.828303 0.134%
Q=1 0.4348 | 0.209455 | 2.32746 | 0.920752 | 0.920907 0.169%
a =0.011]0.4377 | 0.152951 | 2.59566 | 1.06919 | 1.06917 0.018%
a=0.2 |0.4145 | 0.184371 | 1.95317 | 0.733093 | 0.733169 0.010%

Table 1: Check of the equal area law in the T'— S plane. Where the relative error is defined
by A —ARr

AR
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Figure 5: Relations between the free energy and temperature.

or Gauss-Bonnet parameters have different phase structures. As the value of the charge or
Gauss-Bonnet parameter is smaller than the corresponding critical value, there is a three
special phases region where a small black hole, large black hole and an intermediate black
hole coexist. In this parameter region, the small stable hole will directly jump to the
large stable hole at the critical temperature T. With increasing the value of the charge
or Gauss-Bonnet parameter to the corresponding critical value, the small black hole and
the large black hole will merge into one and squeeze out the unstable phase such that
an inflection point emerges. In this situation, the divergence of the heat capacity implies
that there is a second order phase transition. For the case that the value of the charge or
Gauss-Bonnet parameter exceeds the corresponding critical value, the black hole is always
stable.

The phase structures can also be observed in the F' — T plane, in which F' = M — TS
is the Helmholtz free energy, where M is black hole mass, with taking the case @) =
0.03,« = 0.02 as an example. From (b) of Figure 5, there is a swallowtail structure, which
corresponds to the unstable phase in the top curve in (b) Figure 4. The critical temperature
Ty = 0.4145 is apparently the value of the horizontal coordinate of the junction between
the small black hole and the large black hole. When the temperature is lower than the
critical temperature 7Y, the free energy of the small black hole is lowest which means the
small hole is stable. As the temperature is higher than 7%, the free energy of the large
black hole is lowest, so the large black hole dominates thereafter. The non-smoothness of
the junction in figure 5 indicates that the phase transition is first order.

In addition, the critical temperature T also satisfy Maxwell’s equal area law

S3
A, = /S T(S,Q)dS = Ty(Ss — S1) = An, (10)

1

in which 7'(S, Q) is the analytical function mentioned above, S; and Sz are the smallest
and largest roots of the equation 7'(S,Q) = Ty. For different () and «, the results are
listed in Table 1. From this table, we find A equals to Az within our numerical accuracy.
So the equal area law still holds in the 7"— S plane.

For the second order phase transition in Figure 2 and Figure 4, we know that near the



critical temperature Ty, there is always a relation [14]
log | T —T.| =3log|S—S.|+constant , (11)

in which S, is the critical entropy corresponding the critical temperature. With the defi-
nition of the heat capacity

08

Co=T—
@ aT' lq
One can get further Cg ~ (T —T.)~%3 namely the critical exponent is —2/3, which is the
same as the one [54] from the mean field theory. Next, we will check whether there is a
similar relation as (11) to check the critical exponent of the heat capacity in the framework

of holography.

(12)

3 Phase structure of the non-local observables

Having understood the phase structure of the black hole from the viewpoint of thermody-
namics, we will employ the non-local observables such as holographic entanglement entropy,
Wilson loop, and two point correlation function to probe the phase structure. The main
motivation is to check whether the non-local observables exhibit the similar phase structure
as that of the thermal entropy.

3.1 Phase structure probed by holographic entanglement en-
tropy

The holographic entanglement entropy in the Gauss-Bonnet gravity can be proposed as
(39, 40, 41, 42, 43, 44, 45, 46].

Sa = ?g / &Pavh h [1+al*R] + ZZ—?’/ >z haL*K. (13)
The first integral in (13) is evaluated on the bulk surface M, the second one is on boundary
OM , which is the boundary of M regularized at r = ry, R is the Ricci scalar for the intrinsic
metric of M, IC is the trace of the extrinsic curvature of the boundary of M and h is the
determinant of the induced metric on M. The second term in the first integral (13) is
present due to higher derivative gravity appeared in the background. The minimal value
of the functional (13) would give the entanglement entropy of the subsystem A.

For our background, the entangling surface is parameterized as a constant 6 hypersur-
face 0 = 6 with coordinates 0 < ¢ < 7,0 < ¢ < 27. In this case, based on (13), we can
get the equation of motion of r(0)

w27 (0)(r'(0)* (sin(0)r (0)* f'(r(6)) — 2 cos(0)r'(0)) — 2r(0) f
—3 + cos(6)r'(9)) sin(6)r'(9)*) + 4sin(0)r(0)° f (r(6))?) =

(r(0))(r(0)(sin(0)r"(0)
0, (14)



in which " = dr/df. To solve this equation, we will resort to the following boundary

conditions

' (0) = 0,7(0) = ro. (15)
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Figure 6: Relations between holographic entanglement entropy and temperature for different «
at a fixed Q. In (a), curves from top to down correspond to a = 0.02,0.0277925,0.035, and in
(b) they correspond to o = 0.01,0.01972,0.03 respectively. The red dashed line and solid line
correspond to the first order phase transition temperature Ty and second order phase transition

temperature T.
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Figure 7: Relations between holographic entanglement entropy and temperature for different @
at a fixed a. In (a), curves from top to down correspond to = 0.08,0.1681103,0.2, and in
(b) they correspond to @ = 0.03,0.094984,0.13 respectively. The red dashed line and solid line
correspond to the first order phase transition temperature T and second order phase transition

temperature 7.

In addition, to avoid the entanglement entropy to be contaminated by the surface that
wraps the horizon, we will choose a small region as A as in [14]. In this paper, we will
choose 0y = 0.2. Note that for a fixed 6y, the entanglement entropy is divergent, so it
should be regularized by subtracting off the entanglement entropy in pure AdS with the
same boundary region, denoted by Sy. To achieve this, we are required to set a UV cutoff,
which is chosen to be rg = r(0.199). The regularized entanglement entropy is labeled as

0S5 =S4 — So.
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Ty 0Smin 0Smaz Ap Ag relative error
Q=0 0.4163 | 0.00006408 | 0.0009523 | 0.00036975 | 0.00036984 0.02466%
Q=0.1 |04348 | 0.0001495 | 0.001124 | 0.00042361 | 0.00042367 0.01496%
o =0.01{0.4377 | 0.0001149 | 0.0012467 | 0.00049540 | 0.00049571 0.06335%
a =0.02 | 0.4145 | 0.00009349 | 0.0008822 | 0.00032692 | 0.00032696 0.01147%

Table 2: Check of the equal area law in the T' — 6.5 plane. Where the relative error is
defined by ALA;RAR.

With these assumption, we can plot the phase structure of entanglement entropy for
a fixed charge () or a fixed Gauss-Bonnet parameter «, which are shown in Figure 6 and
Figure 7. It is obvious that Figure 6 and Figure 7 reassemble as Figure 2 and Figure 4
respectively. Especially, the first order phase transition temperature 7t and second order
phase transition temperature T, are exactly the same as that in the T'— S plane. We
will employ the equal area law to locate the first order phase transition temperature, and
critical exponent of the analogous heat capacity to locate the second order phase transition
temperature.

Similar to (10), the equal area law in 7" — §S plane can be defined as
— 0Smin) = Ar,

0Smax
AL = / T(5S,Q)d6S = Ty (5Sman (16)
4

Smin

in which 7°(0.S) is an interpolating function obtained from the numeric data, T} is the
phase transition temperature, and 0.5,,in, 0SS are the smallest and largest values of the
equation 7'(0S) = Ty. For different () and «, the calculated results are listed in Table 2.
From this table, we can see that for the unstable region of the first order phase transition
in the T"— 0.5 plane, the equal area law holds within our numeric accuracy.

In order to investigate the critical exponent of the second order phase transition in the
T — 0S plane, we define an analogous heat capacity

008

cC=T T

Provided a similar relation as showed in (11) is satisfied, one can get the critical exponent of

the analogous heat capacity immediately. So next, we are interested in the logarithm of the

quantities T—T,, 65—0995,, in which T, is the second order phase transition temperature, and

S, is obtained numerically by the equation 7'(0.5) = T.. The relation between log | T'—T. |

and log | 05—09, | for different @) and « are shown in Figure 8. By data fitting, the straight
lines in Figure 8 can be expressed as

(17)

20.3652 + 3.00026log | 6S — 5S. |,
20.668 + 3.00151log | 55 — 65, |,
20.817 4 3.00773log | §S — 85, |,
20.8815 + 3.081321log | 65 — 6S. |,

for @ = 0, = 0.0277925,
for @ = 0.1, = 0.01972,
for @ = 0.1681103, o = 0.01,
for @) = 0.094984, v = 0.02.

10g ‘ T — Tc |: (18)
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Figure 8: Relations between log | T'— T, | and log | 6S — .S, | for different @ and «

It is obvious that for all the lines, the slope is about 3, which resembles as that in (11).
That is, the critical exponent of the analogous heat capacity in 7' — 65 plane is the same
as that in the T'— S plane, which once reinforce the conclusion that the phase structure
of the entanglement entropy is the same as that of the thermal entropy.

3.2 Phase structure probed by Wilson loop

In this subsection, we will employ the Wilson loop to probe the phase structure of the
Gauss-Bonnet-AdS black hole. According to the AdS/CFEFT correspondence, the expecta-
tion value of the Wilson loop is related to the string partition function

W(C)) = / DEe A, 19)

in which C' is the closed contour, ¥ is the string world sheet which extends in the bulk
with the boundary condition 0¥y = C, and A(X) corresponds to the Nambu-Goto action
for the string. In the strongly coupled limit, we can simplify the computation by making a
saddle point approximation and evaluating the minimal area surface of the classical string
with the same boundary condition 9%, = C, which leads to [55]

(W(0)) ~ e, (20)

where ¥ represents the minimal area surface. Next we choose the line with ¢ = 7 and 6 = 6,
as our loop. Then we can employ (6,1) to parameterize the minimal area surface, which

is invariant under the -direction by our rotational symmetry. Thus the corresponding

12



minimal area surface can be expressed as

0o r2 )
A:27r/ rsin 6 + r2d0, 21
: 7 (1)

Similar to the case of entanglement entropy, we will also use the boundary condition in
(15) to solve r(#) with the choice 6y = 0.2. We label the regularized minimal area surface
as 0A = A— Ay, where Ay is the minimal area in pure AdS with the same boundary region.
We plot the relation between §A and T for different Q and « in Figure 9 and Figure 10.
Comparing Figure 9 and Figure 10 with Figure 2 and Figure 4, we find they are the same
nearly besides the scale of the horizonal coordinate. The result tells us that the similar
phase structure also shows up for the minimal surface area, which is the same as that of

the entanglement entropy.

| L L L L L L
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

(a) Q=0 (b) Q =0.1

Figure 9: Relations between minimal area surface and temperature for different o at a fixed
Q. In (a), curves from top to down correspond to a = 0.02,0.0277925,0.035, and in (b) they
correspond to a = 0.01,0.01972,0.03 respectively. The red dashed line and solid line correspond
to the first order phase transition temperature 7y and second order phase transition temperature

T..

oA

00000 00002 00004 00006 00008 00010 00012 00014

00000 00002 00004 00006 00008 00010 00012 00014

(a) o = 0.01 (b) a = 0.02

Figure 10: Relations between minimal area surface and temperature for different @ at a fixed «.
In (a), curves from top to down correspond to @ = 0.08,0.1681103, 0.2, and in (b) they correspond
to @ = 0.03,0.094984, 0.13 respectively. The red dashed line and solid line correspond to the first
order phase transition temperature 7 and second order phase transition temperature 7¢.
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Ty 0Ain 0A ax A Ag relative error
Q=0 0.4163 | 0.00007374 | 0.0007352 | 0.0002742 | 0.0002754 0.4048%
Q =0.1 |0.4348 | 0.0001110 | 0.0008404 | 0.0003172 | 0.0003171 | 0.008852%
o =0.01 1| 0.4377 | 0.00006426 | 0.0009327 | 0.0003785 | 0.0003801 0.4285%
o =0.02 | 0.4145 | 0.00007167 | 0.0006778 | 0.0002513 | 0.0002512 0.01042%

Table 3: Check of the equal area law in the T'— A plane. Where the relative error is
defined by ALA;RAR.
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Figure 11: Relations between log | T'— T, | and log | §A — 0 A, | for different @@ and «

It is also necessary to check the equal area law for the first order phase transition and
critical exponent of the analogous heat capacity for the second order phase transition in
the T'— 0 A plane. The equal area law in this case can be defined as

0Amax
AL E/

in which 64,5, 0Amae are the smallest and largest values of the equation T'(0A) = T,
where T'(6A) is an interpolating function obtained by data fitting. For different @) and «,
the calculated results are listed in Table 3. Obviously, as that in the T"— 0.5 plane, the
equal area law also holds within our numeric accuracy, which implies that the minimal
area surface owns the same first order phase transition as that of the thermal entropy.
For the second order phase transition, we are interested in the logarithm of the quanti-
ties T'—T,., )A—0A,, in which T, is the second order phase transition temperature, and A,
is obtained numerically by the equation T'(0A) = T.. The relation between log | T — T, |

T(0A, Q)dSA =T¢(6Amazr — 6 Amin) = Ag, (22)
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and log | dA — §A. | for different @) and a are shown in Figure 11. The straight line in
each subgraph can be fitted as

20.9318 + 2.98393log | 6A — 6A, |, for Q = 0, = 0.0277925,
21.843 + 3.040221log | 6A — 6A. |, for Q = 0.1, = 0.01972,
21.1332 + 3.01741log | 6A — 6A. |, for Q = 0.1681103, = 0.01,
21.5862 + 3.07862log | 6A — §A, |, for Q = 0.094984, o = 0.02.

log | T —T. |= (23)

Similar to that of the entanglement entropy, the slope of the fitted straight line is also
about 3, which implies that the critical exponent of the analogous heat capacity is -2/3 in
the T'— 0 A plane. This result is consistent with that of the thermal entropy too, which
reminds that the minimal area surface exhibits the same second order phase transition as
that of the thermal entropy.

3.3 Phase structure probed by two point correlation function

In this subsection, we would like to study a scalar operator O with large conformal dimen-
sion A in the dual field theory. Due to the saddle point approximation, the equal time two
point correlation function can be written as following with following [56]

(O(t,2,)O(t, 2;)) = e, (24)

in which L is the length of the bulk geodesic between the points (¢,z;) and (¢, ;) on the
AdS boundary. In our gravity model, we can simply choose (¢ = 5,0 = 0,7 = 0) and
(¢ = 5,0 = 0, = m) as the two boundary points. Then with ¢ to parameterize the
trajectory, the proper length is given by

=[5
With the boundary condition in (15), we can get the numeric result of () and further
get L by substituting r(6) into (2 ) Similarly, we label the regularized geodesic length as
0L = L — Ly, where L is the geodesic length in pure AdS with the same boundary region.
The relation between 0L and T" for different () and « are shown in Figure 12 and Figure 13.
It is obvious that Figure 12 and Figure 13 resemble as Figure 2 and Figure 4 respectively
besides the scale of horizontal coordinate, which implies that the geodesic length owns the
same phase structure as that of the thermal entropy. Especially they have the same first
order phase transition temperature and second order phase transition temperature, which
will be checked next by investigating the equal area law for the first order phase transition
and critical exponent for the second order phase transition.

In the T"— §L plane, The equal area law can be defined as

246, (25)

6Lmam
A, = / T(5L, Q)d 6L = Tr(SLinas — Lmin) = Ar (26)
6

min
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L ' gl L L
0 0.00001 0.00002 0.00003 0.00004 0 0.00001 0.00002 0.00003 0.

(a) Q =0,a = 0.0277925 (b) @ = 0.1, = 0.01972

Figure 12: Relations between geodesic length and temperature for different o at a fixed Q. In
(a), curves from top to down correspond to o = 0.02,0.0277925,0.035, and in (b) they correspond
to a = 0.01,0.01972,0.03 respectively. The red dashed line and solid line correspond to the first
order phase transition temperature T and second order phase transition temperature 7¢.

L I
¥ s
0 0.00001 0.00002 0.00003 0.00004 0 0.00001 0.00002 0.00003 0.

(a) o =0.01 (b) a = 0.02

Figure 13: Relations between geodesic length and temperature for different @ at a fixed a. In
(a), curves from top to down correspond to @ = 0.08,0.1681103,0.2, and in (b) they correspond
to @ = 0.03,0.094984, 0.13 respectively. The red dashed line and solid line correspond to the first
order phase transition temperature 7 and second order phase transition temperature 7¢.

in which §Lynin, 0Lme, are the smallest and largest values of the equation T'(0L) = T,
where T'(0L) is also an interpolating function. For different () and «, the results are listed
in Table 4. We can see that in the T"— §L plane, the equal area law holds within a

reasonable numeric accuracy.

For the second order phase transition, we will investigate the relation between log |
T —T. | and log | 0L — dL. | for different () and «, which are shown in Figure 14. The
straight lines in this figure can be fitted respectively as

31.3704 + 3.02888log | 6L — 6L, |, for Q = 0, a = 0.0277925,
32.1586 + 2.99908 log | 6L — 6L, |, for Q = 0.1, = 0.01972,
32.4443 + 3.06135log | 6L — 6L, |, for Q = 0.1681103, a = 0.01,
32.494 + 3.05543log | 6L — 6L. |,  for Q = 0.094984, o = 0.02.

lOg | T — Tc ‘: (27)

It is obvious that the slope of the fitted straight line is also about 3, which implies that the
critical exponent of the analogous heat capacity is -2/3 in the T'— §L plane. The phase
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Ty OLin OLax A Ag relative error
Q=0 0.4163 | 2.1207 x 1076 | 0.00002072 | 7.7104 x 1076 | 7.7418 x 1076 0.4058%
Q=0.1 |0.4348 | 3.2756 x 1076 | 0.00002398 | 9.0415 x 1076 | 9.0402 x 1076 0.0147%
a =0.011]0.4377 | 2.0984 x 10-6 | 0.00002661 | 0.00001051 0.000010727 1.9899%
a=0.02 ] 0.4145 | 1.3642 x 1076 | 0.00001894 | 7.3222 x 1076 | 7.2869 x 106 0.4820%

Table 4: Check of the equal area law in the 7" — §L plane. Where the relative error is
defined by ALA;RAR.

Log|T-Te| LogiT-Tel
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(b) @ = 0.1, = 0.01972
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(c) Q = 0.1681103,a = 0.01

L
-132

Figure 14: Relations between log | T'— T, | and log | §L — L, | for different @) and «

structures shown by equal time two heavy operators correlation function is consistent with
that given by the holographic entanglement entropy and expectation value of Wilson loop.

4 Conclusions

In this paper, we have studied the thermal entropy of a (4+41)-dimensional spherical Gauss-
Bonnet-AdS black hole and found that there is van der Waals-like phase transition in the
T — S plane for a fixed charge ) or a fixed Gauss-Bonnet parameter a.. For the case () = 0,
the neural spherical Gauss-Bonnet-AdS black hole still undergos the van der Waals-like
phase transition rather than the Hawking-Page phase transition appeared in the Einstein
gravity, which have been studied intensively.

For spherical AdS black hole in Einstein gravity, [14] has observed that holographic
entanglement entropy will also undergo van der Waals-like phase transition which is much
analogous to that in thermal entropy. We extended this observation to (4+1)-dimensional
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spherical Gauss-Bonnet-AdS black hole and found there is a similar phenomenon. We
apply AdS/CFT to study some non-local observables such as holographic entanglement
entropy, Wilson loop, and two point correlation function, which are dual to the minimal
volume, minimal area, and geodesic length respectively in the conformal field theory. For a
fixed charge or a fixed Gauss-Bonnet parameter, all these quantities show that there exist
van der Waals-like phase transitions, which happen in thermal entropy already. Below the
critical charge or critical Gauss-Bonnet parameter, there exists phase which is composed
by a small black hole, large black hole and a intermediate black hole. In this phase, the
intermediate black hole will be not stable and the small black hole will directly jump
to the large black hole as the temperature increases to the first order phase transition
temperature Ty. More precisely, we checked Maxwell’s equal area law and found it was
valid for all the charges and Gauss-Bonnet parameters to confirm the first order phase
transition. As the value of the charge or Gauss-Bonnet parameter increases to the critical
value, the small black hole and the large black hole merges into one and the intermediate
black hole disappear at transition temperature 7.. For this case, phase transition will
be the second order. The critical exponent of the analogous heat capacity is found to be
consistent with that of the mean field theory. The black hole is always stable as the value of
the charge or Gauss-Bonnet parameter is larger than the critical value. Our results confirm
the fact that all the nonlocal quantities exhibit van der Waals-like phase transitions in the
dual field theory regardless of the dual gravity model.
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