
High-frequency neural activity predicts word parsing in ambiguous
speech streams

Anne Kösem,1,2,3 Anahita Basirat,1,4 Leila Azizi,1 and Virginie van Wassenhove1

1Cognitive Neuroimaging Unit, CEA DRF/I2BM, Institut National de la Santé et de la Recherche Médicale, Université Paris-
Sud, Université Paris-Saclay, Gif/Yvette, France; 2Radboud University, Donders Institute for Brain, Cognition and Behaviour,
Nijmegen, The Netherlands; 3Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; and 4SCALab, Centre
National de la Recherche Scientifique UMR 9193, Université Lille, Lille, France

Submitted 26 January 2016; accepted in final form 3 September 2016

Kösem A, Basirat A, Azizi L, van Wassenhove V. High-fre-
quency neural activity predicts word parsing in ambiguous speech
streams. J Neurophysiol 116: 2497–2512, 2016. First published Sep-
tember 7, 2016; doi:10.1152/jn.00074.2016.—During speech listen-
ing, the brain parses a continuous acoustic stream of information into
computational units (e.g., syllables or words) necessary for speech
comprehension. Recent neuroscientific hypotheses have proposed that
neural oscillations contribute to speech parsing, but whether they do
so on the basis of acoustic cues (bottom-up acoustic parsing) or as a
function of available linguistic representations (top-down linguistic
parsing) is unknown. In this magnetoencephalography study, we
contrasted acoustic and linguistic parsing using bistable speech se-
quences. While listening to the speech sequences, participants were
asked to maintain one of the two possible speech percepts through
volitional control. We predicted that the tracking of speech dynamics
by neural oscillations would not only follow the acoustic properties
but also shift in time according to the participant’s conscious speech
percept. Our results show that the latency of high-frequency activity
(specifically, beta and gamma bands) varied as a function of the
perceptual report. In contrast, the phase of low-frequency oscillations
was not strongly affected by top-down control. Whereas changes in
low-frequency neural oscillations were compatible with the encoding
of prelexical segmentation cues, high-frequency activity specifically
informed on an individual’s conscious speech percept.

speech segmentation; neural entrainment; bistability; MEG; phase

NEW & NOTEWORTHY

A critical problem the brain faces when analyzing speech is
how to parse a continuous stream of information into
relevant linguistic units. With the use of bistable speech
streams that could be perceived as two distinct word
sequences repeated over time, our results show that high-
frequency activity reflects the word sequence participants
perceived. Our study suggests that high-frequency activity
reflects the conscious representation of speech after
segmentation.

LISTENING TO SPEECH REQUIRES that essential linguistic units
(phonemes, syllables, words) are computed online while hear-
ing a continuous stream of acoustic information (Poeppel et al.
2008). This segmentation problem has been discussed in recent
theoretical and neurocomputational models of speech process-
ing, which describe brain oscillations as active parsers of the

auditory speech signals (Ding and Simon 2014; Ghitza 2011;
Giraud and Poeppel 2012; Hyafil et al. 2015a; Peelle and Davis
2012; Poeppel 2003; Poeppel et al. 2008). In particular, two
main oscillatory regimes are deemed fundamental for the
encoding of speech. First, low-frequency neural oscillations in
the delta to theta range (2–8 Hz) have been shown to follow
natural speech rhythms, enabling the tracking of the temporal
structure of acoustic speech features such as syllables and
words (Ahissar et al. 2001; Ding and Simon 2013; Doelling et
al. 2014; Gross et al. 2013; Luo and Poeppel 2007, 2012;
Millman et al. 2013; Peelle and Davis 2012; Rimmele et al.
2015; Zion Golumbic et al. 2013). Second, high-frequency
neural activities, including the beta (20–30 Hz) and gamma
bands (�40 Hz), have been hypothesized to encode the fine-
grained properties of the speech signal such as phonetic fea-
tures (Ghitza 2011; Giraud and Poeppel 2012; Poeppel 2003;
Poeppel et al. 2008).

In this context, an important question is whether the entrain-
ment of low-frequency neural oscillations (LFO) by speech is
sufficient to define the segmentation boundaries of perceived
syllables and words. LFO could first impact speech parsing by
tracking the salient acoustic cues in speech (Doelling et al.
2014; Ghitza 2011; Giraud and Poeppel 2012; Hyafil et al.
2015a) and thus primarily reflect stimulus-driven neural en-
trainment, which is known to modulate the perception of
sounds in a periodical fashion (Henry and Obleser 2012; Ng et
al. 2012). Under this hypothesis, the phase of LFO could be
reset by the sharp temporal fluctuations in the speech envelope
(Doelling et al. 2014; Giraud and Poeppel 2012). LFO could
primarily be modulated by the acoustics of the speech signal so
that a particular phase of the LFO would be associated with the
acoustic edges demarcating the boundaries between speech
units. We will refer to this mechanism as “acoustic parsing,” a
bottom-up mechanism driven by the analysis of the acoustic
signal.

However, acoustic parsing is insufficient for the extraction
of linguistic tokens, considering that in continuous speech,
words and syllables are not always delimited by sharp acoustic
edges (Maddieson 1984; Stevens 2002). In particular, if neural
oscillations passively track the fluctuations of the speech en-
velope, phase reset would be predicted to occur at the onset of
vowels, which are the features that carry the most important
energy fluctuations (Stevens 2002). This would be problematic
for speech segmentation, considering that a majority of words
and syllables start with consonants (Maddieson 1984). Parsing
mechanisms may thus require top-down processing informed
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by the representational availability of syllables or words in a
given language (Mattys et al. 2005); we will refer to this
hypothesized parsing mechanism as “linguistic parsing.” LFO
are known to be under top-down attentional control: both
attention and stimulus expectation can modulate the phase of
entrained neural oscillations bringing periods of high neural
excitability in phase with stimulus presentation, thereby facil-
itating the detection of the attended sensory inputs (Besle et al.
2011; Cravo et al. 2013; Gomez-Ramirez et al. 2011; Lakatos
et al. 2008; Schroeder and Lakatos 2009a; Stefanics et al.
2010). In complex auditory environments, the control of neural
oscillations by attention has been shown to be beneficial for
speech processing, as well (Rimmele et al. 2015; Zion Golum-
bic et al. 2013), suggesting that when speech perception is
under attentional or volitional control, LFO may correlate with
the outcome of word comprehension.

Additionally, recent evidence suggests that LFO play a role
in the parsing of linguistic content (Ding et al. 2016). Delta
oscillations were shown to delineate the perceived linguistic
structure (phrases and sentences) within continuous speech,
suggesting that LFO may be actively relevant for the parsing of
smaller linguistic units such as words or syllables, which is the
focus of this study. So far, the strength of LFO entrainment has
been reported to systematically correlate with speech intelligi-
bility (Ahissar et al. 2001; Ding and Simon 2013; Doelling et
al. 2014; Gross et al. 2013; Peelle et al. 2013; Rimmele et al.
2015), implying that LFO may be relevant for word segmen-
tation. However, and importantly, speech intelligibility was
also confounded with changes in the acoustic properties of the
speech signal, leaving open the possibility that the observed
modulations of LFO were driven by acoustic cues. In fact, in a
different series of experiments controlling for acoustic proper-
ties, no direct link between speech intelligibility and neural
entrainment of LFO was found (Millman et al. 2015; Peña and
Melloni 2012; Zoefel and VanRullen 2015). All in all, these
results suggest that LFO may govern attention and temporal
expectation mechanisms that regulate the gain of the acoustic
information but may not reflect top-down syllable/word seg-
mentation per se.

Crucially, speech models posit that the entrainment of LFO
by syllabic and phrasal speech rates are associated with a
modulation of high-frequency activity (HFA) by LFO (Ding
and Simon 2014; Giraud and Poeppel 2012; Hyafil et al.
2015a). LFO are known to orchestrate periods of inhibition and
excitation for HFA, notably in the beta and gamma bands. This
is achieved via cross-frequency coupling, meaning that an
increase in HFA power occurs at particular phases of LFO
(Akam and Kullmann 2014; Canolty et al. 2006; Canolty and
Knight 2010; Hyafil et al. 2015b; Lakatos et al. 2005). During
speech listening, HFA has been predicted to be enhanced as
syllables and words unfold over time but inhibited at their
boundaries (Ding and Simon 2014; Giraud and Poeppel 2012;
Hyafil et al. 2015a). Speech models thus predict that the
inhibition of HFA would also mark the onsets and offsets of the
parsing windows used to segment the acoustic signals into
speech units.

In this experiment, we were interested in understanding
whether neural oscillatory dynamics predicted linguistic pars-
ing when the acoustic properties of speech were maintained
identically over time yet yielded different conscious percepts,
a phenomenon known as “verbal transformations” (Basirat et

al. 2012; Billig et al. 2013; Sato et al. 2006, 2007; Warren
1968) (Fig. 1A). For instance, hearing the word fly steadily
repeated over time “. . . . flyflyflyflyflyflyflyflyfly . . .” will typ-
ically result in perceiving alternatively “life” or “fly.” Four
different speech sequences were used and could be perceived
as two distinct French words: “lampe” ([lãp]) or “plan” ([plã]),
and “képi” ([kepi]) or “piquer” ([pike]); or pseudo-words:
“pse” ([psə]) or “sep” ([səp]), and “tapa” ([tapa]) or “pata”
([pata]). Participants were asked to maintain one or the other
percept during the presentation of a given speech sequence
(Fig. 1A). Because the acoustics of the speech signal were
constant over time, the changes in word percept could only be
attributed to linguistic parsing. We predicted that if LFO
actively participated in linguistic parsing in a manner consis-
tent with participants’ conscious perception, LFO should track
the speech signal at distinct latencies for each competing
percept when under volitional control (Fig. 1B). Alternatively,
if LFO tracked the acoustic cues irrespective of conscious
speech perception, no changes should be seen when contrasting
two perceptual reports given the same acoustic presentation.
Additionally, in the context of the introduced speech models
(Ding and Simon 2014; Giraud and Poeppel 2012; Hyafil et al.
2015a), we expected that HFA power should also follow
speech dynamics and that the tracking should similarly shift in
time according to the boundaries of the perceived syllables and
words (Fig. 1B). Our results show small latency modulations of
the LFO phase response but strong latency modulations of the
power of HFA that are consistent with linguistic parsing. The
functional dissociation between these two neural markers is
discussed in detail.

MATERIALS AND METHODS

Participants

Twenty participants (8 women, mean age 23 yr) took part in the
study. All were right-handed native French speakers with normal
hearing. All participants were naive as to the purpose of the study.
Before taking part in the study, each participant provided a written
informed consent in accordance with the Declaration of Helsinki
(2008) and the Ethics Committee on Human Research at NeuroSpin
(Gif-sur-Yvette, France). Two participants were rejected because of
noisy magnetoencephalography (MEG) recordings (rejection after
visual inspection of MEG raw data, before MEG analysis), one
participant did not finish the task, and two participants did not
correctly perform the “volitional” verbal transformation task because
they could not voluntarily hear the required percept (�10% report) in
at least one of the sequences. Hence, 15 participants (5 women, mean
age 23 yr) were considered for the reported analysis.

Experimental Paradigm

Stimuli. Four auditory sequences (adapted from Basirat et al. 2012
and Sato et al. 2007) were presented binaurally to participants via
Etymotic earphones (Etymotic Research, Elk Grove Village, IL) at a
comfortable hearing level. One sequence consisted of the repetition of
the monosyllabic French word “lampe” ([lãp], French equivalent of
“lamp”). The sequence was bistable and could also be perceived as the
repetition of the word “plan” ([plã], French equivalent of “map”). The
second sequence consisted of the repetition of the bisyllabic word
“képi” ([kepi], French equivalent of “kepi”), which could also be
perceived as the repetition of the word “piquer” ([pike], French
equivalent of “to sting”). Two other sequences consisted of the
repetition of pseudo-words that were either monosyllabic “sep”
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([səp]), leading to the alternative percept “pse” ([psə]), or bisyllabic
“pata” ([pata]), which could also be heard as the repetition of the
pseudo-word “tapa” ([tapa]). All syllables in the auditory sequences
were recorded (16-bit resolution, 22.05-kHz sampling rate) in a
soundproof room by a native French speaker (A. Kösem). The speaker
pronounced each syllable naturally and maintained an even intonation
and vocal intensity while producing the sequences. Stimuli sequences
were constructed using the Praat freeware (Boersma 2002). For the
bisyllabic sequences, one syllable of each token [pa], [ta], [ke], and
[pi] was selected; the criterion consisted of selecting the syllable that
matched as closely as possible the sequence rate of 3 Hz (1 syllable
per 333 ms). All syllables had equalized sound levels based on root
mean square (RMS). The selected syllables were assembled to form
the word “képi” and the pseudo-word “pata,” and each word was
repeated 100 times to form the sequences. For the monosyllabic word
and the pseudo-word sequences, one clearly articulated token [psə],
[səp], [plã], and [lãp] of 333-ms duration was selected from the
recordings and repeated 150 times. In all recordings, the syllabic
length was 333 ms, leading to a repetition rate of 1.5 Hz in bisyllabic
sequences and 3 Hz in monosyllabic sequences.

Procedure. First, before beginning the main experiment, partici-
pants were familiarized with the stimuli via the spontaneous verbal
transformation task (Basirat et al. 2012), in which participants hear a

sequence of repeated acoustic utterances yielding bistable auditory
percepts. Participants were asked to spontaneously report their per-
ception while listening to these auditory sequences. After completing
this familiarization phase, participants performed a variation of the
verbal transformation paradigm in which they were asked to volun-
tarily maintain hearing one of the possible speech percepts for as long
as possible while listening to the sequence. Participants were in-
structed to perceive the sequence as the repetition of a target word,
without vocalizing the word or imposing a rhythm during the
presentation of the sequences. Specifically, we asked participants
to hear the external speaker repeating the word and not to covertly
produce the sequences. The four auditory sequences were pre-
sented twice, and the instructed target word was counterbalanced for
each presentation. Hence, in one presentation, participants were asked
to maintain the target “képi,” “pata,” “sep,” or “lampe,” and in the
second presentation of the same sequence, they were asked to main-
tain the alternative target percept “piquer,” “tapa,” “pse,” or “plan,”
respectively. The two successive presentations of a sequence consti-
tuted one block, and blocks were presented in random order across
individuals. During a given speech sequence, participants were asked
to continuously depress the button corresponding to the currently
perceived utterance and to switch buttons as soon as, and every time,
their perception changed. One button was assigned for each of the two

Fig. 1. Bistable speech segmentation: design (A), hypothesis (B), and behavioral reports (C). A: participants were asked to maintain a given percept a long as
possible while listening to a bistable speech sequence. Four sequences of interest were presented: repetition of the word “lampe” ([lãp]), repetition of “sep”
([səp]), repetition of “képi” ([kepi]), and repetition of “pata” ([pata]). The sequences were bistable and could also be perceived as repetitions of the word “plan”
([plã]), “pse” ([psə]), “piquer” ([pike]), and “tapa” ([tapa]), respectively. Participants listened twice to each sequence and were asked to maintain either one or
the other of the possible bistable speech percepts (e.g., maintain “plan” or maintain “lampe”). Subjects reported online their current percept by keeping a button
pressed. Three buttons were given: two buttons for the bistable percepts (e.g., “plan” and “lampe”) and one button for “other” if subjects perceived another
utterance. B: if low-frequency oscillations (LFO) reflect linguistic parsing mechanisms, we predicted that changes in the latency of speech tracking by LFO would
define the boundaries of speech segmentation. In this example, for a given acoustic signal, the latency (indexed by the phase) of the low-frequency neural response
was predicted to vary depending on whether participants perceive “plan” or “lampe”. Because the phase of low-frequency neural oscillations may modulate the
excitability of high-frequency activity (HFA), changes in the latency of HFA were expected so that lowest HFA would be aligned with the word boundaries.
C: on average, for any given speech sequence, participants succeeded in maintaining the instructed percept. Bars represent the proportion of responses when
participants were asked to maintain the perception of one word during one sequence presentation (black) or the other word in another sequence presentation
(gray). Errors bars denote SE.
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expected percepts in a sequence (“képi” and “piquer”; “pata” and
“tapa”; “pse” and “sep”; “plan” and “lampe”), and a third button
(labeled “other”) was used to report any other percepts participants
might have experienced during the sequence.

MEG Analysis

Data acquisition. Neuromagnetic brain recordings were collected
in a magnetically shielded room using the whole head Elekta Neuro-
mag Vector View 306 MEG system (Elekta Neuromag, Helsinki,
Finland) equipped with 102 triple-sensor elements (2 orthogonal
planar gradiometers and 1 magnetometer per sensor location). Shield-
ing against environmental noise was provided by MaxShield (Elekta
Neuromag). Participants were seated in an upright position. Each
participant’s head position was measured before each block with four
head position coils (HPI) placed over frontal and mastoid areas. MEG
recordings were sampled at 1 kHz and online bandpass filtered
between 0.03 and 330 Hz. The electro-occulograms (EOG; horizontal
and vertical eye movements) and electrocardiogram (ECG) were
recorded simultaneously with the MEG.

Data preprocessing. The signal space separation (SSS) method was
applied to decrease the impact of external noise (Taulu et al. 2003).
SSS correction, head movement compensation, and bad channel
rejection was done using MaxFilter software (Elekta Neuromag).
Signal-space projections were computed by principal component
analysis (PCA) using Graph software (Elekta Neuromag) to correct
for eye blinks and cardiac artifacts (Uusitalo and Ilmoniemi 1997).

Data analysis. MEG analyses were performed using MNE-Python
(Gramfort et al. 2013, 2014). The analyses were performed on
gradiometer data, known to be less sensitive to environmental noise
(Hämäläinen et al. 1993; Vrba 2002). The trials for evoked responses,
phase quantification, and cross-correlation analyses were computed by
segmenting continuous data into 2-s epochs centered on the burst of
the [p] plosive in the speech signal. The trials for spectral analyses
were computed by segmenting data in 8.2-s epochs to ensure a high
spectral resolution of low-frequency dynamics. A rejection criterion
for gradiometers with peak-to-peak amplitude exceeding 4.000 e�10

T/m was applied to select the epoch data. Trials in which participants
failed to maintain the target percept were excluded from further
analysis, as assessed by participants’ explicit button presses while
listening to speech; trials which were preceded or followed by a
change in button press by 500 ms were also excluded. Hence, the
analysis included trials in which the perceptual reports matched the
target percepts: for instance, we will call “lampe” trials those trials in
which participants were instructed to maintain the percept “lampe”
and actually reported having heard “lampe.” In total, �23% � 9.6%
(mean � SD) of epochs were rejected.

Data were analyzed in two regions of interest by selecting gradi-
ometers covering the left and right temporal areas (the selected
sensors are depicted in Fig. 2 as black dots). A spatial filter was used
for channel averaging in each region of interest. The spatial filter was
estimated on the basis of the signal-space projection of the covariance
of the evoked responses (Tesche et al. 1995) to each sequence; it
consisted of signed weights on each sensor, based on their contribu-
tion to the evoked response and their polarity. This was done to
enhance the contribution of sensors that were strongly modulated by
the evoked component of the signal and to alleviate sensor cancella-
tion due to opposite signal polarities.

ERF analysis. For ERF analysis, epochs were filtered between 1
and 40 Hz. The comparisons of evoked responses between conditions
were computed using a nonparametric permutation test in the time
dimension. Correction for multiple comparisons was performed with
cluster-level statistics (cluster � � 0.05), using as base statistic a
one-way F-test computed at each time sample (Maris and Oostenveld
2007). For illustration, we show in Fig. 2 the topography of the 3-Hz
component of the evoked response. To do so, 3-Hz evoked amplitude

was estimated by using Morlet wavelet transform (4 cycles) on the
evoked data, which was then averaged across sequences.

Frequency analysis. MEG signals were divided in epochs of 8.2 s
to compute the power spectrum density (PSD) by using a Welch’s
average periodogram method for each experimental condition (per-
ceived speech), for each hemisphere, and on a per-speech sequence
and per-individual basis. Repeated-measures ANOVA were per-
formed at observed frequency peaks of the power spectra: the entrain-
ment frequency (3 Hz), 1.5 Hz and its harmonics (4.5, 6 Hz), and
alpha oscillations (8–12 Hz). This was done to assess the contribution
of each frequency to the overall brain response. The other factors
included were sequence type (4 levels: “kepi,” “pata,” “lampe,” and
“sep”), reported percept (2 levels: “percept 1” and “percept 2”, e.g.,
“lampe” and “plan”), and hemisphere (2 levels: right and left).

Phase analysis. The phase of the 3- and 1.5-Hz entrained oscilla-
tory responses and the phase-locking value (PLV; also called phase-
locking factor or intertrial coherence) were computed at the onset of
the plosive burst. The PLV is a measure of phase consistency across
trials (Tallon-Baudry et al. 1996) and is defined as

PLV(t) �
1

n
��

k�1

n

ej�(t,k)�,
where n is the number of trials and �(t,k) is the instantaneous phase at
time t and trial k. Single-trial MEG data (2-s epochs centered on the
plosive) were convolved with a 3-cycle Morlet wavelet at 1.5-Hz
frequency for the computation of the 1.5-Hz preferential phase and
with a 4-cycle Morlet wavelet at 3-Hz frequency to compute the 3-Hz
preferential phase. To assess statistical significance of phase shifts
between the two percepts during the presentation of one speech
sequence (e.g., “plan” and “lampe”), we computed the difference in
the preferential phase of entrainment on a per-individual basis. The
95% confidence intervals (CI) of the distribution of phase differences
across participants was estimated with a bootstrapping method based
on 10,000 resamples of the distribution with replacement (Fisher
1995). Phase distributions were considered statistically different be-
tween the percepts if zero lay outside the measured confidence
interval (P � 0. 05, uncorrected for multiple comparisons), i.e., if zero
was lower than the 2.5% percentile or higher than the 97.5% percen-
tile of the bootstrap distribution.

Cross-correlation measures of speech envelope with MEG signals.
To estimate the modulations of HFA amplitude that followed the
speech envelope, normalized cross-correlations between the ampli-
tude of neural oscillations and the dynamics of the speech envelope
were computed. First, the speech envelope was estimated by using a
filter bank that models the passage of the signal through the cochlea
(Ghitza 2011; Glasberg and Moore 1990). The filter bank was de-
signed as a set of parallel bandpass finite impulse response (FIR)
filters, each tuned to a different frequency. The center frequencies of
interest were chosen from 250 and 3,000 Hz. The center frequency f
and the critical bandwidth of each filter were computed following the
method of Glasberg and Moore (1990). Second, a Hilbert transform
was applied to each filtered signal, and the absolute value of each
Hilbert transform was averaged to obtain the final envelope. The
amplitude of neural oscillations ranging from 6 to 140 Hz (in 2-Hz
steps) was computed on the 2-s-long epochs on a per-trial basis by
filtering the MEG signal for each frequency band (FIR filter, band-
width �2 Hz for frequencies �20 Hz, bandwidth �5 Hz for frequen-
cies �20 Hz) and by taking the absolute value of the Hilbert transform
applied to each filtered signal.

Normalized cross-correlations were computed between the ampli-
tude of the MEG signal for each frequency band and the cosine of the
phase of the speech envelope at 3 Hz [FIR filter, bandwidth (2.5, 3.5
Hz), in mono- and bisyllabic sequences] and 1.5 Hz [FIR filter,
bandwidth (1, 2 Hz), in bisyllabic sequences only]. The resulting
cross-correlograms thus indicate how the amplitude of high-frequency
oscillations consistently tracks the dynamics of 3- and 1.5-Hz speech
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envelopes over trials. For each individual, we tested if the cross-
correlograms significantly differed between the percept conditions
using spectrotemporal cluster permutation statistics (Maris and Oost-
enveld 2007). A one-way F-test was first computed at each time and
frequency sample. Samples were selected if the P value associated to
the F-test was �0.05 and were clustered on the basis of spectrotem-
poral adjacency. The sum of the F values within a cluster was used as
the cluster-level statistic. The reference distribution for cluster-level
statistics was computed by performing 1,000 permutations of the data
between the two conditions. Clusters were considered significant if the
probability of observing a cluster test statistic of that size in the
reference distribution was �0.05. The significant clusters indicated,
on a per-individual basis, in which frequency bands the difference
between maintained percepts was most pronounced.

The resulting differences between brain responses to successfully
maintained percepts could originate either from a difference in the
strength of the speech-brain coupling as a function of the perceived
speech or from a difference in the latency of the cross-correlation
(which could be interpreted as temporal shifts in neural speech
tracking). To test these two hypotheses, we measured both the max-
imal value and the latency of the cross-correlation for each frequency
band of each significant cluster, comprising beta (12–30 Hz), gamma
(40–80 Hz), and high-gamma (90–130 Hz) frequency ranges. The
latency was estimated by computing the phase of the 3-Hz component
of the cross-correlation at the onset of the plosive.

RESULTS

Volitional Maintenance of Conscious Speech Percepts

During MEG recording, participants listened twice to the
same ambiguous speech sequence and were asked to maintain
one or the other possible speech percepts. Participants contin-
uously reported their percept by keeping one of three possible
response buttons pressed: one button was used for each of the
two expected perceptual outcomes, and a third when a different
percept was heard. Overall, participants reported that the task
was easy to perform and that they could easily hear the speaker
pronouncing either one of the two word sequences. Consistent
with their introspection on the task, participants successfully
maintained the required speech percept in all conditions: the
percept to be maintained was heard significantly more than the
alternative percepts [F(2,28) � 17.6, P � 0.001; Fig. 1C].
Although post hoc analysis showed that the percept “pse” was
significantly harder to maintain compared with other percepts
(64% maintenance, compared with 84–96% in the other con-
ditions), it remained significantly dominant compared with the
alternative percept “sep” (33%) in this condition. These results
confirmed that with this task, the perception of the repeated
word in the sequence could be manipulated while keeping the
acoustic signal constant. Volitional control also limited the
biases observed during spontaneous bistable perception in
which participants typically report hearing mainly one word
repeated in the sequence and not the two bistable percepts in
balance (see Basirat et al. 2012; Sato et al. 2007).

Low-Frequency Phase Response is Not Indicative of
Perceived Word Segmentation Boundary

Changes in the phase of the 3-Hz oscillatory component as
a function of perceived word during monosyllabic sequences.
The syllabic rate of all speech sequences was set to 3 Hz to
keep within the natural range of syllabicity described across all
languages (Greenberg et al. 2003; Poeppel 2003). Bistable

speech percepts were thus effectively repeated at 3 Hz in
monosyllabic sequences (“lampe” and “sep”) but at 1.5 Hz in
bisyllabic sequences (“képi” and “pata”). As predicted, audi-
tory cortices showed a strong phase locking at the syllabic rate
(i.e., 3 Hz) in all conditions and over temporal sensors bilat-
erally (Fig. 2A).

We compared the neural responses between trials in which
participants successfully maintained the target percepts: for
instance, the trials of the percept condition “lampe” correspond
to the trials in which participants were instructed to maintain
the target “lampe” and reported having heard “lampe”; the
“plan” trials correspond to the trials for which participants
were instructed to maintain “plan” and reported having heard
“plan.” If the entrainment of LFO by speech rhythms imple-
ments acoustic parsing, no changes in LFO should be seen,
because the acoustic signal was identical for both percept
conditions. Alternatively, if linguistic parsing modulates LFO,
substantial temporal shifts in the LFO should be observed. In
this study, the LFO would realign at different time points of the
acoustic signal depending on participant speech report. Each
duty cycle of the LFO would define landmarks that are relevant
for linguistic parsing (e.g., word’s onset and offset), and the
extent of the parsing window (or the duty cycle of the LFO)
should contain sufficient acoustic information to result in the
syllabic or word representation (Fig. 1B). The temporal shift in
tracking could be measured as a phase shift of the entrained
oscillation, meaning that a certain speech acoustic feature
should occur at a different phase of the LFO depending on the
perceived word. We first tested this hypothesis by computing
the 3-Hz phase-locking value (PLV) and preferential phases of
brain responses elicited by the presentation of the monosyllabic
sequences (“sep” and “lampe”). PLVs and preferential phases
were computed at the onset of the plosive burst ([p]) for all
possible perceptual outcomes to directly assess whether a given
acoustic landmark was associated with the same phase char-
acteristics of LFO irrespective of perception. First, the PLVs
did not significantly differ between the left and right hemi-
spheres [F(1,14) � 1] or between the perceptual outcomes
within each sequence [main effect of percept: F(1,14) � 2.6,
P � 0.13; interaction between percept and sequence type:
F(3,56) � 1; Table 1], suggesting that the strength of low-
frequency neural entrainment was comparable irrespective of
participants’ perceptual report. The 3-Hz PLVs were neverthe-
less of different strengths for each sequence [main effect of
sequence: F(3,56) � 9.5, P � 0.001; Table 1]. The monosyl-
labic sequences elicited a stronger PLV than bisyllabic sequences
(Table 1, post hoc Tukey-Kramer test: “képi” vs. “pata,” P � 0.3;
“képi” vs. “lampe,” P � 0.001; “képi” vs. “sep,” P � 0.001;
“pata” vs. “lampe,” P � 0.001; “pata” vs. “sep,” P � 0.005;
“lampe” vs. “sep,” P � 0.04).

Second, in line with a possible top-down modulation of
LFO, the preferential phase response varied as a function of the
perceived utterance within the same sequence: perceiving the
word “lampe” was associated with a phase advance of �8°
(95% CI � [�15.5°, �0.3°]) compared with “plan” (Fig. 2B).
Similarly, a phase advance of �9° (95% CI � [�17.7°,
�1.5°]) in the 3-Hz oscillatory response distinguished the
perceived syllable “sep” from “pse.” No other changes in the
phase or in the evoked responses at 3 Hz were observed
between the different percepts of the bisyllabic sequences (Fig.
2, B and C). Hence, in both monosyllabic sequences, the
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perceptual outcomes were associated with phase shifts of the
3-Hz response (Fig. 2B). Although these phase shifts were
consistent across monosyllabic conditions, the confidence in-
tervals of the differences were nevertheless close to zero and
included zero when Bonferroni correction was used for multi-

ple comparisons. To ensure that these results were not specific
to the temporal reference or the acoustic landmark used in the
computations of the phase responses, the same analysis was
carried out when phase responses were locked 50 and 100 ms
before or after plosive onset and the main observations were
replicated.

These results suggest that if neural tracking of speech is
subject to top-down modulations, then the effect may be weak.
Phase shifts of 8° or 9° translate into temporal shifts of �9 or
10 ms, respectively, suggesting that the neural response to the
plosive [p] when participants perceived the word “plan” was
delayed by 9–10 ms compared with when participants per-
ceived “lampe.” Notably, the latency shifts observed in the
monosyllabic sequences conditions were smaller than would
have been expected on the basis of LFO as parsers, considering
that the temporal distance between the percepts’ onset and
offset features was of higher magnitude. In the “lampe” se-
quences, the plosive and the onset of the consonant [l] were
separated by 80 ms, and the silent gap prior to the plosive was
90 ms. For the “sep” sequences, the plosive and the onset of the
consonant [s] were 50 ms apart with a silent gap of 70 ms. Thus
the minimal temporal shift of the parsing window necessary to
distinguish the two monosyllabic percepts should have been

Fig. 2. Characteristics of the 3-Hz neural response to speech. A: scalp topography of the 3-Hz auditory evoked response. Black dots illustrate the position of the
selected gradiometers over the left (L) and right (R) hemispheres. B: phase differences of the 3-Hz response contrasting perceived speech utterances. Polar plots
report the 3-Hz phase difference between the 2 perceptual outcomes (top, left hemispheric sensors; bottom, right hemispheric sensors). Each gray bar is an
individual’s phase difference between the 2 perceptual outcomes in a given condition. The black bar corresponds to the mean average phase difference across
all participants. Red arcs are 95% confidence intervals (CI). C: grand average auditory evoked response fields (ERFs) that correspond to left sensors (top) or right
sensors (middle). Speech waveforms are shown for each sequence (bottom). No significant changes in the ERF were observed between percepts. Shaded areas
denote SE.

Table 1. PLVs at 3 Hz observed in left and right temporal
sensors as a function of perceived speech for each speech sequence

Percept PLVL Percept PLVL

lampe 0.62 plan 0.65
sep 0.56 pse 0.60
képi 0.48 piquer 0.48
tapa 0.50 pata 0.54

Percept PLVR Percept PLVR

lampe 0.61 plan 0.62
sep 0.60 pse 0.56
képi 0.49 piquer 0.48
tapa 0.48 pata 0.55

Phase-locking values (PLVs) did not significantly change between percept
conditions [no main effect of percept: F(1,14) � 2.6, P � 0.13; interaction
between percept and sequence type: F � 1]. L, left; temporal sensor; R, right
temporal sensor.
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50–80 ms, corresponding to phase shifts in neural entrainment
of at least 55° to 85°. Because the reported phase shifts were
much smaller (8° to 9°), our results for monosyllabic sequences
suggest that the duty cycles of the entrained LFO are insuffi-
cient to account for linguistic parsing.

Phase characteristics of the 1.5-Hz oscillatory response as a
function of the perceived word during bisyllabic sequences. In
addition to the 3-Hz auditory peak response, significant peak
responses were found in the power spectral density (PSD) of
the MEG brain responses (Fig. 3A). Specifically, what ap-
peared as the subharmonic and harmonic components of the
acoustic signals were observed in the PSD consistent with the
repetition rates of the mono- and bisyllabic words, namely, at
1.5, 3, 4.5, and 6 Hz. The canonical alpha rhythm (8–12 Hz)
was also readily seen. The contribution of each observed
frequency differed according to the sequence. In fact, we
observed that the power of the 1.5-Hz oscillatory response was
significantly enhanced when participants were listening to
bisyllabic speech utterances compared with monosyllabic ones
(Fig. 3, A and B). ANOVA revealed a significant main effect of
frequency peak response [F(4,56) � 29.9, P � 0.001] and of
the sequence [F(3,42) � 3.4, P � 0.027], as well as a
significant interaction between frequency peak response and

sequence [F(12,168) � 11.4, P � 0.001]. Tukey-Kramer post
hoc analysis showed a significant difference in the power of the
1.5-Hz response between bisyllabic and monosyllabic se-
quences (“képi” vs. “pata,” P � 0.9; “képi” vs. “lampe,” P �
0.001; “képi” vs. “sep,” P � 0.001; “pata” vs. “lampe”, P �
0.001, “pata” vs. “sep,” P � 0.002; “lampe” vs. “sep,” P � 1),
suggesting that 1.5-Hz dynamics were more prominent for bi-
than monosyllabic processing. The 1.5-Hz power was not
indicative of the perceived word within a sequence [F(1,14) �
1; Fig. 3B] and did not show significant differences across
hemispheres [F(1,14) � 1]. The results were qualitatively
similar after correction for 1/f noise distribution as reported by
Kösem et al. (2014) and Nozaradan et al. (2011).

There are two possible origins for the observation that
bisyllabic words induce significant 1.5-Hz auditory responses
(Fig. 3, A and B). First, the 1.5-Hz response could be elicited
by a subharmonic component already present in the speech
signals, considering that bisyllabic sequences consist of the
repetition of acoustic patterns at 1.5 Hz. The 1.5-Hz response
observed in the PSD of MEG activity could thus reflect a
passive bottom-up frequency tagging of the auditory response.
Second, the 1.5-Hz response could also be under the influence
of top-down mechanisms. The two hypotheses cannot be fully

Fig. 3. Modulations of low-frequency neural entrainment and characteristics of (sub)harmonic peak responses. A: power spectral density (PSD). The red and blue
traces correspond to the PSD of brain activity in response to the presentation of the speech sequences ”képi,“ ”pata,“ ”lampe,“ and ”sep.“ Color codes for the
percept that was maintained. Gray areas highlight the frequencies of interest in the spectra, e.g., 1.5, 3, 4.5, and 6 Hz and alpha band (8–12 Hz). B: increased
1.5-Hz power for bisyllabic speech sequences. 1.5 Hz power was significantly higher when participants listened to bisyllabic sequences compared with
monosyllabic sequences. The power did not significantly vary between the 2 bisyllabic sequences or between the 2 monosyllabic sequences. Errors bars denote
SE. C: no significant 1.5-Hz phase differences of the LFO are observed when contrasting perceived speech utterances. Each gray bar is an individual’s 1.5-Hz
phase difference observed when contrasting the 2 alternative percepts of a sequence. The black bar corresponds to the average phase shift across all participants.
Red arcs correspond to 95% CI.
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disentangled in our study, given that 1.5-Hz peaks were ob-
servable in the PSDs of the envelope of the bisyllabic speech
sequences (Fig. 4). Nevertheless, previous reports have shown
that delta oscillations are not purely stimulus driven and also
may be involved in the encoding of abstract linguistic struc-
tures (Buiatti et al. 2009; Ding et al. 2016).

Similar to the 3-Hz oscillatory component in the monosyl-
labic sequences, the perceptual changes in the “képi” and
“pata” sequences were expected to be accompanied by modu-
lations of the 1.5-Hz oscillatory phase. No significant changes
of the 1.5-Hz PLV were observed when the two perceptual
outcomes of the same bisyllabic sequences were compared
[main effect of percept: F(1,14) � 1; interaction between
percept and sequence: F(1,14) � 2.6, P � 0.12; Table 2].
Nonsignificant phase shifts were observed between the two
perceptual outcomes (Fig. 3C). As previously mentioned, if the
phase of 1.5-Hz LFO marked bisyllabic boundaries for acous-
tic or linguistic parsing, patterns of out-of-phase shifts would
have been observed because syllables composing the word
were 333 ms apart (Fig. 1B), but this is not what we observed.

Overall, our results do not provide strong evidence that the
neural tracking of speech by LFO is subject to top-down
modulations. First, perceptual changes in the monosyllabic
word sequences could be associated with phase shifts in speech
tracking at the syllabic rate (3 Hz), but they were too small to
account for a shift of the linguistic parsing window. Second,
the subharmonic of the syllabic rate (1.5 Hz) was also observed
in the auditory response when participants listened to se-
quences of bisyllabic words, but it is not entirely clear whether
it only originates from bottom-up processing or whether top-
down modulations intervene. Hence, these findings do not
show direct evidence that LFO are indicative of segmentation
boundaries that are directly relevant for conscious speech
perception. Additional mechanisms likely come into play to
account for the restructuring of information that would be
consistent with the speech percept.

Changes in the Latency of HFA Reflect Conscious Speech
Percepts on a Per-Individual Basis

Under the linguistic parsing hypothesis and the speech
models being tested (Ding and Simon 2014; Giraud and Poep-

pel 2012; Hyafil et al. 2015a), HFA is coupled to low-fre-
quency dynamics, and its periodical inhibition by LFO may
mark segmentation boundaries. In the context of such cross-
frequency coupling, we hypothesized that HFA may display
latency shifts of the same magnitude as the phase shifts
observed in LFO entrainment. To reliably quantify speech
tracking of the HFA, we computed the cross-correlation be-
tween the phase of the speech envelope filtered at 3 Hz and the
amplitude of the neural oscillations of frequencies spanning 6
to 140 Hz. Speech-neural response cross-correlograms have
been used previously (Fontolan et al. 2014; Gross et al. 2013)
to estimate the frequency bands in the neural signals that
preferentially track the dynamics of speech, as well as to
compute the latency between speech and the amplitude of
neural oscillations. In this study, we specifically targeted the
dynamics of the 3-Hz speech envelopes to capture the ampli-
tude modulations that followed the syllabic rate. The resulting
signal was an oscillation at 3 Hz whose phase corresponded to
the latency between the speech sequence and the neural re-
sponse. The latency of the cross-correlation was expected to be
consistent within percept but different across percepts.

We contrasted the cross-correlograms between the two per-
cepts of a given sequence for each participant and performed
between-trials spectrotemporal cluster analysis of the contrast.
Significant changes in the cross-correlograms were found de-
pending on the individual’s perceptual outcome for mono- and
bisyllabic sequences. All participants presented significant dif-
ferences between the monosyllabic percept conditions in both
hemispheres, and relatively few participants had significant
changes for bisyllabic sequences. For illustration, we report the
outcome of this analysis for two participants (Fig. 5), contrast-
ing perceiving “lampe” with perceiving “plan.” For participant
p04, changes in percept were associated with differences in
speech-brain cross-correlation that were more prominent in the
gamma and high-gamma ranges (Fig. 5A), and for participant
p05, differences in speech-brain cross-correlations were stron-
gest for distinct gamma and high-gamma bands and for lower
frequency responses (Fig. 5A). Crucially, the significant
changes in cross-correlation were related to strong latency
differences as reflected by the phase shifts of the 3-Hz cross-
correlograms between perceiving “plan” and “lampe” (Fig. 5,
B and C). Hence, the latency (quantified as the phase of the
modulated HFA) shifted according to the speech envelope, and
these shifts were associated with changes in conscious percepts
(Fig. 5C). Additionally, although strong phase oppositions in

Table 2. PLVs at 1.5 Hz observed in left and right temporal
sensors as a function of perceived speech in bisyllabic speech
sequences

Percept PLVL Percept PLVL

képi 0.30 piquer 0.25
tapa 0.22 pata 0.19

Percept PLVR Percept PLVR

képi 0.27 piquer 0.22
tapa 0.19 pata 0.19

No significant changes of the 1.5-Hz PLV were observed when contrasting
the two perceptual outcomes of the same bisyllabic sequences [main effect of
percept: F(1,14) � 1; interaction between percept and sequence: F(1,14) �
2.6, P � 0.12].

Fig. 4. Frequency power spectra of the envelopes of the acoustic stimuli. The
1.5-Hz subharmonic in the bisyllabic stimuli sequences could readily be seen
in contrast to the monosyllabic stimuli. The 1.5-Hz component was also
stronger in ”képi“ sequence compared with the ”pata“ sequence.
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the latency of HFA systematically distinguished an individu-
al’s conscious percept, the sign of this opposition varied across
participants. For instance, the latency of the cross-correlation
in the high-gamma range associated with the percept “plan”
differed between participants p04 and p05 (Fig. 5C).

For each individual, we observed changes in the speech-
brain cross-correlations in several frequency bands, but the
latencies of the speech-brain correlations for a given condition
were variable across participants (Fig. 5C). As a consequence,
the grand-average analysis of the difference in cross-correlo-
grams between conditions did not capture the effects we
observed at the participant level. After statistical analysis of the
contrast between the two percepts of a given sequence at the
individual level, we assessed the proportion of participants
with significant changes in cross-correlation per frequency
band. This allowed us to obtain a descriptive profile of which

frequencies accounted most for the differences between per-
cepts across all individuals and conditions (Fig. 6A). Signifi-
cant differences were concentrated across participants in the
beta band (12–30 Hz; 12 of 15 participants presented signifi-
cant clusters within this range for both monosyllabic se-
quences), gamma band (40–80 Hz; 12 participants presented
significant clusters in “lampe” sequences and 13 in “sep”
sequences), and high-gamma band (90–130 Hz; 14 participants
presented significant clusters in “lampe” sequences and 11 in
“sep” sequences; Fig. 6A).

The observed significant differences in cross-correlation
could originate either from a change in the strength of speech-
brain correlation or from a change in latency between speech-
brain correlated dynamics. To test these two alternative ac-
counts, we restricted the analyses to an individual’s clusters in
classical frequency ranges in the beta (12–30 Hz), gamma

Fig. 5. High-frequency activity predicted an individual’s conscious word percept. A: cross-correlations between the speech envelope and brain activity during
the ”lampe“ sequences for 2 participants (p04 and p05). Cross-correlations significantly changed over time according to the perceived word. Left, the outcome
of the cross-correlograms for each percept; right, the difference between the two percepts. Significant differences are reflected by any patch not colored green.
B: time series of individual speech-HFA cross-correlations within significant clusters. The peak of the cross-correlations systematically occurred at distinct
latencies as a function of the individual’s perceived word despite the observed variability across participants with respect to the frequency specificity of the HFA
and the latency of the maximal correlation. C: phase distributions depicting the peak latency of the speech-neural response cross-correlations. Bars denote the
mean preferential phase for each percept condition. Strong differences in phase (i.e., in cross-correlations latencies) were observed between the percept conditions
despite interindividual variability of absolute phase (i.e., peak latency).
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(40–80 Hz), and high-gamma (90–130 Hz) frequency bands
(Lopes da Silva 2013). The analyses showed significant latency
differences between percepts that were consistent across par-
ticipants (Fig. 6, B and C). In contrast, no significant changes
in the maximum value of the cross-correlation were observed
between percept conditions (Fig. 7). This suggests that the
tracking of the speech envelope by HFA was operated at
distinct latencies between percept conditions, whereas the
amount of coupling between the speech envelope and HFA
dynamics remained constant.

As discussed earlier, the distance between consonants is 80
ms for “lampe” and 50 ms for “sep.” The silence duration prior
to the plosive is 90 ms for “lampe” and 70 ms for “sep.” Thus
the switch from the percept “lampe” to the percept “plan”
could be performed via a shift in the linguistic parsing window
of 80 ms minimum and up to 170 ms (184°). The switch from
the percept “sep” to the percept “pse” could occur through a
temporal shift of the linguistic parsing window up to 120 ms
(130°). These estimated shifts fall within the confidence inter-
vals of the HFA phase data, suggesting that the reported phase

shifts are consistent with shifts in linguistic parsing windows.
In bisyllabic sequences, the significant clusters of the cross-
correlograms contrasts were sparser (Fig. 6A) and inconsistent
across participants.

Overall, although perception only weakly modulated the
phase of entrained oscillations, it strongly impacted the dy-
namics of beta, gamma, and high gamma amplitude. Addi-
tional analyses were performed to assess the tracking of 1.5-Hz
speech dynamics by HFA (this time by filtering the speech
signal at 1.5 Hz) during bisyllabic parsing. Sparse significant
changes were observed at the individual level (Fig. 6). Hence,
high-frequency dynamics could predict the perceived word
within one monosyllabic word sequence, but overall did not
inform about the perceived word in bisyllabic word sequences.

LFO and HFA Effects are Not Driven by Volitional Control

So far, we have reported effects under volitional control:
participants were asked to hear and maintain a specific percept
during the presentation of the ambiguous sequences. Several of
the effects that we interpret as the result of linguistic parsing

Fig. 6. HFA latency patterns during mono-
syllabic word sequences. A: number of par-
ticipants with significant changes between
percepts in 3-Hz speech component-neural
response cross-correlation (magenta lines)
and 1.5-Hz speech component-neural re-
sponse cross-correlation (cyan lines) for
each frequency band. Data are reported in
both left (solid line) and right (dashed line)
temporal sensors for each sequence. We ob-
served significant changes in the cross-cor-
relograms for a majority of participants in
the monosyllabic word sequences for fre-
quency bands in the beta (12–30 Hz),
gamma (40–80 Hz), and high-gamma (90–
130 Hz) ranges. B and C: phase shifts in
speech envelope tracking between each per-
cept condition in the beta (12–30 Hz),
gamma (40–80 Hz), and high-gamma (90–
130 Hz) range for ”lampe“ sequences (B)
and ”sep“ sequences (C). Each gray line
corresponds to the phase difference between
one perceptual outcome and the other for
one subject. The dashed lines refer to partic-
ipants for whom significant clusters were not
found within the target frequency range. The
black line corresponds to the average phase
across subjects who showed significant dif-
ference between the percept conditions; red
arcs correspond to 95% CI. We show here
that the reported differences in cross-corre-
lation were related to strong shifts in the
phase of neural-speech tracking.
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also may have been influenced by the volitional control im-
posed by the task. To control for this, we analyzed the data
from the familiarization task, in which participants listened to
the same sequences and spontaneously reported what they
heard, without trying to influence their percept in any way. The
sequences and the reporting instructions were identical to the
volitional task: participants depressed a button corresponding
to their current percept (3 possibilities: “percept 1,” “percept
2,” or “other”). As in prior findings, participants did not report
hearing the two percepts in equal proportions, but rather mostly
reported hearing the initial veridical word repeated in the
sequence (Basirat et al. 2012; Sato et al. 2007). Nevertheless,
and with many cautionary steps, we performed a comparable
analysis as for the volitional data. Data of participants that had
too strong a perceptual bias (i.e., one of the percepts was
reported less than 20% of the time) were rejected. Hence, 12
participants were included in the “képi”/“piquer” analyses, 8
participants in the “pata”/“tapa” analyses, and 8 participants in
the “plan”/“lampe” analyses. Only 3 participants could be
included in the “pse”/“sep” analyses, and thus we only report
this condition for illustration purposes.

As previously, we analyzed the 3- and 1.5-Hz phase shifts
between percept conditions. We also performed the cross-
correlograms for the “plan”/“lampe” sequences in the sponta-
neous conditions, which we illustrate below. As can be seen,
we obtain similar results as with the volitional task as reported
in Figs. 2, 3, and 5. First, small 3-Hz phase shifts were
observed for the contrast “plan”–“lampe” (Fig. 8A). The phase
shift was of the same amplitude and direction as in the
volitional task. This replication could then be interpreted in
favor of a consistent (but weak) top-down modulation of 3-Hz
oscillatory activity. Second, no significant 1.5-Hz phase shifts
were observed for bisyllabic sequences (Fig. 8B). Third, sig-
nificant changes in 3-Hz-modulated HFA activity were ob-
served between “plan” and “lampe” conditions for participants
who were included in the analysis (p04 and p05, Fig. 8C).
Although the results should be interpreted with caution due to
the small number of participants, our results suggest that the
main effects of LFO and HFA reported in the volitional task
are comparable with those seen in the spontaneous task. Hence,
this control suggests that the observed effects reflect genuine

linguistic parsing processes and cannot be easily confounded
by participants’ cognitive strategy.

DISCUSSION

Our results show an endogenous control of high-frequency
activity (HFA) when individuals listen to speech in the context
of ambiguous acoustic information. Latency changes of HFA
were indicative of the perceived segmented word in the speech
streams. We also identified small changes in the phase of
entrained low-frequency oscillatory (LFO) responses. Our
findings help to shed light on the postulated roles of neuronal
oscillations in speech processing (Ding and Simon 2014;
Ghitza 2011; Giraud and Poeppel 2012; Poeppel 2003; Poeppel
et al. 2008) and show potential dissociable roles of HFA and
LFO in the parsing of acoustic information into discrete lin-
guistic content.

Top-Down Control of LFO and HFA During Speech
Processing

Both mono- and bisyllabic speech sequences elicited a
significant LFO response akin to typical frequency tagging or
low-frequency neural entrainment (Hari et al. 1989; Rees et al.
1986; Thut et al. 2011). Under the assumption of a passive
entrainment of brain responses, LFO would be expected to
remain phase-locked or stationary with respect to the temporal
structure of entraining stimuli. Our results suggest that LFO
may, to some extent, be not solely driven by the acoustics of
the speech signals but also are subject to endogenous control.
Specifically, the 3-Hz phase response in monosyllabic speech
sequences differed between the two percepts. The phase shifts
were weak but consistent in direction and strength across the
volitional and spontaneous tasks. Consistent with this, recent
findings have shown that the phase of LFO entrainment in
auditory cortices can be modulated when timing is relevant to
the task (Kösem et al. 2014; Ten Oever and Sack 2015) and can
be under top-down control (Baldauf and Desimone 2014;
Cravo et al. 2013; Gomez-Ramirez et al. 2011; Lakatos et al.
2008; Park et al. 2015; Parkkonen et al. 2008; Stefanics et al.
2010). Furthermore, our results and those of others (Ten Oever
and Sack 2015) suggest that the phase of LFO correlates with

Fig. 7. Mean maximum value of cross-correlation across participants in beta, gamma, and high-gamma bands. The maximum value of cross-correlation did not
significantly change between ”lampe“ and ”sep“ sequences [F(1,14) � 1], between hemispheres [F(1,14) � 1], and between target frequencies [F(2,28) � 1].
Crucially, the maximal value of cross-correlations did not differ between percept conditions [F(1,14) � 1].
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perceptual speech reports. The observed right hemispheric bias
in our data could be linked to empirical observations that the
right hemisphere is more sensitive to slow speech fluctuations
than the left hemisphere (Boemio et al. 2005; Giraud et al.
2007; Poeppel 2003), although the lateralization of the phase
effects has not been explicitly tested and is beyond the scope of
this study. During bisyllabic sequences, an additional 1.5-Hz
neural response was found. Although we cannot exclude the
possibility that 1.5-Hz responses mainly reflect the acoustic
tracking of the speech signals, the presence of this oscillatory
response is in line with previous studies suggesting that delta
power can be subject to top-down control during sound pro-
cessing (Nozaradan et al. 2011) and speech analysis (Buiatti et
al. 2009; Ding et al. 2016; Park et al. 2015) and does not solely
reflect the temporal structure of the acoustic signals.

Whereas the evidence for top-down modulation for LFO was
rather weak, the temporal alignment between the speech sig-
nals and the amplitude of HFA displayed systematic latencies
or phase shifts as a function of the perceived word. This
observation was predicted by speech models (Giraud and
Poeppel 2012; Hyafil et al. 2015a) as discussed in the Intro-
duction (also cf. Fig. 1B). These effects were systematic within
individuals, concentrated in the beta, gamma, and high-gamma
frequency bands. Gamma oscillations are markers of neural

excitability (Lakatos et al. 2005), and HFA has more generally
been shown to track the dynamics of speech (Gross et al. 2013;
Hyafil et al. 2015a; Kubanek et al. 2013; Mesgarani and Chang
2012; Mesgarani et al. 2014; Millman et al. 2013; Nourski et
al. 2009; Pasley et al. 2012; Zion Golumbic et al. 2013). More
specifically, the gamma band has been hypothesized to encode
speech information at the phonemic level (Poeppel 2003;
Poeppel et al. 2008). We thus expected gamma activity to be
largely indicative of the perceived word during bistable speech
perception. To the best of our knowledge, the implication of
the beta band in speech tracking has not yet been empirically
reported, although beta activity has been theoretically posited
for chunking dyads, i.e., speech units of 50-ms duration rep-
resenting the transition between pairs of phones (Ghitza 2011).
In addition, beta and gamma neural responses are known
dissociable markers of top-down and bottom-up communica-
tion (Arnal et al. 2011; Arnal and Giraud 2012; Bastos et al.
2014, 2015; Fontolan et al. 2014). Gamma responses are
typically reported as feedforward signals, whereas beta activity
has typically been associated with feedback signaling. In our
experiment, the fluctuations of beta (respectively, gamma)
amplitude could potentially reflect the temporal alternation of
feedback (respectively, feedforward) information transfer as
shown in a recent report (Fontolan et al. 2014). In their study,

Fig. 8. LFO and HFA effects when partici-
pants spontaneously report their perception
of the speech sequences. A: phase differ-
ences of the 3-Hz response contrasting the
perceived speech utterances. Polar plots re-
port the 3-Hz phase difference between the 2
perceptual outcomes (top, in the left hemi-
spheric sensors; bottom, in the right hemi-
spheric sensors). Each gray bar is an indi-
vidual’s phase difference between the 2 per-
ceptual outcomes in a given condition. The
black bar corresponds to the mean average
phase difference across all participants. Red
arcs are 95% CI. As during the volitional
task, we observed significant phase shifts of
�8° for the contrast ”plan“–”lampe.“ The
contrast ”pse“–”sep“ was not clearly inter-
pretable in the spontaneous task due to a
high rejection rate of participants’ data. B:
phase differences of the 1.5-Hz response
contrasting perceived words in the bisyllabic
sequences. As in the volitional task, the
1.5-Hz phase did not significantly differ be-
tween percept conditions. C: cross-correla-
tions between the speech envelope and brain
activity during the ”lampe“ sequences for 2
participants in the spontaneous task. Each
plot shows the difference in cross-correla-
tion between ”plan“ and ”lampe“ percept
conditions. Significant differences are indi-
cated by any patch not colored green.
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Fontolan et al. (2014) used natural speech stimuli and showed
that the transition between bottom-up information transfer via
gamma activity and top-down communication via beta chan-
nels occurred at 1–3 Hz during listening. Their observation was
consistent with the idea that speech information propagates
along the processing hierarchy and back by units of syllabic/
word length. In this scenario, speech tracking by HFA may not
only increase the sensitivity to incoming acoustic information
but also reflect the linguistic parsing at the syllabic scale.

Brain Oscillatory Mechanisms of Linguistic Parsing

Speech models suggest that LFO chunk the encoding of
speech (indexed by HFA) into discrete informational units. In
this study, we tested whether these segmented units would
directly inform on the perceived word segmentation of speech
signals, i.e., whether LFO and HFA reflect linguistic parsing
mechanisms. Specifically, the neural speech code parsed by the
LFO should contain all acoustic features information necessary
for the perceived word. Thus, in our experiment, the changes in
percept during the bistable sequences should have been asso-
ciated with temporal shifts of LFO and HFA of tens of
milliseconds to capture the acoustic information of the distinct
words. The tracking of speech by HFA showed latency shifts
of � 80–150 ms, which is compatible with changes of linguis-
tic parsing. In contrast, the observed modulations of LFO were
insufficient to fully support a direct role of LFO in linguistic
parsing. In monosyllabic sequences, the magnitude of the 3-Hz
phase shifts was small and inconsistent with the expected
extent of the phase delay that would have been expected if the
acoustic speech signals were parsed on the basis of the oscil-
latory LFO duty cycle (Fig. 1B). Neither the changes in power
nor the phase shifts of the 1.5-Hz neural responses could
distinguish between conscious percepts in the bisyllabic con-
ditions.

If the present LFO modulations cannot be explained by
shifts in the parsing windows for speech segmentation, they
may alternatively reflect an attentional modulation of acoustic
processing, i.e., an enhanced neural excitability to particular
acoustic features as has previously been reported for various
kinds of sound stimuli (Besle et al. 2011; Cravo et al. 2013;
Gomez-Ramirez et al. 2011; Lakatos et al. 2008; Rimmele et
al. 2015; Schroeder and Lakatos 2009a; Stefanics et al. 2010;
Zion-Golumbic et al. 2013). One possibility is that the ob-
served top-down effects reflect the processing of nonlexical
speech information relevant for speech segmentation. In par-
ticular, the neural tracking of acoustic rhythms in the 1- to
3-Hz range could be dedicated to the encoding of prosodic
temporal fluctuations (Poeppel 2003), known to give reliable
cues for speech parsing (Ding and Simon 2013; Greenberg et
al. 2003). Alternatively or in addition to prosodic cues, delta-
theta oscillations could reflect the processing of coarticulation
(i.e., the overlap in the frequency spectrum of adjacent pho-
nemes) that also provides relevant cues for word segmentation.
In our design, monosyllabic sequences were composed of the
word “lampe” and pseudo-word “sep”: both streams contained
coarticulatory cues that are compatible with one of the two
interpretations, i.e., a consonant vowel onset (“lampe” or
“sep”), but not with the other interpretation in terms of a
consonant cluster at the onset (“pse” or “plan”). The 3-Hz
phase effects could then reflect the suppression of the irrelevant

phonetic cues that would not be compatible with the perceived
word. This would be consistent with recent findings showing
that LFO encode phonemic information (Di Liberto et al. 2015)
and that theta (3–5 Hz) oscillations are involved in phonemic
restoration (Riecke et al. 2009, 2012; Strauss et al. 2014;
Sunami et al. 2013).

The reported top-down effects on oscillatory activity were
mostly observed in the monosyllabic word sequences. The
involvement of LFO and HFA in the encoding of coarticulation
could provide a first explanation for the absence of endogenous
phase effects in the bisyllabic conditions, because syllabic
items were pronounced independently and no coarticulation cues
were favoring one or the other interpretation of these sequences.
Our results could also highlight the importance of syllabic anal-
yses (Greenberg et al. 2003; Poeppel 2003) and support the
hypotheses that the brain specifically computes syllabic-like
speech primitives for perception (Poeppel et al. 2008). Addi-
tional mechanisms might be required for the building up of
bigger temporal speech units, e.g., when two syllabic units
have to be concatenated or segregated to form a word. Frontal
delta activity (Ding et al. 2016; Park et al. 2015) and fronto-
parietal alpha mechanisms (Kayser et al. 2015; Shahin and Pitt
2012) may have an important role in multisyllabic word and
phrase chunking. Periodical enhancement of alpha power may
in particular mark the inhibition of auditory cortex activity at
perceived word boundaries (Shahin and Pitt 2012) and during
speech silent gaps (Kayser et al. 2015).

Origins of the Difference Between HFA and LFO Effects

Whereas the tracking of speech features by HFA was
strongly influenced by perception, LFO speech tracking only
showed small modulations. It could be argued that the disso-
ciation between HFA and LFO behavior is mainly due to the
coarse spatial resolution of MEG analysis and that our findings
reflect the combined activity of distinct brain regions that serve
dissociable mechanisms. Distinct networks may reflect acous-
tic processing and linguistic parsing: the neural tracking of
fine-grained acoustic features would be restricted to primary
auditory cortices (Kubanek et al. 2013), whereas that of pho-
nemic or lexical information would take place in higher order
regions (e.g., superior temporal sulcus and Broca’s areas)
specific to speech processing (Boemio et al. 2005; Kubanek et
al. 2013; Liem et al. 2014; Overath et al. 2015; Zion Golumbic
et al. 2013) or attentional selection (Besle et al. 2011; Zion
Golumbic et al. 2013). In other words, MEG data reported in
this study may at once capture stimulus-tracking mechanisms
in auditory cortices and cortical oscillators for speech parsing
in higher order auditory areas (Overath et al. 2015). Interest-
ingly, a recent report suggested that the top-down influences of
HFA and LFO in linguistic processing are observed in different
areas (Ding et al. 2016). Top-down language-specific process-
ing may mainly affect HFO in superior temporal gyri and LFO
in a more distributed network throughout frontal and temporal
lobes. In this study, we selected activity from temporal sensors
to focus our analysis on auditory cortices’ response to speech,
and we may thus have primarily captured activity from regions
having stronger top-down HFA effects.

Alternatively, our results suggest that during speech listen-
ing, low-frequency neural tracking may be weakly modulated
by top-down word segmentation processing (Howard and
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Poeppel 2010; Millman et al. 2015; Obleser et al. 2012; Peña
and Melloni 2012). The small phase differences observed in
LFO contrast with the large phase reversals of low-frequency
entrainment reported during attentional selection (Besle et al.
2011; Gomez-Ramirez et al. 2011; Lakatos et al. 2008) and
cocktail party effects (Zion Golumbic et al. 2013). These
differences may be accounted for by fundamental differences
in stimuli and task. In previous experiments, two distinct
rhythmic inputs were competing for attentional selection, and
the phase of slow oscillations reflected the dynamics of the
selected sensory input (Besle et al. 2011; Gomez-Ramirez et al.
2011; Lakatos et al. 2008). The modulations of neural dynam-
ics by attention were based on existing external temporal
information, and changes in oscillatory phase may thus result
from the amplification of the evoked responses to stimuli of
distinct temporal profiles. Hence, the slow dynamics may have
primarily reflected the gain of relevant sensory information as
opposed to fundamentally providing endogenous temporal
parsing mechanisms. In the present study, however, only one
acoustic stream of information was provided to participants,
and the contribution of gain mechanisms may be much smaller
because no competing sensory inputs were physically provided
to participants.

Second, and perhaps more controversial, the power fluctu-
ations of HFA question the hypothesis of a fixed phase-
amplitude coupling between slow and fast brain oscillations
(Canolty et al. 2006; Canolty and Knight 2010; Schroeder and
Lakatos 2009a, 2009b). A fixed phase-amplitude coupling
would predict similar temporal shifts according to the con-
scious percept in both slow and fast oscillatory speech track-
ing. However, we found that speech tracking in beta-gamma
amplitude predicted perception, whereas speech tracking in
delta-theta phase only weakly changed as a function of the
perceived speech percept. This suggests that the position of
maximal beta-gamma amplitude is variable with respect to the
low-frequency phase but systematic with respect to a partici-
pant’s percept. As such, the relative phase of coupling could
constitute a valuable code to partition neural activity for
sensory processing (Hyafil et al. 2015b; Jensen et al. 2012,
2014; Lisman and Jensen 2013; Nadasdy 2010; Panzeri et al.
2010). Consistent with this, the phase of firing according to
low-frequency oscillations has been shown to be a reliable
decoder of sensory content (Kayser et al. 2009, 2012; Monte-
murro et al. 2008; Ng et al. 2013; Panzeri et al. 2010), and the
relative phase of slow neural oscillations can predict perceptual
features and attentional state (Agarwal et al. 2014; Bonnefond
and Jensen 2012; Kösem et al. 2014; van Ede et al. 2015).
Low-frequency neural oscillations could thus provide temporal
metrics for sensory processing, and the entrainment of neural
oscillations to external rhythms could support the extraction of
timing information without a priori knowledge of external
timing (Kösem et al. 2014; Scharnowski et al. 2013). We
conjecture that this mechanism applies for speech processing,
as well: the position of high-frequency neural oscillations in
the cycle of the entrained neural oscillation may be a crucial
cue for delineating temporal windows for syllabic segmenta-
tion.
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