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Abstract

Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes.

Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole

whose mass density is given by the analogue to probability densities of quantum hydrogen

atoms. The other model is the same black hole but whose mass density is chosen to be a rational

fractional function of radial coordinates. Both mass densities are in fact analytic expressions

of the δ-function. We analyze the phase structures of the two models by investigating the heat

capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble.

Both models fail to decay into the pure thermal radiation even with the positive Gibbs free

energy due to the existence of a minimal length. Furthermore, we extend our analysis to a

general mass-smeared form that is also associated with the δ-function, and indicate the similar

thermodynamic properties for various possible mass-smeared forms based on the δ-function.
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1 Introduction

Non-renormalizability is a well-known puzzle when gravity is combined with quantum theory.

Among many attempts to solve the problem, the idea of a non-perturbative quantum gravity

theory is attractive. Recently, Dvali and collaborators propelled [1, 2] this idea by putting

forward the “UV self-complete quantum gravity” in which the production of micro black holes

is assumed to play a leading role in scattering at the Planck energy scale. According to the

Heisenberg uncertainty relation, an incident photon needs to have higher energy in order to

locate a target particle more accurately. When the photon energy is comparable to that of the

particle, it is likely to create a new particle. If the energy of the incident photon gets further

higher, say the Planck energy, so huge energy confined in a small scale may create a black hole,

the so-called the hoop conjecture [3]. After the formation of micro black holes, the higher the

incident energy is, the bigger the black hole is, which makes the probe meaningless. As a result,

the existence of a minimum length may be deduced by the horizon radius of an extreme black

hole.

Regular black holes, i.e. the black holes without singularity at the origin, whose research

could be traced back to Bardeen’s brilliant work [4], appeared in refs. [5, 6] on the discussions of

mass definition, casual structure, and other related topics. In 2005, for the purpose of construct-

ing the noncommutative geometry inspired Schwarzschild black hole, Nicolini, Smailagic, and

Spallucci suggested [7] that the energy-momentum tensor should be modified in the right hand

side of Einstein’s equations, such that it describes a kind of anisotropic fluid rather than the

perfect fluid, where the original point-like source depicted by the δ-function should be replaced

by a mass-smeared distribution, while no changes should be made in the left hand side. By re-

placing the δ-function form of the point-like source by the Gaussian form1 and then solving the

modified Einstein equations, they obtained a self-regular Schwarzschild metric and established

a new relation between the mass and the horizon radius, i.e. the existence of a minimum radius

and its corresponding minimum mass. They also discussed the relevant thermodynamic proper-

ties and deduced the vanishing temperature in the extreme configuration, and thus eliminated

the unfavorable divergency of the Hawking radiation. Besides, there is a correction to the en-

tropy in the near-extreme configuration. Since then, a lot of related researches have been carried

out, such as those extending to high dimensions [8, 9], introducing the AdS background [10],

quantizing the mass of black holes [11], and generalizing to other types of black holes [12, 13],

etc.

In this paper, we at first introduce the AdS spacetime background to the self-regular

Schwarzschild black hole and then investigate equations of state and phase transitions of the

1Here the Gaussian form can be regarded as an analytic expression of the δ-function. In general, an analytic

expression of the δ-function is such an elementary function that approaches the δ-function under a limit of a

parameter. For instance, the mass density of our first model, see eq. (1), is the δ-function under the limit a → 0,

that is, lima→0
e
−

r

a

8πa3 = δ(3)(r), where δ(3)(r) is defined as
∫∞

0
δ(3)(r) 4πr2dr = 1.
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self-regular Schwarzschild-AdS black hole with two specific mass densities, where one mass den-

sity is assumed [14] by an analogue to a quantum hydrogen atom and the other to a collapsed

shell. Although the mass densities of the two models are different, both of them can be regarded

as a smeared point-like particle and then be depicted by an analytic expression of the δ-function.

Next, we extend our discussions to a general mass-smeared form which can be written as an

unfixed analytic expression of the δ-function, and explain the similarity in thermodynamic prop-

erties for different mass distributions previously studied in refs. [10, 15].

The paper is organized as follows. In section 2, we derive the relations between masses and

horizons of the two models, and give the limits of vacuum pressure under the consideration of

the hoop conjecture. Then, we analyze the thermodynamic properties of the two models in

detail in section 3. We turn to our analysis in section 4 for the self-regular Schwarzschild-AdS

black hole with a general mass distribution. Finally, we give a brief summary in section 5.

We adopt the Planck units in this article: ~ = c = G = kB = 1.

2 Two specific models

2.1 Mass density based on analogy between black holes and quantum

hydrogen atoms

Based on our recent work in which we made an analogy between black holes and quantum

hydrogen atoms [14], we choose the probability density of the ground state of hydrogen atoms

as the mass density of black holes,

ρ(r) = M
e−

r

a

8πa3
, (1)

where M is the total mass of black holes and a with the length dimension will be seen to be

related to a minimal length through the extreme configuration discussed below. We plot the

mass density in Figure 1 and obtain ρ(0) = M/(8πa3), which means that the origin is no longer

singular. Now the mass distribution of black holes takes the form,

M(r) =

∫ r

0

ρ(r̃) 4πr̃2 dr̃ = M

[

1− e−
r

a

(

1 +
r

a
+

r2

2a2

)]

, (2)

which, divided by M , can be understood as a kind of step functions with continuity (see the right

diagram in Figure 1). It is easy to see that such a function M(r)/M goes to the step function

under the limit a → 0. Correspondingly, as done in refs. [7, 10], we work out the self-regular

Schwarzschild-AdS metric through solving the modified Einstein equations associated with the

above mass distribution,

ds2 = −
(

1− 2M(r)

r
+

r2

b2

)

dt2 +

(

1− 2M(r)

r
+

r2

b2

)

−1

dr2 + r2 dΩ2, (3)
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Figure 1: Plots of the mass density eq. (1) (left) and of the mass distribution eq. (2) (right). Note

that, when we take the limit a → 0, except the origin with M(0) = 0, the mass ratio M(r)/M

approaches 1 at other radii due to r/a → ∞, which indicates that the mass distribution goes to

the step function.

where b represents the curvature radius of the AdS spacetime and has the relation with the the

vacuum pressure as follows,

P ≡ − Λ

8π
=

3

8πb2
. (4)

One can easily find that the self-regular metric goes back to the ordinary Schwarzschild-AdS

one if r ≫ a, and that on the other hand it goes to the de Sitter form if r approaches zero,

ds2 = −
(

1− M

3a3
r2 +

r2

b2

)

dt2 +

(

1− M

3a3
r2 +

r2

b2

)

−1

dr2 + r2 dΩ2, (5)

where the equivalent cosmological constant can be understood as,2 Λ′ ≡ M
a3

− 3
b2
. Thus the

singularity is avoided since the positive cosmological constant represents the negative (outward)

vacuum pressure that prevents the black hole being less than a certain scale from collapsing.

From g00 = 0, one can have the relation between the total mass M and the horizon radius rH,

M =
rH
2

(

1 +
r2H
b2

)[

1−
(

1 +
rH
a

+
r2H
2a2

)

e−
rH
a

]

−1

, (6)

which is shown in Figure 2 under different vacuum pressure.

From Figure 2, we observe that there is a lower bound M0 for the black hole mass, which

is regarded as the mass of the extreme black hole. For the case of M > M0, the black hole

possesses two horizons; for the case of M = M0, the two horizons coalesce into one, rH = r0, as

the extremal radius, i.e. the minimal length since no black holes are smaller than the extreme

2The quantity is inferred to be positive from the ranges of M and b, which will be mentioned later.
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Figure 2: Plot of the relation of M with respect to rH. The solid curves correspond to the

relation eq. (6), the dashed curves correspond to the relation of the ordinary Schwarzschild-AdS

black hole with the δ-function as the mass density, and each vertical line lies at the extremal

radius of the curve with the same color. The blue, purple, cyan, and green colors correspond to

the cases of b/a = 10, 19.46 (the critical vacuum pressure), 30, and ∞, respectively.

black hole. The extremal radius depends on the vacuum pressure, which can be determined by
∂M
∂rH

∣

∣

rH=r0
= 0, where

∂M

∂rH
=

aerH/a[2a3(erH/a − 1)(b2 + 3r2H)− 2a2rH(b
2 + 3r2H)− ar2H(b

2 + 3r2H)− r3H(b
2 + r2H)]

b2[−2a2(erH/a − 1) + 2arH + r2H]
2

. (7)

It is difficult to express r0 as the function of b since the equation is transcendental, so we solve

b with respect to r0 instead,

b = r0

√

−3 +
2r30/a

3

2 + 2r0/a + r20/a
2 + r30/a

3 − 2er0/a
. (8)

Considering the hoop conjecture [3] where the mean radius r̄ is supposed to be not greater

than the extremal radius r0, we have estimated the ranges of both b and r0 in ref. [14] through

the numerical fitting. It is easy to calculate

r̄ =
1

M

∫

∞

0

rρ(r) 4πr2 dr = 3a. (9)

The hoop conjecture implies r̄ ≤ r0, which ensures the formation of a black hole. Using eq. (8)

and the hoop conjecture, one can obtain the exact ranges of the ratios, b/a: [9.996, ∞), r0/a:

[3, 3.384), and M/a: (2.575, 2.835], respectively. We note that a smaller b corresponds to an

extreme black hole with a smaller radius but a larger mass, i.e. when b/a = 9.996, we have

r0/a = 3 and M/a = 2.835. The reason is that a smaller b represents the larger vacuum pressure

which makes the matter denser [14].

5



2.2 Mass density based on a collapsed shell

Besides collapsed cores, a collapsed shell is also an important model of black hole formation,

which is usually dealt with as a massive membrane without thickness. However, if the minimal

length is considered, the shell is supposed to be described with a smeared distribution [16]. One

can take the following rational fractional function of radial coordinators as the mass density of

black holes,

ρ(r) =
75Ml30r

3

2π (l30 + 5r3)
3 , (10)

where l0 is a quantity with the length dimension which can be regarded as the minimal length,

and M the total mass of back holes. The relation is plotted in Figure 3.

The mass distribution of this model, M(r), thus has the form,

M(r) =

∫ r

0

ρ(r̃) 4πr̃2 dr̃ =
25Mr6

(l30 + 5r3)
2 , (11)

which, like eq. (2), can also be understood as a kind of step functions with continuity and goes

to the step function under the limit l0 → 0. By solving g00 = 0, we get the total mass M as the
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Figure 3: Plots of the mass density eq. (10) (left) and of the mass distribution eq. (11) of the

collapsed shell.

function of the horizon radius rH,

M =
(b2 + r2H) (l

3
0 + 5r3H)

2

50b2r5H
, (12)

which is plotted in Figure 4. As done for the first model, one can also determine the allowed

ranges of the ratios for the extreme configuration in this model, b/l0: [3.24, ∞), r0/l0: [0.943,

1), and M/l0: (0.720, 0.784], respectively, when the hoop conjecture is considered. Moreover,

the data lead to the same result as in the first model, i.e. a smaller extreme black hole is heavier

than a greater one.
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Figure 4: Plot of the relation of M with respect to rH. Each vertical line lies at the extremal

radius of the curve with the same color.

3 Thermodynamics

3.1 Thermodynamics of hydrogen-atom-like black holes

In this subsection we are going to analyze the thermodynamic properties of the hydrogen-atom-

like black holes, especially new phase transitions associated with the minimal length.

3.1.1 Equation of state and entropy

We start the discussion of the thermodynamics by calculating the Hawking temperature:

TH ≡ κH

2π
=

1

4π
√−g00g11

∣

∣

∣

∣

dg00
dr

∣

∣

∣

∣

r=r+

, (13)

where κH is the surface gravity and r+ the outer horizon radius. Using eqs. (3) and (2), we

obtain

TH =
1

4π

[

1

r+
+

3r+
b2

+
r2+
2a3

(

1 +
r2+
b2

)(

1 +
r+
a

+
r2+
2a2

− er+/a

)−1
]

, (14)

which is plotted in Figure 5. These curves show one common property that the temperature of

the extreme black hole vanishes, which can be strictly proved by substituting eq. (8) into eq. (14).

This property means that the evaporation of black holes behaves well, i.e. it has no divergency

due to the appearance of the minimal length [7]. In addition, the curves display different

characteristics when the vacuum pressure increases, which implies various phase transitions

that will be discussed in the next subsection. The phase transitions can be classified into four

7
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Figure 5: Plot of the Hawking temperature TH with respect to r+ under different vacuum

pressure. The blue, cyan, and green solid curves correspond to the cases of b/a = 10, 30, and

∞, respectively, and the extremal radii in the three cases take r0/a = 3.000, 3.325, and 3.384,

respectively. The dashed purple curve corresponds to b/a = 19.46 and r0/a = 3.253, i.e. the

critical case where the maximum and minimum of temperature coalesce.

types: (i) For the zero pressure case (b → ∞, see, for instance, the green curve of Figure 5),

there exists one maximum of temperature, and the temperature approaches zero when r+ → ∞;

(ii) For the relatively low pressure (19.46a < b < ∞, see, for instance, the cyan curve of Figure

5), the temperature has one minimum following one maximum, and then it increases when r+

increases; (iii) For the critical pressure Pc (b = 19.46a, see, for instance, the dashed purple curve

of Figure 5), the maximum and minimum merge into one inflexion; (iv) For the relatively high

pressure (9.996a < b < 19.46a, see, for instance, the blue curve of Figure 5), the temperature

rises smoothly as the horizon radius increases.

In fact, eq. (14) is the equation of state and Figure 5 is the diagram of isobar in the

temperature-volume plane.3 One can rewrite eq. (14) in a familiar way by using eq. (4),

P = − 1

8πr2+
+

TH

2r+ +
r4
+

3a3

(

1− e
r+

a + r+
a
+

r2
+

2a2

)

−1 − r+

4π
[

6a3
(

1− e
r+

a + r+
a
+

r2
+

2a2

)

+ r3+

] , (15)

and plot eq. (15) as the diagram of isotherm in the pressure-volume plane shown in Figure 6.

The diagram reveals the similarity to that of the van der Waals fluid, implying the occurrence

of phase transitions in the range from the maximum temperature of the zero pressure case

Tb→∞ = 0.0096/a to the critical temperature Tc = 0.014/a.

3The radius and the specific volume have a simple relation, v = 2l2pr+, where lp is the Planck length, suggested

in ref. [17] by both the dimensional analysis and the analogy between the RN-AdS black hole and the van der

Waals fluid.

8



a T = 0.018

a T = 0.014

a T = 0.012

a T = 0.0096

5 10 15 20 25 30 35
r+�a

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

a
2P

Figure 6: Plot of the equation of state. The solid curves correspond to the cases of aTH = 0.018,

0.012, and 0.0096 from top to bottom, respectively. The dashed curve corresponds to the critical

temperature aTc = 0.014.

A convincing demonstration was given in ref. [18], where the black hole mass M is regarded

as the enthalpy. Alternatively, an intuitive explanation was provided in ref. [19]. That is, the

negative cosmological constant corresponds to the positive pressure and thus to the negative

vacuum energy density ǫ, where ǫ + P = 0. Therefore, the total energy is supposed to include

the vacuum energy, i.e. E = M + ǫV = M − PV , and hence M is the enthalpy H rather than

the internal energy of black holes. As a result, the first law associated with the AdS spacetime

is modified to be

dM = THdS + V dP. (16)

It is evident that the second term in eq. (16) vanishes for the fixed cosmological constant or

constant pressure. Thus we can derive the entropy from eqs. (6) and (14),

S =

∫ r+

r0

dM

TH
=

∫ r+

r0

2πr

1− e−
r

a

(

1 + r
a
+ r2

2a2

)dr, (17)

where the integration is performed from r0 in order to guarantee the vanishing entropy at zero

temperature [10]. It is hard to integrate eq. (17) analytically but much easier to plot it. As

shown in Figure 7, for the near-extreme configuration, the entropy has an obvious deviation from

the area law, but with the horizon radius increasing, the deviation is getting smaller and smaller

and finally approaches a constant. Note that such a constant is varying for different pressure or

for different b parameters because the lower bound of the integration r0, i.e. the horizon radius

of extreme black holes depends on the b parameter, see the right diagram of Figure 7.
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Figure 7: Plots of the entropy S (left) and of ∆S ≡ S − πr2+ (right) with respect to r+. The

red curve in the left diagram corresponds to the entropy πr2+ of the ordinary Schwarzschild-AdS

situation; the blue and green curves in both diagrams correspond to the cases of b/a = 10 and

b = ∞, respectively.

3.1.2 Phase transition

We discuss the phase transition of the hydrogen-atom-like model in this subsection. The heat

capacity at constant pressure takes the form,

CP ≡
(

∂H

∂TH

)

P

=

(

∂M

∂TH

)

P

=

(

∂M

∂r+

)(

∂TH

∂r+

)

−1

. (18)

It diverges at the extremal points of temperature where its sign changes from CP > 0 to

CP < 0, or vice versa, which leads to phase transitions, as shown in Figure 8. Compared with

the ordinary Schwarzschild-AdS black hole with a finite b parameter that has only one first-order

phase transition, the self-regular Schwarzschild-AdS black hole has a complicated situation with

one second-order, two first-order, and even no phase transitions,4 depending on the values of

vacuum pressure, see the bottom left diagram, the top right diagram, and the bottom right

diagram, respectively, in Figure 8. Even for the case without the AdS background, i.e. b → ∞,

there is one first-order phase transition in the self-regular black hole, but no phase transition in

the ordinary Schwarzschild black hole, see the top left diagram in Figure 8. In particular, one

can see that the difference between the ordinary and self-regular black holes just exists in the

near-extremal region, and such a difference disappears at a large horizon radius.

To analyze the phase transitions in detail, we should also investigate the thermodynamic

potential. Since we are discussing an isothermal-isobaric ensemble, the thermodynamic potential

4The occurrence of different orders of phase transitions will be explained in the following context of this

subsection.
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Figure 8: Plots of the heat capacity CP with respect to r+ under different pressure. They

correspond to b/a → ∞ (top left), b/a = 30 (top right), b/a = 19.46 (the critical vacuum

pressure, bottom left), and b/a = 10 (bottom right), respectively. The solid curves correspond

to eq. (18), and the dashed red curves correspond to the relationship CP =
2πr2+(b2+3r2+)

3r2
+
−b2

of the

ordinary Schwarzschild-AdS situation.

should be the Gibbs free energy defined as

G ≡ H − THS = M − THS, (19)

which is plotted in Figure 9. By differentiating G with respect to r+, one obtains

∂G

∂r+
= −S

(

∂TH

∂r+

)

,

∂2G

∂r2+
= −CP

TH

(

∂TH

∂r+

)2

− S

(

∂2TH

∂r2+

)

, (20)

which implies that the curve of G(r+) has the same distributions of the extremal points and

inflexion points as that of TH(r+) (see Figure 5), apart from the extreme configuration with zero

entropy.

If we consider the case without the AdS background (b → ∞), we can obtain from the green

curve of Figure 5 that there are two phases of black holes with horizon radii r1 and r2,
5 the

5Tmax is a maximum of temperature curve under some pressure, and rmax is the corresponding radius of

Tmax; the similar notation applies to Tmin and rmin. Note that rmax < rmin, see Figure 5.
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Figure 9: Plot of the Gibbs free energy G with respect to r+ under different pressure. The

green, cyan, and blue solid curves correspond to the cases of b/a → ∞ with G(r0)/a = 2.575,

b/a = 30 with G(r0)/a = 2.607, and b/a = 10 with G(r0)/a = 2.835, respectively. The dashed

purple curve corresponds to b/a = 19.46, the critical vacuum pressure, with G(r0)/a = 2.649.

small black hole r1 < rmax and the large black hole r2 > rmax in the region of temperature

0 < T < Tmax, where rmax = 6.544a and Tmax = 0.0096/a, and no minimum of temperature in

this case. For the large black hole with r2, the negative heat capacity, see the top left diagram of

Figure 8, implies that it is unstable. Further, our calculation shows that a large black hole has a

higher Gibbs free energy than a small one. For instance, for a small black hole with r1 = 4.89a,

the Gibbs free energy is 2.42a, but for a large black hole with r2 = 9.66a, the Gibbs free energy

equals 2.64a at the temperature T = 0.0080/a. Thus, a large black hole would decay into a

small one, i.e., the stable configuration with the positive capacity and lower energy.

In the case with the relatively low pressure (19.46 < b/a < ∞), there are three regions

divided by two vertical asymptotes in the CP −r+ plane (see, for instance, the top right diagram

of Figure 8), corresponding to three types of black holes, or three phases, the small one with

radius r1 < rmax in the temperature range T < Tmax, the medium one with rmax < r2 < rmin in

the range Tmin < T < Tmax, and the large one r3 > rmin in the range T > Tmin. Now we discuss

different phases in different ranges of temperature. Due to the rich phase structures, this case

is separated into the following three sub-cases.

• Taking b/a = 30, for instance, we have Tmax = 0.0113/a and Tmin = 0.0092/a, and their

corresponding radii rmax = 7.070a and Tmin = 17.31a, respectively. For T < Tmin, there

is only a small black hole with r1 < 4.93a that is at least locally stable because of the

positive heat capacity. Similarly, for T > Tmax, only a large locally stable black hole with

r3 > 33.67a exists. As to the temperature range Tmin < T < Tmax, the three types of

12



black holes exist. Configurations of the small black hole with r1 and of the large black hole

with r3 are at least locally stable and one of them with a lower Gibbs free energy is more

stable; when the two configurations have the same Gibbs free energy, they can coexist and

convert into each other, corresponding to a first-order phase transition since there is the

entropy change during the process. The configuration of the medium black hole with the

radius r2 is unstable and probably decays into the small black hole with r1 or the large

black hole with r3, the more stable one with the lower Gibbs free energy.

• When considering the pure thermal radiation with the vanishing Gibbs free energy, we can

infer that the small black hole with r1 in the temperature range T < Tmax is still locally

stable since its Gibbs free energy is positive, and that the large black hole with r3 can

coexist with the pure thermal radiation at the Hawking-Page temperature THP = 0.0107/a,

where its Gibbs free energy is vanishing [20]. Moreover, if T < THP, the small and large

black holes with r1 and r3, respectively, in the range of temperature Tmin < T < THP,

and the only small black hole with r1 in the range of temperature T < Tmin, have positive

Gibbs free energy, so the pure thermal radiation is dominant. If T > THP, in the range of

THP < T < Tmax, the large black hole with r3 has negative free energy and thus dominates,

and in the range of T > Tmax, the single large black hole is globally stable. Note that no

black holes, even with positive Gibbs free energy, can decay into the pure thermal radiation

because they cannot totally evaporate off, meaning that their radius decreases and finally

reaches r0 (the radius of extreme configurations) at which both the temperature and the

heat capacity vanish. That is, the extreme black hole stops evaporating and its Gibbs free

energy admits a local maximum,6 as argued in [15]. It should be pointed out that the

analyses for this and the above sub-case only apply to the range of pressure b/a > 27.53

which leads to Tmax > THP.

• If the range of pressure is 19.46 < b/a < 27.53 which leads to Tmax < THP, for the three

types of black holes in the range of temperature Tmin < T < Tmax, the pure thermal

radiation is dominant as all configurations of black holes have positive Gibbs free energy.

For the critical pressure case (b/a = 19.46), the two vertical asymptotes in CP − r+ plane

merge into one and the second region with negative heat capacity disappears (see the bottom

left diagram of Figure 8). Only one locally stable small black hole (r+ < rc = 9.47a) or one

at least locally stable large black hole (r+ > rc = 9.47a) exists. The phase transition at the

inflexion is second order because the entropy is continuous in the two phases. Here are also

three situations: (i) If r+ < rHP, where rHP = 19.87a is the horizon radius when the black hole

is at the Hawking-Page temperature, the black hole with positive free energy stays in a locally

6Once a black hole forms, it would not disappear. To understand the final fate of black holes, we had better

take a quantum view; that is, the extreme configuration corresponds to the ground state [14], which cannot jump

down into a lower state.
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stable configuration; (ii) If r+ = rHP, the black hole with vanishing free energy coexists with

the pure thermal radiation; (iii) If r+ > rHP, the black hole with negative free energy is globally

stable.

If the ensemble is in the relatively high pressure (b/a < 19.46), the heat capacity changes

continuously with respect to the radius without divergence (see the bottom right diagram of

Figure 8). As a result, there is no phase transition between black holes. The analysis about the

Hawking-Page phase transition resembles that of the case at the critical pressure.

We would like to point out that a recent work by Frassino, Köppel, and Nicolini reveals the

phase structure of the holographic metric [21]. This phase structure is similar to that of our

model, where the reason will be given in section 4. In addition, the minimal length is treated

as a variable in ref. [15], where the increase of the minimal length leads to the same tendency

of phase transitions as that of the decrease of the AdS radius we have just discussed above. We

note that such a comparability coincides with our analysis in section 2 where the minimal length

is related to the equivalent dS negative pressure, see eq. (5).

3.2 Thermodynamics of the collapsed shell model

We at first derive the Hawking temperature of the collapsed shell from eq. (13),

TH =
5b2

(

r3+ − l30
)

+ 3r2+
(

5r3+ − l30
)

4πb2r+ (l30 + 5r3+)
, (21)

which is plotted in Figure 10. Then we calculate the entropy,

b = 3.24 l0

b = 5.23 l0

b = 8 l0

b = ¥

0 2 4 6 8 10 12
r+�l0

0.05

0.10

0.15

l0TH

Figure 10: Plot of the Hawking temperature TH with respect to r+ under different vacuum

pressure. Particularly, the dashed purple curve corresponds to the case of the critical pressure.

S = π
(

r2+ − r20
)

− 4

5
πl30

(

1

r+
− 1

r0

)

− 1

50
πl60

(

1

r4+
− 1

r40

)

, (22)
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where r0, the horizon radius of the extreme black hole, is the solution of dM
drH

= 0, cf. eq. (12).

The first term which equals one fourth of the area satisfies the area law of the ordinary black

hole thermodynamics, and the other terms are corrections of entropy which are induced by the

minimal length. We notice that Figure 10 presents similar features to that in Figure 5, which

implies that the thermodynamic properties of the collapsed shell model resemble that of the

hydrogen-atom-like model due to the relations between the temperature and the heat capacity

and between the temperature and the Gibbs free energy, see eqs. (18) and (20). From the

physical point of view, the equilibrium state is described by the equation of state plotted in

Figure 10 with isobars in the temperature-horizon plane, which displays the thermodynamic

similarities for the two models, cf. Figure 10 and Figure 5. In addition, in order to consider the

pure thermal radiation of the AdS background, we have to investigate whether the Gibbs free

energy is positive. To this end, the G− r+ plane is plotted in Figure 11, which shows that the

collapsed shell model indeed has the similar phase structure to that of the hydrogen-atom-like

model, see Figure 9. Thus, the remaining discussions are not necessary to be repeated.

b = ¥

b = 8 l0

b = 5.23 l0
b = 3.24 l0

2 4 6 8

r+

l0

-1.0

-0.5

0.5

1.0

1.5

2.0

G

l0

Figure 11: Plot of the Gibbs free energy G with respect to r+ under different pressure. Partic-

ularly, the dashed purple curve corresponds to the case of the critical pressure.

4 General analysis

Our discussions in the above two sections are based on two specific models which show the similar

thermodynamic properties to that of the other models constructed in refs. [7, 15, 22], where

those mass distributions can also be understood as a kind of step functions with continuity.

In this section, we demonstrate that the models with such a mass distribution have similar

thermodynamic properties in a general way.
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When the mass density of black holes takes some analytic form of the δ-function with the

minimal length as a parameter, the metric eq. (3) can be extended to a general self-regular

Schwarzschild-AdS solution of the modified Einstein’s equations [7],

ds2 = −
(

1− 2f(r)M

r
+

r2

b2

)

dt2 +

(

1− 2f(r)M

r
+

r2

b2

)

−1

dr2 + r2 dΩ2, (23)

where f(r), the original M(r)/M in eq. (3), is unfixed but is supposed to be a kind of step

functions with continuity, see the red curve in Figure 12 for illustration. Specifically, as ρ(r) =
M

4πr2
df
dr

is finite everywhere, f(r) is a third-order infinitesimal with respect to r for the “collapsed

core” or a higher order one for the “collapsed shell” near the origin in order to get rid of the

singularity of the metric, and it approaches one at a large r.7 The relationship between the total

mass M and the horizon radius rH can be obtained as usual,

M =
rH

2f(rH)

(

1 +
r2H
b2

)

. (24)

Since M approaches the positive infinity both at rH → 0 and rH → ∞, there is at least one

minimum point. Based on the equation,

dM

drH

∣

∣

∣

∣

rH=r0

=
f(rH)(b

2 + 3r2H)− f ′(rH)rH(b
2 + r2H)

2f(rH)2b2

∣

∣

∣

∣

rH=r0

= 0, (25)

we obtain the extremal point r0 satisfying f(r0) = f ′(r0)r0

(

1− 2r20
b2+3r2

0

)

. Figure 12 illustrates

that there is only one intersection for f(rH) and f ′(rH)rH

(

1− 2r2
H

b2+3r2
H

)

, and thus there exists an

extreme black hole with the minimal mass and the minimal radius.

The existence of extreme black holes for the metric solution eq. (23) can be shown by

the following analysis. For the case without the AdS background, i.e., b → ∞, we obtain8

dM
dr

= f(r)−f ′(r)r
2f(r)2

. The sketches of f(r) and f ′(r)r are drawn in Figure 12. For a small r,

f ′(r)r > f(r)−f(0)
r

r = f(r), the curve of f ′(r)r is over that of f(r); and the derivative of f(r)r,

[f ′(r)r]′ = f ′′(r)r + f ′(r), is larger than f ′(r) if r < r∗. Only if r > r∗ and [f ′(r)r]′ < f ′(r) can

the two curves intersect. After the two curves intersect at the horizon radius9 r = 1, f ′′(r) < 0

renders [f ′(r)r]′ < f ′(r). As a result, r = 1 is the single point where f(r)−f ′(r)r vanishes, which

means the existence of extreme configurations of black holes. Moreover, for the cases with the

AdS background, i.e., the parameter b is finite and satisfies the hoop conjecture, the intersection

of f(r) and f ′(r)r
(

1− 2r2

b2+3r2

)

will have a shift to the left if compared with the case without

the AdS background, i.e., the intersecting point is smaller than 1 because f ′(r)r
(

1− 2r2

b2+3r2

)

is

smaller than f ′(r)r.

7Here f(r) can also be dealt with as an efficient gravitational coupling, or the so-called “running” gravitational

coupling which describes an asymptotically free gravitational model [10].
8The subscript of horizon radii is omitted for the sake of convenience hereafter.
9Here we have normalized the coordinate of the intersection, which will be inferred to be the minimal length.
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Figure 12: Sketches of f(r) (red), f ′(r)r (purple), and f ′(r)r
(

1− 2r2

b2+3r2

)

(green). The curve

of f ′(r), the dashed blue curve with f ′′(r∗) = 0, is drawn for reference.

Apart from phase transitions between black holes and the pure thermal radiation, the ther-

modynamic properties of black holes merely depend on the equation of state, so we just need

to analyze the relationship between the Hawking temperature TH and the specific volume (or

simply the outer horizon radius r+, see Footnote 3). From eq. (13), we calculate the temperature,

TH =
1

4π

f(r+)(b
2 + 3r2+)− f ′(r+)(b

2r+ + r3+)

f(r+)b2r+
=

f(r+)

2πr+

dM

dr+
, (26)

which vanishes at the extremal radius r0 that is the solution of dM
dr+

= 0, and is always positive

at other radii.

4.1 Features of temperature of black holes without the AdS back-

ground

In the absence of the AdS background (b → ∞), the Hawking temperature and its derivative

with respect to r+ take the forms,

TH =
1

4π

(

1

r+
− f ′(r+)

f(r+)

)

,

dTH

dr+
= − 1

4π

f(r+)
2 − f ′(r+)

2r2+ + f ′′(r+)f(r+)r
2
+

f(r+)2r2+
, (27)

and the temperature vanishes at r+ → ∞. As to the derivative of the temperature, it is positive

due to f(r0) = f ′(r0)r0 and f ′′(r0) < 0 at the extremal radius r0 and close to zero at infinity.

As a result, there is at least one local maximum temperature T1 whose corresponding radius r1
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satisfies the condition

f ′′(r1)f(r1)r
2
1 − f ′(r1)

2r21 + f(r1)
2 = 0. (28)

In the following we prove that T1 is the global maximum and thus indicate the similar TH − r+

relation to that of the above two models depicted by Figures 5 and 10, which ensures that the

thermodynamic properties of the general case are similar to that of the other specific models

mentioned.

Set function g(r) satisfy the following second-order differential equation,

g′′(r)g(r)r2 − g′(r)2r2 + g(r)2 = 0, (29)

we have a general solution, g(r) = c1r exp(c2r), where c1 and c2 are two undetermined pa-

rameters. By choosing a positive parameter c1 = f(r1)
r1

exp[−f ′(r1)r1 + f(r1)] and a negative

parameter c2 = f ′(r1)r1−f(r1)
r1

, we obtain the particular solution that ensures g(r1) = f(r1) and

g′(r1) = f ′(r1). Again using g(r1) = f(r1), g
′(r1) = f ′(r1), and eqs. (28) and (29), we de-

duce g′′(r1) = f ′′(r1). Since it is difficult to depict the equality of the second derivatives,

g′′(r1) = f ′′(r1), on the curves of f(r) and g(r), we choose to plot the curves of f ′(r) and g′(r)

instead, see Figure 13. One can infer that the two curves are tangent at r1 due to g′(r1) = f ′(r1)

and g′′(r1) = f ′′(r1). In addition, we note that as a result of g(r) =
∫ r

0
g′(r′)dr′ + g(0) and

g(0) = 0, g(r) is equal to the integral area surrounded by the curve g′(r) and the transverse axis

from the origin to r, and the same analysis is applicable for f(r). Consequently, g(r1) = f(r1)

indicates that the integral areas surrounded by the curve g′(r) and the transverse interval [0, r1]

and by the curve f ′(r) and the transverse interval [0, r1] are same, see the two solid curves in

Figure 13.

Assuming that there still exists one local minimum of temperature T̃1 at r̃1 on the curve of TH

that meets f ′′(r̃1)f(r̃1)r̃
2
1 − f ′(r̃1)

2r̃21 + f(r̃1)
2 = 0, we can certainly find out another particular

solution g̃(r) = c̃1r exp(c̃2r) with c̃1 = f(r̃1)
r̃1

exp[−f ′(r̃1)r̃1 + f(r̃1)] and c̃2 = f ′(r̃1)r̃1−f(r̃1)
r̃1

to

the differential equation g̃′′(r)g̃(r)r2 − g̃′(r)2r2 + g̃(r)2 = 0. This particular solution satisfies

g̃(r̃1) = f(r̃1), g̃
′(r̃1) = f ′(r̃1), and g̃′′(r̃1) = f ′′(r̃1). Using eq. (27), we have the maximum of

temperature at r1,

TH(r1) =
1

4π

(

1

r1
− f ′(r1)

f(r1)

)

=
1

4π

(

1

r1
− g′(r1)

g(r1)

)

= − 1

4π
c2 > 0, (30)

which means that TH(r1) is only related to the negative parameter c2. Considering TH(r1) >

TH(r̃1), one can infer c̃2 > c2. Next we compare g′(r) with g̃′(r) = c̃1(1 + c̃2r) exp(c̃2r) by

considering the following two cases in order to determine that the local minimum of temperature

T̃1 conjectured above does not exist.

(i) For the case c̃1 > c1, we can get g̃′(r) > g′(r), which means that the curve of g̃′(r) is

always above that of g′(r). So the integral area of g̃′(r) cannot be the same as that of f ′(r) at
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Figure 13: Sketches of f ′(r) (blue) and g′(r) = c1(1 + c2r) exp(c2r) (purple). The dashed red

curve and the dashed green curve represent g̃′(r) = c̃1(1+ c̃2r) exp(c̃2r) with c̃1 > c1 and c̃1 < c1,

respectively.

the intersection r̃1. In fact, we always have g̃(r̃1) > f(r̃1) in this case, see the sketches in Figure

13.

(ii) For the case c̃1 < c1, we can first get g̃′(0) = c̃1 < c1 = g′(0); then if the two curves of

g̃′(r) and f ′(r) are tangent at r̃1, we can infer g̃(r̃1) =
∫ r̃1
0

g̃′(r)dr <
∫ r̃1
0

f ′(r)dr = f(r̃1), also

see the sketches in Figure 13.

In a word, no suitable parameters c̃1 and c̃2 can be found to simultaneously meet g̃(r̃1) =

f(r̃1), g̃
′(r̃1) = f ′(r̃1), and g̃′′(r̃1) = f ′′(r̃1), or in other words, to meet T ′

H(r̃1) = 0. As a result,

the curve of TH without the AdS background has one and only one extremal point, i.e, the

maximum point. Our conclusion is that the TH − r+ relation in this case is similar to the green

curves of Figures 5 and 10.

4.2 Features of temperature of black holes with the AdS background

For the case with the AdS background, we rewrite the Hawking temperature eq. (26) and

calculate the corresponding derivative as follows:

TH =
1

4π

(

f(r+)− f ′(r+)r+
f(r+)r+

+
3f(r+)r+ − f ′(r+)r

2
+

f(r+)b2

)

, (31)

dTH

dr+
=

1

4π

[

−
f(r+)

2 − f ′(r+)
2r2+ + f ′′(r+)f(r+)r

2
+

f(r+)2r2+

+
3f(r+)

2 + f ′(r+)
2r2+ − 2f(r+)f

′(r+)r+ − f(r+)f
′′(r+)r

2
+

b2f(r+)2

]

. (32)

The Hawking temperature is still zero for extreme black holes, but because of the finite
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b parameter, it grows to infinity as the horizon radius increases. As to the derivative of the

temperature, T ′

H, it is positive due to the positivity of [6f(r0)− (b2 + r20) f
′′(r0)]/(4πb

2f(r0)) at

the extremal radius and also positive due to the positivity of 3/(4πb2) at infinity. For a relatively

large b, the zero point of T ′

H, where the main part of T ′

H is the first term of eq. (32), will slightly

shift to the right compared with the case of b → ∞, and T ′

H can also be negative at some radius.

As a result, there exist at least one maximum and one minimum on the curve of TH. In this

case, the two corresponding points can be proven to be the only pair of extremal points of TH

where the numerator of T ′

H vanishes. In fact, to the differential equation,10

h(r)h′′(r)r2(b2 + r2)− h′(r)2r2(b2 + r2) + 2h(r)h′(r)r3 − h(r)2(3r2 − b2) = 0, (33)

we can find a general solution,

h(r) = λr(r2 + b2) exp

(

β

b
tan−1 r

b

)

, (34)

where λ and β are two undetermined parameters, and give its derivative as follows,

h′(r) = λ(3r2 + βr + b2) exp

(

β

b
tan−1 r

b

)

. (35)

Using eq. (25), we obtain two particular solutions, h1(r) = λ1r(r
2+ b2) exp

(

β1

b
tan−1 r

b

)

and

h2(r) = λ2r(r
2 + b2) exp

(

β2

b
tan−1 r

b

)

, where the two pairs of parameters take the forms,

λ1 =
f(r

I
)

r
I
(r2

I
+ b2)

exp(−β1

b
tan−1 rI

b
) > 0, β1 =

f ′(r
I
)r

I
(r2

I
+ b2)− f(r

I
)(3r2

I
+ b2)

f(r
I
)r

I

< 0;

λ2 =
f(r

II
)

r
II
(r2

II
+ b2)

exp(−β2

b
tan−1 rII

b
) > 0, β2 =

f ′(r
II
)r

II
(r2

II
+ b2)− f(r

II
)(3r2

II
+ b2)

f(r
II
)r

II

< 0,

and r
I
and r

II
are the maximum and minimum points, respectively. The particular solutions

satisfy the conditions, h1(rI
) = f(r

I
) and h′

1(rI
) = f ′(r

I
); h2(rII

) = f(r
II
) and h′

2(rII
) = f ′(r

II
).

As a result, the curve of f ′(r) is tangent to that of h′

1(r) at rI
and to that of h′

2(r) at rII
. Again

considering h(r) =
∫ r

0
h′(r̃)dr̃ and h(0) = 0, we deduce that the integral areas surrounded by the

curve h′

1(r) and the transverse interval [0, r
I
] equals that by the curve f ′(r) and the transverse

interval [0, r
I
], and the same result for the integral areas surrounded by the curve h′

2(r) and

transverse interval [0, r
II
] and by the curve f ′(r) and the transverse interval [0, r

II
].

Using eq. (31), we have the temperature at the extremal points re,

TH(re) =
1

4π

[

h(re)− h′(re)re
h(re)re

+
3h(re)re − h′(re)r

2
e

h(re)b2

]

= − β

4πb2
, (36)

which is only related to the negative parameter β. Due to TH(rI
) > TH(rII

), we obtain β1 < β2.

As to the relationship between λ1 and λ2, if λ1 < λ2 is taken, the curve of h1(r) is always below

10This equation comes from the condition dTH

dr+
= 0.
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that of h2(r), which cannot lead to h1(rI
) = f(r

I
) and h2(rII

) = f(r
II
) simultaneously. As a

result, we get λ1 > λ2. Taking h′(0) = λb2 and r
I
< r

II
into consideration, we draw the sketches

of h′

1(r) (the green curve) and h′

2(r) (the red curve) in Figure 14.

If another maximum point r̃
I
is conjectured on the curve of TH, one can seek out the cor-

responding particular solution, h̃(r) = λ̃r(r2 + b2) exp
(

β̃
b
tan−1 r

b

)

, where the parameters take

the forms, λ̃ =
f(r̃

I
)

r̃
I
(r̃2

I
+b2)

exp(− β̃1

b
tan−1 r̃

I

b
) > 0 and β̃ =

f ′(r̃
I
)(r̃3

I
+b2r̃

I
)−f(r̃

I
)(3r̃2

I
+b2)

f(r̃
I
)r̃

I

< 0, and meet

the conditions, h̃(r̃
I
) = f(r̃

I
), h̃′(r̃

I
) = f ′(r̃

I
), and h̃′′(r̃

I
) = f ′′(r̃

I
). From TH(r̃I

) > TH(rII
), we

deduce β̃ < β2. With this constraint and λ̃ > λ2 together we need to consider the following four

different situations.
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Figure 14: Sketches of f ′(r) (blue), h′

1(r) = λ1(3r
2+β1r+b2) exp(β1

b
tan−1 r

b
) (green), and h′

2(r) =

λ2(3r
2 + β2r + b2) exp(β2

b
tan−1 r

b
) (red). The dashed purple (top left), pink (top right), brown

(bottom left), and black (bottom right) curves represent h̃′(r) = λ̃(3r2+ β̃r+ b2) exp( β̃
b
tan−1 r

b
)

with the different ranges of parameters, (β1 < β̃ < β2, λ2 < λ̃ < λ1), (β1 < β̃ < β2, λ2 < λ1 < λ̃),

(β̃ < β1 < β2, λ2 < λ̃ < λ1), and (β̃ < β1 < β2, λ2 < λ1 < λ̃), respectively.

(i) In the range of parameters β1 < β̃ < β2 and λ2 < λ̃ < λ1, h̃
′(0) is between h′

1(0) and

h′

2(0), so the point of tangency r̃
I
(if it exists) needs to be between r

I
and r

II
to make the integral

area h̃(r̃
I
) equal to the integral area f(r̃

I
), rather than larger than r

II
as supposed, see the top

left sketch in Figure 14.

(ii) In the range of parameters β1 < β̃ < β2 and λ2 < λ1 < λ̃, the curve of h̃′(r) lies above
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that of h′

1(r), so there is no way to find r̃
I
to satisfy the equality of integral areas between h̃′(r)

and f ′(r), see the top right sketch in Figure 14.

(iii) In the range of parameters β̃ < β1 < β2 and λ2 < λ̃ < λ1, the curve of h̃′(r) lies below

that of h′

1(r), so we cannot find r̃
I
, either, to satisfy the equality of integral areas between h̃′(r)

and f ′(r), see the bottom left sketch in Figure 14.

(iv) In the range of parameters β̃ < β1 < β2 and λ2 < λ1 < λ̃, since h̃′(0) = λ̃ is larger

than h′

1(0) = λ1, in order to ensure the equality of the integral areas, the curve of h̃′(r) must

intersect with h′

1(r) before h
′

1(r) is tangent to f ′(r), which makes the point of tangency of h̃′(r)

and f ′(r) smaller than r
I
or even non-existent, see the bottom right sketch in Figure 14.

In addition, for the situation λ̃ < λ2 where the curve of h̃′(r) is below that of h′

2(r), we

cannot find the point of tangency to meet h̃(r
I
) = f(r

I
), either.

All in all, when b is relatively large, there are only one maximum point and one minimum

point on the curve of TH, which is similar to the cyan curves of Figures 5 and 10.

Eq. (31) shows that TH increases as b decreases at fixed r+, and eq. (32) indicates that

T ′

H(r) is always positive for r < r1, and that for r > r1 the denominator of T ′

H is larger than

(r2+ − b2)f(r+)
2 − r2+(b

2 + r2+)f(r+)f
′′(r+) and might be also positive for a small b. So, when

the curve is considered as a whole to be varying with b smoothly, there exist four types of

situations: one single maximum, one maximum and one minimum following it, one inflexion,

and no extremal points on the curve. They appear in the order that the AdS radius b decreases

from infinity to a small quantity allowed by the hoop conjecture, which explains the similarity of

thermodynamic properties in the models of the general mass distribution and the specific mass

distributions, see, for instance, Figures 5 and 10.

4.3 Entropy

From eq. (16) and eq. (26), the entropy at constant pressure is derived to be

S =

∫ r+

r0

dM

TH
=

∫ r+

r0

2πr

f(r)
dr, (37)

revealing that the entropy depends on the mass distribution f(r). Incidentally, it returns natu-

rally to the ordinary Schwarzschild and Schwarzschild-AdS black holes if one sets f(r) = 1.

When we make a further extension, starting from the metric eq. (23), the discussions above

also apply to the case in which f(r) is infinitesimal higher than first order at the origin. Specif-

ically, we can take f(r) to be

f(r) = 1− l20
r2 + l20

, (38)

then the entropy turns out to be

S = π(r2+ − r20) + 2πl20 ln(
r2+
r20

), (39)
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where the correction is a logarithmic term, as calculated in the holographic metric [21]. We thus

include the result of ref. [21] as our special case.

5 Summary

In this paper, based on the new mass density of black holes associated with the minimal length

by analogy with the probability densities of quantum hydrogen atoms, we calculate the Hawking

temperature and the entropy of black holes, and analyze the corresponding phase transitions

under different vacuum pressure. Moreover, a collapsed shell with the mass density of a rational

fractional function is also briefly analyzed. Thanks to the existence of a minimal length, the

self-regular Schwarzschild-AdS metric is free of singularity and the pathological outcome of the

evaporation of black holes can be cured. Specifically, when the temperature is smaller than THP,

the black hole even with positive Gibbs free energy is unable to decay into the pure thermal

radiation because the self-regular Schwarzschild-AdS black hole has extreme configurations. In

addition, the entropy satisfies the area law only at a large horizon radius but has an obvi-

ous deviation dependent on the mass distribution at the near-extremal scale. In order to give

the reason that different mass-smeared schemes lead to similarities in thermodynamic proper-

ties [22], we investigate a general model whose mass density is based on an analytic expression

of the δ-function and the mass distribution takes a kind of step functions with continuity, and

demonstrate that all such self-regular Schwarzschild-AdS black holes indeed have the similar

properties thermodynamically.
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