English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Igf1r Signaling Is Indispensable for Preimplantation Development and Is Activated via a Novel Function of E-cadherin

Bedzhov, I., Liszewska, E., Kanzler, B., & Stemmler, M. P. (2012). Igf1r Signaling Is Indispensable for Preimplantation Development and Is Activated via a Novel Function of E-cadherin. PLoS Genetics, 8, e1002609-e1002609.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bedzhov, Ivan1, Author           
Liszewska, Ewa2, Author           
Kanzler, Benoit3, Author           
Stemmler, Marc P.2, Author           
Affiliations:
1Department of Molecular Embryology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society, 79108 Freiburg, DE, ou_2243651              
2Emeritus Group: Molecular Embryology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society, ou_2243656              
3Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society, ou_2243647              

Content

show
hide
Free keywords: -
 Abstract: Insulin-like growth factor I receptor (Igf1r) signaling controls proliferation, differentiation, growth, and cell survival in many tissues; and its deregulated activity is involved in tumorigenesis. Although important during fetal growth and postnatal life, a function for the Igf pathway during preimplantation development has not been described. We show that abrogating Igf1r signaling with specific inhibitors blocks trophectoderm formation and compromises embryo survival during murine blastocyst formation. In normal embryos total Igf1r is present throughout the membrane, whereas the activated form is found exclusively at cell contact sites, colocalizing with E-cadherin. Using genetic domain switching, we show a requirement for E-cadherin to maintain proper activation of Igf1r. Embryos expressing exclusively a cadherin chimera with N-cadherin extracellular and E-cadherin intracellular domains (NcEc) fail to form a trophectoderm and cells die by apoptosis. In contrast, homozygous mutant embryos expressing a reverse-structured chimera (EcNc) show trophectoderm survival and blastocoel cavitation, indicating a crucial and non-substitutable role of the E-cadherin ectodomain for these processes. Strikingly, blastocyst formation can be rescued in homozygous NcEc embryos by restoring Igf1r signaling, which enhances cell survival. Hence, perturbation of E-cadherin extracellular integrity, independent of its cell-adhesion function, blocked Igf1r signaling and induced cell death in the trophectoderm. Our results reveal an important and yet undiscovered function of Igf1r during preimplantation development mediated by a unique physical interaction between Igf1r and E-cadherin indispensable for proper receptor activation and anti-apoptotic signaling. We provide novel insights into how ligand-dependent Igf1r activity is additionally gated to sense developmental potential in utero and into a bifunctional role of adhesion molecules in contact formation and signaling.

Details

show
hide
Language(s): eng - English
 Dates: 2012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 629627
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS Genetics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 8 Sequence Number: - Start / End Page: e1002609 - e1002609 Identifier: -