Erratum: Refining the boundaries of the classical de Sitter landscape

David Andriot ${ }^{a, b}$ and Johan Blåbäck ${ }^{c}$
${ }^{a}$ Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14467 Potsdam-Golm, Germany
${ }^{b}$ Institut für Mathematik, Humboldt-Universität zu Berlin, IRIS-Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
${ }^{c}$ Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, F-91191 Gif sur Yvette, France
E-mail: david.andriot@aei.mpg.de, johan.blaback@cea.fr

Erratum to: JHEP03(2017)102
ArXiv ePrint: 1609.00385

Summary and consequences

In the trace of the Einstein equation along internal parallel flat directions, namely equations (4.14) and (4.15), a few terms have been missed. As a consequence the corrected equations will have additional terms which depend on specific components of fluxes, such as $\left|H^{(2)}\right|^{2}+$ ${ }_{2}\left|H^{(3)}\right|^{2}$ which are the squares of the components $H_{a_{\| \mid} b_{\|} c_{\perp}}$ and $H_{a_{\|} b_{\|} c_{\|} \mid}$. These terms are then absent in the final $\tilde{\mathcal{R}}_{4}$ expression (4.21) and (4.29). The only change that impacts our conclusion, (4.36), is that the curvature terms $2 \mathcal{R}_{\|}+2 \mathcal{R}_{\|}^{\perp}$ should be replaced by

$$
\begin{equation*}
2 \mathcal{R}_{\|}+2 \mathcal{R}_{\|}^{\perp}-\left|H^{(2)}\right|^{2}-2\left|H^{(3)}\right|^{2} . \tag{1}
\end{equation*}
$$

As in (4.36), this combination gets bounded by two inequalities, in order to get classical de Sitter solutions for parallel $p=4,5,6$ sources. While this change modifies the final expression, it has little impact on the physics result: we obtain tight constraints on a combination of fields for de Sitter solutions to exist with parallel $p=4,5,6$ sources. The no-go theorems for parallel $p=3,7,8$ sources are not affected at all.

The combination (1) is better motivated than the curvature terms alone, as it now appears to be T-duality invariant, on geometric backgrounds. This statement can be made more precise by considering group manifolds, where the $f^{a}{ }_{b c}$, building the curvature terms,
are constant, and some are set to zero by the orientifold projection. In addition, the H-flux is odd under an orientifold involution, imposing $H^{(3)}=0$ for a constant flux; avoiding the Freed-Witten anomaly also sets $H^{(3)}$ to zero. The (opposite sign of the) combination (1) then reduces to

$$
\begin{align*}
& \delta^{a b} f^{d_{\|}}{ }_{c_{\|} a_{\|}} f^{c_{\|}}{ }_{d_{\|} b_{\| \mid}}+\frac{1}{2} \delta^{c h} \delta^{d j} \delta_{a b} f^{a_{\|}}{ }_{c_{\|} j_{\|}} f^{b_{\|}}{ }_{h_{\|} d_{\|}}+\delta^{a b} f^{d_{\perp}}{ }_{c_{\perp} a_{\|}} f^{c_{\perp}}{ }_{d_{\perp} b_{\|}} \tag{2}\\
& +\delta^{a b} \delta^{d g} \delta_{c h} f^{h_{\perp}}{ }_{g_{\perp} a_{\|}} f^{c_{\perp}}{ }_{d_{\perp} b_{\|}}+\frac{1}{2} \delta^{a d} \delta^{b e} \delta^{c f} H_{a_{\|} b_{\|} c_{\perp}} H_{d_{\|} e_{\|} f_{\perp}},
\end{align*}
$$

and the first and third terms vanish on nilmanifolds. The H-flux component schematically transforms under T-duality into one or the other structure constant, depending on the T-duality direction

$$
\begin{equation*}
H_{a_{\|} b_{\|} c_{\perp}} \rightarrow f^{c_{\|} a_{\| \|} b_{\|}} \text {or }-f^{a_{\perp}}{ }_{c_{\perp} b_{\|}}, \tag{3}
\end{equation*}
$$

showing the T-duality invariance of the combination (1) in that setting.
A practical consequence for the paper is that several occurrences of "curvature terms" should be replaced by the above "field combination": it is the case for equations (1.2), (1.3), (4.30), and the text of the Outlook. The discussed consequences of the results are unchanged: to start with, the remark on the solutions T-dual to one with an O_{3}, at the end of section 4.2, remains valid. The requirement of having $f^{a_{\|}} b_{b_{\perp} c_{\perp}} \neq 0$ for a de Sitter solution still holds, from the constraints on the new combination, implying the nogo theorem for $p=8$ (footnote 6) and the impossibility to embed a specific monodromy inflation mechanism, as mentioned in the Outlook.

Corrected equations

For a p-dimensional source, any internal flux F_{q} was decomposed in (4.11) as $F_{q}=$ $\sum_{n=0}^{p-3} F_{q}^{(n)}$, where the components of $F_{q}^{(n)}$ have n internal parallel flat indices, and $F_{q}^{(0)}=$ $\left.F_{q}\right|_{\perp}$. As a consequence, one has

$$
\begin{align*}
\left|F_{q}\right|^{2} & =\sum_{n=0}^{p-3}\left|F_{q}^{(n)}\right|^{2}, \text { where }\left|F_{q}\right|^{2}=\frac{1}{q!} F_{q a_{1} \ldots a_{q}} F_{q}^{a_{1} \ldots a_{q}}, \tag{4}\\
\left|F_{q}^{(n)}\right|^{2} & =\frac{1}{n!(q-n)!} F_{q} a_{1 \| \ldots a_{n \|} a_{n+1} \ldots a_{q \perp}} F_{q}^{a_{1 \mid} \ldots a_{n} \| \mid a_{n+1 \perp} \ldots a_{q \perp}},
\end{align*}
$$

the indices being lifted by the flat internal metric. We now consider the trace of the Einstein equation along the internal parallel directions. An internal flux F_{q} appears in it as follows

$$
\begin{align*}
\delta^{a b} \frac{1}{(q-1)!} F_{q} a_{1 \|} a_{2} \ldots a_{q} F_{q} b_{b_{1 \|}}^{a_{2} \ldots a_{q}}= & \sum_{n \geq 1}^{p-3} \delta^{a b} \frac{1}{(n-1)!(q-n)!} F_{q}^{(n)} a_{1 \|} a_{2| |} \ldots a_{n| |} a_{n+1 \perp} \ldots a_{q \perp} \\
& \times F_{q}^{(n)} a_{2| |} \ldots a_{n| |} a_{n+1 \perp} \ldots a_{q \perp} \tag{5}\\
& =\sum_{n \geq 0}^{p-3} n\left|F_{q}^{(n)}\right|^{2}=\left|F_{q}\right|^{2}-\left.\left|F_{q}\right| \perp\right|^{2}+\sum_{n \geq 2}^{p-3}(n-1)\left|F_{q}^{(n)}\right|^{2} .
\end{align*}
$$

The last sum is absent of (4.14) and (4.15). These two equations are corrected towards

$$
\begin{align*}
\mathcal{R}_{6| |}+2(\nabla \partial \phi)_{6| |}= & \frac{p-3}{4}\left(\mathcal{R}_{4}+2(\nabla \partial \phi)_{4}+2 e^{2 \phi}\left|F_{6}\right|^{2}\right) \\
& +\frac{1}{2}\left(|H|^{2}-\left.|H|_{\perp}\right|^{2}+e^{2 \phi}\left(\left|F_{2}\right|^{2}-\left.\left|F_{2}\right|_{\perp}\right|^{2}+\left|F_{4}\right|^{2}-\left.\left|F_{4}\right|_{\perp}\right|^{2}\right)\right. \\
& +\frac{1}{2} \sum_{n \geq 2}^{p-3}(n-1)\left(\left|H^{(n)}\right|^{2}+e^{2 \phi}\left(\left|F_{2}^{(n)}\right|^{2}+\left|F_{4}^{(n)}\right|^{2}\right)\right) \\
\mathcal{R}_{6| |}+2(\nabla \partial \phi)_{6| |}= & \frac{p-3}{4}\left(\mathcal{R}_{4}+2(\nabla \partial \phi)_{4}+e^{2 \phi}\left|F_{5}\right|^{2}\right) \tag{6}\\
& +\frac{1}{2}\left(|H|^{2}-\left.|H|_{\perp}\right|^{2}+e^{2 \phi}\left(\left|F_{1}\right|^{2}-\left.\left|F_{1}\right|_{\perp}\right|^{2}+\left|F_{3}\right|^{2}-\left.\left|F_{3}\right|_{\perp}\right|^{2}\right)\right. \\
& +\frac{1}{4} e^{2 \phi}\left(\left|F_{5}\right|^{2}-\left.\left|F_{5}\right|_{\perp}\right|^{2}-\left|*_{6} F_{5}\right|^{2}+\left.\left|\left(*_{6} F_{5}\right)\right|_{\perp}\right|^{2}\right) \\
& +\frac{1}{2} \sum_{n \geq 2}^{p-3}(n-1)\left(\left|H^{(n)}\right|^{2}+e^{2 \phi}\left(\left|F_{3}^{(n)}\right|^{2}+\frac{1}{2}\left|F_{5}^{(n)}\right|^{2}\right)\right),
\end{align*}
$$

where in IIB, the one-form fluxes, F_{1} and $*_{6} F_{5}$, do not contribute to the new terms because the sum starts with $n \geq 2$. For the same reason, these new terms only contribute for $p \geq 5$. A general rewriting of these two equations, correcting equation (4.16), is then given by

$$
\begin{align*}
2 \mathcal{R}_{6| |}+ & 4(\nabla \partial \phi)_{6| |}-\frac{p-3}{2}\left(\mathcal{R}_{4}+2(\nabla \partial \phi)_{4}\right)=|H|^{2}-\left.|H|_{\perp}\right|^{2}+e^{2 \phi}\left(\left|F_{k-2}\right|^{2}-\left.\left|F_{k-2}\right|_{\perp}\right|^{2}\right) \\
& +e^{2 \phi}\left(\left|F_{k}\right|^{2}-\left.\left|F_{k}\right|_{\perp}\right|^{2}+\left|F_{k+2}\right|^{2}+(9-p)\left|F_{k+4}\right|^{2}+5\left|F_{k+6}\right|^{2}+\frac{1}{2}\left(\left.\left|\left(*_{6} F_{5}\right)\right|_{\perp}\right|^{2}-\left.\left|F_{5}\right|_{\perp}\right|^{2}\right)\right) \\
& +\sum_{n \geq 2}^{p-3}(n-1)\left(\left|H^{(n)}\right|^{2}+e^{2 \phi}\left(\left|F_{k}^{(n)}\right|^{2}+\left|F_{k+2}^{(n)}\right|^{2}+\frac{p-6}{2}\left|F_{k+4}^{(n)}\right|^{2}+\frac{p-7}{4}\left|F_{5}^{(n)}\right|^{2}\right)\right) \tag{7}
\end{align*}
$$

where the F_{5} terms should only be considered in IIB. Equation (4.17) gets corrected by adding the same new line, while the final formula (4.21) becomes

$$
\begin{align*}
2 e^{-2 A} \tilde{\mathcal{R}}_{4}= & -\left|*_{\perp} H\right|_{\perp}+\left.\left.\varepsilon_{p} e^{\phi} F_{k-2}\right|_{\perp}\right|^{2}-2 e^{2 \phi}\left|g_{s}^{-1} \tilde{\varkappa}_{\perp} \mathrm{d} e^{-4 A}-\varepsilon_{p} F_{k}^{(0)}\right|^{2} \\
& -\sum_{a_{\|}}\left|*_{\perp}\left(\mathrm{d} e_{\| \|}\right)\right|_{\perp}-\left.\varepsilon_{p} e^{\phi}\left(\iota_{\partial_{\|}} F_{k}^{(1)}\right)\right|^{2}-2 \mathcal{R}_{\|}-2 \mathcal{R}_{\|}^{\perp} \\
& -2 e^{-2 A}\left(\mathrm{~d}\left(e^{8 A_{\tilde{*}}} \mathrm{~d} e^{-4 A}-e^{8 A_{2}} \varepsilon_{p} g_{s} F_{k}^{(0)}\right)\right)_{\tilde{\perp}} \tag{8}\\
& -e^{2 \phi}\left(\left|F_{k}\right|^{2}-\left|F_{k}^{(0)}\right|^{2}-\left|F_{k}^{(1)}\right|^{2}+2\left|F_{k+2}\right|^{2}+(p-5)\left|F_{k+4}\right|^{2}+\frac{1}{2}\left(\left.\left|F_{5}\right|_{\perp}\right|^{2}-\left.\left|\left(*_{6} F_{5}\right)\right|_{\perp}\right|^{2}\right)\right) \\
+ & \sum_{n \geq 2}^{p-3}(n-1)\left(\left|H^{(n)}\right|^{2}+e^{2 \phi}\left(\left|F_{k}^{(n)}\right|^{2}+\left|F_{k+2}^{(n)}\right|^{2}+\frac{p-6}{2}\left|F_{k+4}^{(n)}\right|^{2}+\frac{p-7}{4}\left|F_{5}^{(n)}\right|^{2}\right)\right) .
\end{align*}
$$

We now detail the last two lines of (8): they are equal to

$$
\begin{aligned}
& p=3: 0 \\
& p=4:-2 e^{2 \phi}\left|F_{6}\right|^{2}
\end{aligned}
$$

$$
\begin{align*}
& p=5:\left|H^{(2)}\right|^{2}-e^{2 \phi}\left(2\left|F_{5}\right|^{2}-\left.\frac{1}{2}\left|\left(*_{6} F_{5}\right)\right| \perp\right|^{2}-\frac{1}{2}\left|F_{5}^{(2)}\right|^{2}\right) \\
& p=6:\left|H^{(2)}\right|^{2}+2\left|H^{(3)}\right|^{2}-e^{2 \phi}\left(2\left|F_{4}\right|^{2}-\left|F_{4}^{(2)}\right|^{2}-2\left|F_{4}^{(3)}\right|^{2}+\left|F_{6}\right|^{2}\right) \\
& p=7:\left|H^{(2)}\right|^{2}+2\left|H^{(3)}\right|^{2}-e^{2 \phi}\left(2\left|F_{3}\right|^{2}-\left|F_{3}^{(2)}\right|^{2}-2\left|F_{3}^{(3)}\right|^{2}+2\left|F_{5}\right|^{2}-\left.\frac{1}{2}\left|\left(*_{6} F_{5}\right)\right|_{\perp}\right|^{2}\right. \\
&\left.-\frac{1}{2} \sum_{n \geq 2}^{4}(n-1)\left|F_{5}^{(n)}\right|^{2}\right) \\
& p=8:\left|H^{(2)}\right|^{2}+2\left|H^{(3)}\right|^{2}-e^{2 \phi}\left(2\left|F_{2}\right|^{2}-\left|F_{2}^{(2)}\right|^{2}+3\left|F_{4}\right|^{2}-\sum_{n \geq 2}^{4}(n-1)\left|F_{4}^{(n)}\right|^{2}\right) . \tag{9}
\end{align*}
$$

We used (4), that leads to the cancelation of all F_{k} terms. That equation, together with $\left|F_{5}\right|^{2}=\left|*_{6} F_{5}\right|^{2} \geq\left.\left|\left(*_{6} F_{5}\right)\right|_{\perp}\right|^{2}$, allows us to prove that the Ramond-Ramond contributions to these lines are always negative (semi-)definite. We rewrite the final equation (8) as

$$
\begin{align*}
2 e^{-2 A} \tilde{\mathcal{R}}_{4}= & -\left|*_{\perp} H\right|_{\perp}+\left.\left.\varepsilon_{p} e^{\phi} F_{k-2}\right|_{\perp}\right|^{2}-2 e^{2 \phi}\left|g_{s}^{-1} \tilde{\varkappa}_{\perp} \mathrm{d} e^{-4 A}-\varepsilon_{p} F_{k}^{(0)}\right|^{2} \\
& -\sum_{a_{\|}}\left|*_{\perp}\left(\mathrm{d} e^{a_{\|}}\right)\right|_{\perp}-\left.\varepsilon_{p} e^{\phi}\left(\iota_{a_{\|}} F_{k}^{(1)}\right)\right|^{2}-2 \mathcal{R}_{\|}-2 \mathcal{R}_{\|}^{\perp}+\left|H^{(2)}\right|^{2}+2\left|H^{(3)}\right|^{2} \\
& -2 e^{-2 A}\left(\mathrm{~d}\left(e^{8 A_{\tilde{*}}} \mathrm{~d} e^{-4 A}-e^{8 A} \varepsilon_{p} g_{s} F_{k}^{(0)}\right)\right)_{\tilde{\perp}} \tag{10}\\
& -e^{2 \phi}\left(2\left|F_{k+2}\right|^{2}+(p-5)\left|F_{k+4}\right|^{2}+\frac{1}{2}\left(\left.\left|F_{5}\right|_{\perp}\right|^{2}-\left.\left|\left(*_{6} F_{5}\right)\right|_{\perp}\right|^{2}\right)\right. \\
& \left.-\sum_{n \geq 2}^{p-3}(n-1)\left(\left|F_{k+2}^{(n)}\right|^{2}+\frac{p-6}{2}\left|F_{k+4}^{(n)}\right|^{2}+\frac{p-7}{4}\left|F_{5}^{(n)}\right|^{2}\right)\right)
\end{align*}
$$

where the last two lines are a negative (semi-)definite contribution. The new combination (1) now appears. The integral version of this expression, (4.29), is similarly corrected. Turning to the no-go theorems, equations (4.33), (4.34) and (4.35) still hold in view of (7), the corrected version of (4.16). They can however be refined with the new H-flux terms, towards

$$
\begin{equation*}
2 \mathcal{R}_{6 \|}+4(\nabla \partial \phi)_{6 \|}-\frac{p-3}{2}\left(\mathcal{R}_{4}+2(\nabla \partial \phi)_{4}\right)-\left|H^{(2)}\right|^{2}-2\left|H^{(3)}\right|^{2} \geq 0 \tag{11}
\end{equation*}
$$

for (4.33). We deduce the following version of the main result, correcting (4.36)
There is no de Sitter vacuum for $p=4,5$, or 6 , if the inequalities

$$
\begin{equation*}
-\left.\int_{\widetilde{\mathcal{M}}} \widetilde{\operatorname{vol}}_{6} e^{2 A} \sum_{a_{\|}}\left|\left(\mathrm{d} e^{a_{\|}}\right)\right|_{\perp}\right|^{2}<\int_{\widetilde{\mathcal{M}}}{\widetilde{\operatorname{vol}_{6}}}_{6}^{2 A}\left(2 \mathcal{R}_{\|}+2 \mathcal{R}_{\|}^{\perp}-\left|H^{(2)}\right|^{2}-2\left|H^{(3)}\right|^{2}\right)<0 \tag{12}
\end{equation*}
$$

are not satisfied.
Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

