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Artificial languages have gained popularity as a way of empirically testing
hypotheses on language evolution and language change (Scott-Phillips & Kirby,
2010), distancing the participants from the biases of their native languages as
much as possible. Literature on artificial languages already contains studies on
identifying the building blocks in repertoires of continuous signals. However,
these rely on manual methods for identifying subparts of a signal that either use
quantitative judgement or enforced boundaries between segments (Verhoef, Kirby,
& Boer, 2013; Galantucci, 2005). Since these techniques build on the qualitative
judgement of the researcher, they are time-consuming and difficult to replicate.
We propose using computational models for this task.

The speech recognition literature uses positional HMMs’ states as building
blocks that stand in for different positions in a syllable (Rabiner & Juang, 1993),
whereas the artificial languages literature tends to use segments of signals as build-
ing blocks (see Verhoef et al., 2013 for an example). As an alternative, we propose
using computational models trained on an entire repertoire of signals in order to
infer building blocks, and not imposing a pre-determined positional structure on
the model so that the model structure is learned from the data. The formal process
used guarantees reproducibility of the results, and creates an objective basis of
comparison for signal repertoires created during artificial language experiments,
both of which are improvements to the state of the art in artificial languages re-
search to our knowledge.

We use HMM states as analogues for areas in the signal space. This approach
is similar to the vowel quality literature which makes heavy use of the vowel
triangle on the formant space, on which different areas correspond to different
vowels. The extent of each area is defined by the covariance of the area’s emission
distributions. We use the number of states inferred as a measure of structure in the
repertoire being modeled, analogous to phonetic inventory size.

The data is taken from an artificial language experiment, where participants
create continuous acoustic signals using hand sensors to label a series of mean-



ings (Little, Eryılmaz, & Boer, 2015). The participants are tested on their recall
of the repertoire of signals they created using a forced-choice task at the end of
each phase. The signals can be either one- or two-dimensional, with dimensions
corresponding to pitch and amplitude of the signal derived from the coordinates
of the participant’s hand. The meanings are also “dimensional” in that they differ
along one or more feature dimensions such as size or colour. The features can be
discrete (e.g. simple polygons of different number of vertices) or continuous (e.g.
real numbers). The combination of these two spaces uniquely defines a “phase”,
and the collection of signals that belong to that combination form a “repertoire”.
The training data comprises a series of real numbers or tuples of real numbers,
corresponding to the series of amplitude and frequency values of the tones played
to the participants.

The emission distributions of the Gaussian HMMs used are either univariate or
bivariate continuous distributions, depending on the dimensionality of the reper-
toire. Models are trained using the Baum-Welch algorithm, and the number of
states are selected by training HMMs of various sizes and picking the one with
the lowest Bayesian Information Criterion. The validation of the models is done
using linear mixed-effects regression which uses the number of states in the HMM
i.e. the “inventory size” of the repertoire, and its interaction with the properties of
each phase to predict the recall of the participant at each phase.

The regression model outperformed the baseline, and explained more than half
the variation in participant scores (R2 = 0.616), demonstrating the validity of our
model. It also matched our predictions that:

1. Continuous meaning spaces are more suitable for iconicity.

2. Discrete meaning spaces are more robust against variation.

3. Uninterrupted strategies outperform interrupted strategies.

While this demonstrates our model captures some aspects of the phenomenon,
a third subset of the data encouraging participants to use “duration” as a signal
dimension could not be validly modelled. This is most likely due to HMMs’ in-
ability to explicitly model time spent in a certain state. To remedy this, we plan
to use more advanced latent models such as Explicit Duration HMMs that elimi-
nate self-transitions, or Hidden Semi-Markov Models, which relax the Markovian
assumption, in order to estimate duration distributions for the states.
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