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Slit scan electron optics

Initial electron distribution The lateral position x, y and emission angle θx, θy of each

electron emitted from the cathode are drawn from a phase space distributionW (x, y, θx, θy; z =

0). In the following, we assume that: 1. emission behaves homogeneously and linearly, i.e.

the angular emission pattern is neither dependent on position, nor on laser intensity; 2. the

cathode surface is flat.1 It is then valid to factorize the phase space distribution as

W (x, y, θx, θy; z = 0) ≈ N(x, y) ·G(θx, θy), (S1)

where N(x, y) is the spatial distribution of electron emission on the cathode, and G(θx, θy)

the local angular distribution.

To analyze results of the slit scan along x, it is sufficient to consider the one-dimensional

projections of the distribution functions n(x) ≡
∫
N(x, y)dy and g(θ) ≡

∫
G(θ = θx, θy)dθy.

For the angular emission pattern we can reasonably assume a thermal (Gaussian) distri-

bution g(θ) ∝ exp(−θ2/2σ2
θ) with an RMS radius σθ. The spatial distribution n(x) de-

pends strongly on the particular shape of both the cathode and the excitation light. For

data analysis we assumed two different test functions, namely, a Gaussian distribution

nG(x) = (2πσ2
x)
−1/2 exp(−x2/2σ2

x) with RMS radius σx, and the one-dimensional projec-

tion of a homogeneous circle with radius R: nc(x) = (2/πr)
√

1− (x/r)2, yielding an RMS

radius of r/2.

Acceleration Typically, after emission, electrons are directly accelerated away from the

cathode to their final kinetic energy reached at an anode, resulting in a reduction of all tra-

jectory angles. For a flat cathode it is easy to show that in terms of the electron distribution

at the anode this is equivalent to an effective doubling of the propagation length between

cathode and anode; in the following we will hence always refer to a virtual cathode, that is

displaced accordingly along the optical axis, but otherwise unchanged.

1 The case of curved cathodes, where a linear correlation between position and angle (chirp) is present

already at the cathode can be readily taken into account by deriving a non-chirped virtual source, which

would yield the same electron distribution at the cathode position, but has a different (virtual) size and

position than the physical cathode.
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Imaging relation:

Distribution on screen:

FIG. S1: Ray optical construction for imaging of an electron source with distribution

functions n(x), g(θ) through a slit placed at position zs, xs, shown as red dot. See main

text for detailed explanation.

Propagation through slit To compute the density profile along x of electrons hitting the

detector after having passed the slit at position zs, we can propagate the initial phase space

distribution to the screen using the propagation law w(x, θ; zs) = w(x − θzs, θ; 0), remove

parts of the distribution outside the slit, and propagate similarly to the screen. The same

result can be obtained in a more instructive way using a ray optical construction as shown

in fig. S1. Electrons are launched from a (virtual, see above) cathode at z = 0 with a spatial

distribution n(x) and an angular distribution g(θ). Ray bundles emitted from two positions

x1, x2 near the edges of the cathode are shown in green and blue shading, respectively.

Assuming an infinitely narrow slit, for each position x along the cathode, exactly one ray

can pass the slit at an angle θ = (xs−x)/zs (bold green and blue lines), where xs denotes the

lateral position of the slit. These rays hit the detector placed after a distance zd at positions

x′, respectively, and form a pinhole image of the cathode. It can be readily concluded

from the ray diagram that the initial and final position of the transmitted rays are related

as (x′ − xs) = −M(x − xs), where the magnification M is given by M = zd/zs. Finally,

we have to take into account the initial angular distribution g(θ); from the angle of a ray

emitted from position x through the slit it follows that its relative current is proportional

to g(θ = (xs − x)/zs). In fig. S1, two insets are shown which depict this relation for the

emission points x1 and x2.

The final intensity profile on the detector for a given slit position I(x′;xs) is then given by
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a product of the pinhole image with the relative intensity of the rays. Solving the imaging

relation given above for x, we obtain x = −M−1(x′ − (M + 1)xs), which we can insert into

n(x) and g(θ) to obtain:

I(x′;xs) ∝ g

(
xs − x
zs

)
n(x)

= g

(
x′ − xs
zd

)
n

(
−x

′ − (M + 1)xs
M

)
. (S2)

Notably, each of the peaked functions g and n is shifted by a different amount if xs 6= 0,

which generally results in a skew peak shape, as indicated in fig. S1.

Analysis of experimental data

Each of the slit scan measurements as described in the text provides us with profiles

I(x′;xs) for a set of typically 10-20 values of xs. We analyze the data in several steps:

• The beam profile at the slit is obtained by integrating over x′: Is(xs) =
∫
I(x′;xs)dx

′.

These profiles are shown in panel (b) of fig. 3 in the main text and supplemental figures

S2 and S3 below. We find that for all data sets, a Gaussian distribution describes

the data fairly well, indicating that the slit is placed sufficiently in the far field of

the (virtual) source, such that the shape of the initial spatial distribution becomes

irrelevant.

• If the measured values of xs are sufficiently dense, by numerically integrating over

xs we obtain an estimate of the total beam profile on the screen, which would be

found in the absence of the slit: It(x
′) =

∫
I(x′;xs)dx

′. As the detector is located

in the far field of the emitter, we expect that it is defined by the initial momentum

distribution: It(x
′) ∝ g(x′/(zd + zs)). Formally this arises from eq. S2 if assuming

that the contributions of g and n have similar peak widths in their argument (or n

more narrow), which is fulfilled in our data. The dependence of I(x′;xs) on xs is then

almost entirely contained in n(. . .), as M � 1, and we can approximate the factor
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n(. . .) in above integration by a delta function:

It(x
′) =

∫
I(x′;xs)dx

′

≈
∫
g

(
xs − x
zs

)
δ

(
−x

′ − (M + 1)xs
M

)
dx′

=

(
M

M + 1

)
g

(
x′

zd + zs

)
,

where the prefactor is ≈ 1. We find that It(x
′) can be fitted very accurately by a

Gaussian distribution. Through this analysis, we obtain a good estimation for the

angular distribution g(θ) directly from our data.

• We now fit the expression for I(x′;xs) given in eq. S2 to the profiles for each xs, using

a fixed Gaussian function g(θ) as obtained in the previous step, and test functions

for a Gaussian and a homogeneous source (as described above) for n(x). Besides an

amplitude scaling, the fit allows for two free parameters R = Mr, and c = Mxs; as xs

is known a priori, values for the magnification M and source radius r can be deduced.

Note, that while a single fit for all measured positions xs with fixed r,M could have

been applied, only unsatisfactory results could be obtained by such an approach, which

we attribute to unaccounted experimental imperfections as will be discussed below.

The fits and corresponding data points are shown in panel (a) of fig. 3 in the main

text and supplemental figures S2 and S3.

• Finally, we calculate the RMS emittance of the beam from the fits of Is(xs) and

I(x′;xs ≈ 0), by computing the RMS values of the fit lines which correspond to spatial

and angular RMS widths at the slit position σx and σθ, respectively.2 As explained

in the main article, those are multiplied with each other and the normalization factor√
pz/mc to obtain the emittance. Inferring the beam emittance in this way does not

rely on any of the assumptions concerning the optical construction outlined before.

Quantitatively identical results could be obtained using any (even purely phenomeno-

logical) fit function that accurately reproduces the data, or even the data points di-

rectly, which however would lead to large uncertainties arising from noise contributions

in the wings of the distributions. To estimate the uncertainty of the obtained values,

95% confidence ranges were calculated for the fit coefficients.

2 While identical values for σθ should be obtained for I(x′;xs 6= 0), this is found to not always be the case,

as discussed below.
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Application to data sets

We applied the procedure outlined so far to the data collected for the three experiments

presented in the article. While we used the same principal data analysis, several qualitative

differences were found for the data sets:

1. 50 µm fiber diameter, 200 V acceleration voltage (fig. 3 in main text). In this data set,

using a circular test function for the emission profile n ∝
√

1− (x2/r2) yields excellent

agreement between the fitted curves for I(x′;xs), as shown for several values of xs in

fig. 3a. A magnification of M = 23 is found, less than expected from the experiment

geometry by approximately a factor of two; we ascribe this finding to an inaccurate

determination of the emitter-slit distance zs, which however does not affect the final

result for the emittance ε. From the fits over most of the range of xs, an emitter

diameter of r = 50 µm is consistently inferred, which drops significantly for the few

outermost measured values of xs. The additional acceleration of 80 V between slit and

detector has been taken into account by increasing the effective distance between slit

and detector by a factor of 2 ·
√

280 V/(
√

200 V +
√

280 V) ≈ 1.08.

2. 100 µm fiber diameter, 1500 V acceleration voltage (supplemental figure S2). Compared

to the first data set, modifications to the setup have been made to allow for a larger

acceleration voltage of Vacc =-1500 V (pz/mc ≈ 0.077), at a distance between the

photocathode and aperture of dacc=3 mm, and for a free drift region after the slit

aperture ddrift=105 mm. As opposed to the previous set, using a Gaussian test function

n ∝ exp(−x2/2σ2) was necessary to obtain agreement with experimental data, as seen

in fig. 4a. We conjecture that this might be due to manufacturing details of the

cathode, such as significant intensity in the cladding region, or a slight curvature

of the emitting surface, which would lead to the virtual cathode having a different

emission profile than the physical. The found magnification is M = 20, slightly larger

than expected from experiment geometry (which, again, does not affect the main

results). Also we find a much more pronounced decay of the inferred source size with

more off-centered slit positions xs, approximately linearly decreasing from a Gaussian

equivalent radius of req = 2σ = 38 µm to less than half that value near the outer edge

of the momentum distribution (see peak widths in fig. S2). We suspect this to be
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FIG. S2: Measurement results for a 100 µm core size fiber-based cathode at 1500 V

acceleration voltage, as described in the main text. See fig. 3 in main text for description

of the panels.

an effect of either details of the fiber tip shape, such as the emitting surface being

somewhat recessed inside the cladding structure, or finite thickness of the scanning

slit along the optical axis. In both cases the data taken at xs ≈ 0 should be accurate

and hence are used for determination of emittance.

3. 100 µm fiber diameter, 70 kV acceleration voltage (supplemental figure S3). The geom-

etry in this setup is defined by dacc = 14 mm and ddrift = 592 mm. As opposed to set 2,

and similarly to set 1, the projected circular distribution for n(x) worked significantly

better than the Gaussian. Even though the same fiber type has been used as in set

2, besides sample-to-sample differences, the rather different manufacturing process for

the high-voltage compatible cathode may readily explain this difference. In contrast

to the other two sets, weak but rather wide wings were found in the intensity profiles,

which we attribute to the point spread function of the fiber-coupled CCD imaging

system employed in the high-voltage setup. For the fits, we take this into account by

convolution with a Lorentzian profile of 1.8 µm FWHM; this consistently leads to good

fits over the entire range of xs values. The found magnification is M = 17. Again,

we notice a strong drop-off of the imaged source size for large off-axis positions of xs,
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FIG. S3: Measurement results for a 100 µm core size fiber-based cathode at 70 kV

acceleration voltage, as described in the main text. See fig. 3 in main text for description

of the panels.

from R = 39 µm to approximately 20% of that value near the edges, as can be seen

from the beam profiles in figure S3. Similarly as before, we argue that at xs ≈ 0 the

factors suspected to cause the drop-off become insignificant.
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