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Supplementary Notes

XUV focus
Figure S1 shows the focal spot for different slit widths. The 3D measurement was recorded with an almost fully opened slit and
thus the lateral resolution was better than 200 µm x 300 µm.
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Supplementary Figure S1. Focal spot of the synchrotron radiation on the sample at the undulator beamline BW3: The slit is
fully opened in the left picture and almost closed on the right pictures. The 3D measurement was recorded with an almost fully opened slit
and thus the lateral resolution was better than 200 µm x 300 µm.

XUV beam splitter
Building a typical OCT setup based on a Michelson interferometer would encounter some crucial technical hurdles in the XUV
regime. Due to the short wavelength, the mechanical vibrations of the interferometer arms with respect to each other should be
stabilized to the sub-nanometer scale, which would be difficult to realize. Furthermore, an XUV beam splitter with a broad
spectral transfer function, a sufficient transmission rate, and a flat surface would be necessary to enable XCT. To construct such
a beam splitter would also be a highly demanding technical challenge17,S1. Nevertheless, it will be one of the next developments
to improve the XCT setup.

Optical properties in the XUV range
For the measurement of the spectral behavior of the signal either an imaging transmission grating spectrometer14,15 together
with a broadband XUV source (spectral-domain XCT) or an XUV-photodiode together with a monochromatic tunable source
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(swept-source XCT) were used. The usable bandwidth and therefore the possible resolution of XCT depend on absorption
edges of the sample materials. Only in a spectral region with low absorption, i.e. areas between two absorption edges, it
is possible to achieve sufficient penetration depths on the order of 1 µm. As mentioned in the article, we chose the silicon
transmission window between 12 and 41 nm for silicon-based samples and the water transmission window between 2.4 and
4.4 nm for carbon- and oxygen-based samples to investigate the capability of XCT regarding possible applications in the chip
industry and in imaging in the water window.

Data analysis and dispersion correction
In order to include the dispersion of the sample in the analysis, the phase differences δi+1−δi of the reflected beams from
different layers including their dependence on the refractive index and angle of incidence have to be taken into account. The
phase difference between the beams from two layers at depths zi and zi+1 with ni as the index of the material between these
layers, the angles of incidence αi−1 and αi, and the optical frequency ω as indicated in Fig. S2 is

∆ϕi+1,i = ω(δi+1−δi) =
2niω(zi+1− zi)

csinαi
− ni−1ωl0

c
. (1)

With l0 = 2(zi+1− zi)cotαi cosαi−1 and the law of refraction ni−1 cosαi−1 = ni cosαi, the phase difference is

∆ϕi+1,i = ω(δi+1−δi) =
2niω(zi+1− zi)sinαi

c
. (2)
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Supplementary Figure S2. Beam path and optical path difference of a single layer.

If several layers are included, the total phase difference is given by the sum (i > j ≥ 1) in which km is the geometric wave
number:

∆ϕi, j = ω(δi−δ j) =
i−1

∑
m= j

2nmω(zm+1− zm)sinαm

c
=

i−1

∑
m= j

km(zm+1− zm) (3)

According to the OCT model2,11, the frequency dependent spectrum at the detector is thus given by

SA(ω) = S0(ω)

{
Rges(ω)+2

N

∑
i> j=1

√
Ri(ω)R j(ω)

× cos

[
ω

i−1

∑
m= j

2nm(ω)(zm+1− zm)sinαm(ω)

c

]}
(4)

where S0(ω) is the spectrum of the light source and Rtot(ω) =
N
∑

i=1
Ri(ω) is the total reflectivity. Ri(ω) is the reflectivity of the

i-th layer, which includes the absorption from all layers before:

Ri+1(ω) = Riso
i+1(ω)

i

∏
j=1

(1−Riso
j (ω))2 · e−2n′′j (ω)(z j+1−z j), R1(ω) = Riso

1 (ω) (5)
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Supplementary Figure S3. Influence of dispersion correction on the XCT signal of a simulated spectrum with the layers 5nm
gold (yellow), 140nm silicon (blue), and 5nm gold on a silicon wafer): (Left) reflected spectrum (red) and Gaussian shaped spectrum of the
light source with a FWHM of 20eV centered at 45eV (grey) (Right) FT without any corrections (di j = zi− z j); the reconstructed depth is
bigger than the real depth because dispersion is neglected and the refractive index is assumed to be n = 1.

Here, Riso
i (ω) is the absolute reflectivity of the isolated i-th layer and n′′j (ω) is the imaginary part of the refractive index of the

j-th layer. In Fig. S3 a simulated reflected spectrum with a Gaussian shaped light source and its reconstruction is plotted.
The influence of dispersion on the resolution of XCT can easily be seen if one considers the reflected spectrum of two layers.
Thus, the reflected spectrum is

SA(ω) = S0(ω)

{
Rges(ω)+2

√
R1(ω)R2(ω)cos

[
ω

2n1(ω)(z2− z1)sinα1(ω)

c

]}
. (6)

In order to reconstruct the depth profile a Fourier transform (FT) is necessary. This leads to

FT [SA(ω)] =

∞∫
−∞

SA(ω)e−iωτ dω

= FT [Rtot(ω)]⊗FT [S0(ω)]+2FT
[√

R1(ω)R2(ω)
]

⊗
{

FT [S0(ω)]⊗FT
[

cos
(

ω
2n1(ω)(z2− z1)sinα1(ω)

c

)]}
(7)

The influence of dispersion is now pretty obvious. The structural information is encoded in the phase of the cosine function
(z2− z1), whereas the modulation frequency is “chirped” by the refractive index n1(ω) which in general will lower the
resolution. In addition, the FT of the cosine function is broadened by the convolution ⊗ of the FT of the reflectivity (wich
includes absorption) and of course the FT of the source spectrum, which defines the resolution limit, i.e. the coherence length.
If no information about the sample material is known the influence of dispersion which lowers the axial resolution cannot be
compensated. Fortunately, at least the dominant material of the samples such as silicon in semiconductor industries will be
known. This information can be included into the reconstruction analysis to improve the resolution and the absolute accuracy
of the method.

In the first step of the analysis, we normalized our measured spectra with a reference spectrum recorded on a blank
silicon surface. This reference signal includes the spectrum of the light source as well as any other influences of the detection
system such as grating efficiency and toroidal mirror reflectivity. By calibrating the measured data with these references, the
spectrometer doesn’t need to be calibrated in terms of efficiency. Additionally, the correction leads to an effective top-hat shaped
spectral illumination with the borders ωmin und ωmax and thus to the shortest possible coherence length, i.e. best resolution.

Θ(ω,ωmin,ωmax) =

{
1 for ωmin ≤ ω ≤ ωmax

0 else
. (8)

Certainly, this is only possible if the dynamic range of the detector is high enough to detect sufficient signal in the entire spectral
window with the available source spectrum. The such corrected spectrum corresponds to the reflectivity RA(ω) of the sample.
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The influence of this correction is shown in Fig. S4.

RA(ω) =
SA(ω)

S0(ω)
=Θ(ω,ωmin,ωmax)

{
Rtot(ω)+2

N

∑
i> j=1

√
Ri(ω)R j(ω)

× cos

[
ω

i−1

∑
m= j

2nm(ω)(zm+1− zm)sinαm(ω)

c

]}
(9)
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Supplementary Figure S4. Influence of dispersion correction on the XCT signal for the same sample as in fig. 7: (Left) reflected
spectrum normalized with the spectrum of the light source (red) and rough trend of the overall reflectivity of the sample (grey) (Right) FT of
the corrected spectrum, still without dispersion correction (di j = zi− z j); The resolution is improved.

Since the trend of the dispersion and thus the reflectivity and absorption of the layers is changing slowly over the spectrum, it is
possible to deconvolve it from the measured spectrum. In general, the dispersion contains no significant modulations. Thus, no
information about the depth structure, which is encodes in the modulation frequencies, is influenced. Therefore, we corrected
the measured spectrum in a second step with the reflectivity Rg(ω) of an isolated layer of the material which is dominant in the
sample, i.e. silicon or boron carbide. This leads to approximately constant reflectivities.

Ri,g(ω) =
Ri(ω)

Rg(ω)
≈ const. (10)

After this step the corrected reflectivity RA,g(ω) is

RA,g(ω) =
RA(ω)

Rg(ω)
'Θ(ω,ωmin,ωmax)

{
Rges,g +2

N

∑
i> j=1

√
Ri,gR j,g

× cos

[
ω

i−1

∑
m= j

2nm(ω)(zm+1− zm)sinαm(ω)

c

]}
. (11)

and is shown in Fig. S5.
In order to include dispersion and refraction and to simplify the phase term in the cosine function in eq. 11 we assume the
refractive index to be the same for all layers. Therefore, we use the refractive index nD of the material which is dominant in the
sample because in most of the cases the main material of the sample is known. Note that the refractive index is still a function
of ω . In order to do the approximation, it is useful to perform a coordinate transformation to the geometric wave number

kD = kD(ω) = ω
2nD(ω)sinαD(ω)

c
. (12)

The corrected spectrum is then

RA,g(kD)'Θ(kD,kD,min,kD,max)

{
Rges,g(kD)+2

N

∑
i> j=1

√
Ri,g(kD)R j,g(kD)cos [kD(zi− z j)]

}
(13)
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Supplementary Figure S5. Influence of dispersion correction on the XCT signal for the same sample as in fig. 7: (Left) reflected
spectrum normalized by the spectrum of the light source and deconvolved from the rough trend of the overall reflectivity of the sample (red)
(Right) FT of the corrected spectrum, still without dispersion correction (di j = zi− z j); the resolution is improved further.
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Supplementary Figure S6. Influence of dispersion correction on the XCT signal for the same sample as in fig. 7: (Left) reflected
spectrum normalized by the spectrum of the light source and deconvolved from rough trend of the overall reflectivity of the sample plotted
over the geometric wavenumber kD with silicon dispersion as dominant material (red) (Right) FT in the kD-space of the corrected spectrum
which includes dispersion (di j = zi− z j); The resolution is improved further and the reconstructed depth is equal to the real depth.

and is plotted in Fig. S6.
The top-hat shaped spectral window of the corrected spectrum leads to a very high axial resolution but also to very high Fourier
artifacts. To suppress these artifacts, we use a Kaiser-Bessel spectral filtering, which is shaped as follows

F(kD) =


I0

[
β

√
1−
(

2(kD−γ)
η

)2
]

I0(β )
for kD,min ≤ kD ≤ kD,max

0 else

(14)

Here, η = kD,max−kD,min and γ = (kD,max +kD,min)/2. I0 is the modified Bessel function. β is a free parameter that determines
the strength of the filtering. The spectrum after all correction steps is then

RA,g,F(kD) = F(kD) ·RA,g(kD) (15)

In order to obtain the depth structure one only needs to perform a FT. The effect of the spectral filtering is shown in Fig. S7.

Comparison to other x-ray imaging and thin film analysis techniques
Several techniques have been developed to investigate nanostructured and layered samples. In the context of layered samples,
optical ellipsometryS2 as well as x-ray reflectometryS3 is widely used. In fact, monolayers can be measured nondestructively
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Supplementary Figure S7. Influence of dispersion correction on the XCT signal for the same sample as in fig. 7): (Left)
reflected spectrum normalized by the spectrum of the light source and deconvolved from the rough trend of the overall reflectivity of the
sample plotted over the geometric wavenumber kD with silicon dispersion as dominant material filtered by a Kaiser-Bessel window (red),
Kaiser-Bessel window with β = 4 (grey) (Right) FT in the kD-space of the corrected spectrum, which includes dispersion (di j = zi− z j); The
resolution decreases but Fourier artifacts are suppressed.

with high precision. However, these techniques typically cannot retrieve complex samples and provide little lateral resolution.
Transmission electron microscopy (TEM)S4 on the other hand offers extremely high lateral resolution but samples must typically
be cut. Consequently, the nanostructure is destroyed and only test samples can be investigated. Moreover, the depth structure is
merely retrieved for a slice through the sample. XCT has the big advantage that in principle both high resolution in lateral and
axial direction can be obtained without destroying the sample.

In the context of XUV and soft x-ray imaging of more complex samples, a variety of techniques have been demonstrated.
For instance, conventional soft x-ray microscopes have been developed using zone plates21 or multilayer-coated Schwarzschild
objectivesS5. Moreover, nanostructures are investigated by measuring the diffraction pattern of soft x-ray radiation. A review
of coherent diffraction imaging can be found in Ref. 22. Methods such as x-ray ptychographyS6 and x-ray holography24 are
based on the technique of coherent diffraction imaging. Despite the large progress that has been achieved in these microscopy
techniques in the last years they require a high flux of monochromatic x-rays which are presently only available at large scale
synchrotrons and x-ray free-electron lasers. A decisive advantage of XCT is that broadband XUV radiation can be exploited
efficiently which is available at many laboratories by using small scale laser systems and high harmonic generation.

For the special application of semiconductor and mask inspection, the introduced techniques are slightly modified. For
instance, soft x-ray scatterometry is applied to investigate the critical dimension of periodic structures in lithography masks
and gratingsS7. Moreover, XUV microscopes are used for defect inspection at the surface25,S8. Interferometric techniques in
the XUV are extremely challengingS9 but allow for phase defect inspection. XCT could be a decisive step since high axial
resolution can be obtained.

6. Sample design The samples were manufactured by the group of Torsten Feigl from the Fraunhofer Institute for Applied
Optics and Precision Engineering. They used sputtering techniques and calibrated coating algorithms to produce the layer
systems with high accuracy. The lateral layout of a coated silicon wafer with different layer systems and a picture of it are
shown in Fig. S8. The black rectangle indicates the area where the 3D measurement was taken.
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Supplementary Figure S8. Two dimensional design of different layer systems on a silicon wafer: The left graph shows a
schematic sketch. The right picture shows a photograph of the used wafer. The black rectangle in the left picture indicates the area which has
been observed during the 3D measurement.
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