
  

Atoms 2016, 4, x; doi: FOR PEER REVIEW www.mdpi.com/journal/atoms 

Article 

Evaluation of State-Resolved Reaction Probabilities 
and Their Application in Population Models for He, 
H, and H2 
Dirk Wünderlich * and Ursel Fantz 

Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching, Germany; 
fantz@physik.uni-augsburg.de 
* Correspondence: dirk.wuenderlich@ipp.mpg.de; Tel.: +49-89-3299-1916 

Academic Editors: Bastiaan J. Braams, Xavier Urbain, Detlev Reiter and Viatcheslav Kokoouline 
Received: 6 July 2016; Accepted: 21 September 2016; Published: date 

Abstract: Population models are a prerequisite for performing qualitative analysis of population 
densities measured in plasmas or predicting the dependence of plasma emission on parameter 
variations. Models for atomic helium and hydrogen as well as molecular hydrogen in low-pressure 
plasmas are introduced. The cross-sections and transition probabilities used as input in the atomic 
models are known very accurately, and thus a benchmark of these models against experiments is 
very successful. For H2, in contrast, significant deviations exist between reaction probabilities taken 
from different literature sources. The reason for this is the more complex internal structure of 
molecules compared to atoms. Vibrationally resolved models are applied to demonstrate how 
these deviations affect the model results. Steps towards a consistent input data set are presented: 
vibrationally resolved Franck–Condon factors, transition probabilities, and ionization 
cross-sections have been calculated and are available now. Additionally, ro-vibrational models for 
selected transitions are applied successfully to low-density, low-temperature plasmas. For further 
improving the accuracy of population models for H2, however, it is necessary to establish a 
comprehensive data set for ro-vibrationally resolved excitation cross-sections based on the most 
recent calculation techniques. 

Keywords: population models; collisional radiative models; helium; atomic hydrogen; molecular 
hydrogen; Franck-Condon factors; Einstein coefficients; excitation cross sections; ionization cross 
sections 

 

1. Introduction 

Helium and atomic as well as molecular hydrogen are present in different kinds of plasmas, 
ranging from astrophysics to plasma-processing devices and fusion experiments. For characterizing 
these plasmas, knowledge of the plasma parameters is mandatory. Among the common diagnostic 
techniques are optical emission spectroscopy (OES) [1], optical absorption spectroscopy [2], 
two-photon excited laser-induced fluorescence (TALIF) [3], and tunable diode laser absorption 
spectroscopy (TDLAS) [4], which all require population models to deduce the plasma parameters 
from measured population densities. 

Population models predict the population densities of excited states in atoms or molecules and 
their dependence on parameters as electron temperature Te, electron density ne, and the 
quasi-constant densities of the ground states of one or more particle species. While in equilibrium 
plasmas the (local) thermodynamic equilibrium is fulfilled, for nonequilibrium plasmas, corona or 
collisional radiative (CR) models have to be applied. 



Atoms 2016, 4, x FOR PEER REVIEW 2 of 21 

Such models describe the excited state population densities in a zero-dimensional 
approximation and they can be used either for backward or for forward calculations. Backward 
application is used for determining plasma parameters (typically Te and ne): the plasma parameters 
used as input to the model are varied until the simulated population densities best match the 
measured population densities of one or more excited states in the respective atom or molecule [1,5]. 
Forward calculations allow for known plasma parameters predicting the population densities of 
excited states. The latter information can be useful; for example, for predicting the photon emission 
of atomic lines as well as molecular bands, and the impact of this radiation on surfaces [6]. 

The accuracy of the results of population models is directly correlated on the one hand to the 
completeness of the model: all processes relevant for populating and depopulating excited states in 
the plasma under investigation have to be considered by the model. The set of reactions to be 
implemented can strongly depend on the plasma parameters. On the other hand, the accuracy of the 
model results correlates with the error bar of the implemented reaction probabilities. 

This paper focusses on population models for helium and hydrogen plasmas. Described first is 
the theory of population modeling in such plasmas and the used solver. Then, models for the helium 
atom, the hydrogen atom, and the hydrogen molecule are introduced. The models are benchmarked 
extensively versus measurements made in low-pressure, low temperature plasmas, and the accuracy 
of the implemented reaction probabilities is assessed. Efforts are undertaken to improve and enlarge 
the available set of reaction probabilities for molecular hydrogen. 

2. Population Models 

2.1. Theory of Population Modeling 

The basis of population models are ordinary differential equations—the so-called rate 
equations—balancing the probabilities for populating and depopulating each excited state of an 
atom or molecule. The accuracy of the model results—and consequently also the results of 
diagnostic evaluations based on the model—is strongly correlated to the accuracy of all ingoing 
reaction probabilities. 

If direct excitation from the ground state is the dominant excitation process (Te ≥ a few eV 
and/or low densities of ionic species) and collision reactions connecting different excited states are 
negligible (ne < 1017 m−3), corona models can be applied. These models balance electron collision 
excitation from the atomic or molecular ground state with spontaneous emission. The density of the 
ground state is assumed to be quasi-constant and is used as an input parameter. 

CR models consider a much larger number of reaction channels than corona models, including 
stepwise excitation and excitation by cascades from energetically higher levels. Additionally, 
processes like self-absorption of emission lines due to optical thickness [7], transport of metastable 
states and radiation transfer can be added to CR models. Again, the ground state density is used as 
input parameter. Compared to corona models, CR models are applicable in a much broader 
parameter range. The rate equations for all excited states form a system of coupled ordinary 
differential equations. 

Besides the ground state of the atom or molecule, other particle species with quasi-constant 
population densities can play a role for populating the excited states. Examples are metastable states, 
diatomic molecules (dissociative excitation can result in one excited atom and one atom in its ground 
state) and ions (recombination processes can end in atomic or molecular excited states). These 
particle species and the reaction probabilities for the relevant population processes have to be 
included to the CR model. 

For very high ne (>1022 m−3) the results of population models should approach the local 
thermodynamic equilibrium or even the thermodynamic equilibrium. The latter is, however, not 
always the case for CR models applied to low-pressure plasmas since these models often neglect or 
strongly simplify the radiation transport. 

2.2. The Flexible Sover Yacora 
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The flexible code Yacora [5] can determine the solution of coupled ordinary differential 
equations by integrating the equation system. This procedure allows implementing nonlinear and 
time-dependent processes (e.g., optical thickness) into the rate equations. 

Typically, the timescales on which collisional and radiative processes in plasma take place are 
drastically different. Thus, the system of coupled rate equations has a high stiffness. Ordinary 
solution techniques like the Runge–Kutta method are too slow, and instead the solver CVODE [8] is 
used. Yacora allows the user to easily define the name of all species and states, the probabilities for 
all reactions, and the initial conditions. The probabilities of collision processes can be given either as 
rate coefficients or cross-sections. In the latter case, additionally an electron energy distribution 
function (EEDF) has to be defined. This offers the possibility to perform calculations for plasma 
regimes with non-Maxwellian EEDF, as is often observed in low-pressure, low-temperature plasmas 
[9]. 

3. Atomic Population Models 

3.1. Helium 

3.1.1. Properties of the Helium Atom 

Figure 1 shows an energy-level diagram for the helium atom, including all states with principal 
quantum number p ≤ 4. The fine structure-splitting of the triplet states with angular momentum L of 
the electrons larger than zero is not shown. Helium is a two electron system. Due to the different 
possible orientations of the electron spins, the energy levels split up into a singlet system 
(antiparallel orientation, parahelium) and a triplet system (parallel configuration, orthohelium). All 
allowed dipole transitions originating from states with p ≤ 3 are indicated together with their 
wavelength. 

 
Figure 1. Energy-level diagram of the helium atom. 

Spontaneous emission from one of the multiplet systems to the other is forbidden. Together 
with the selection rule ΔL = ±1, this results in the presence of two metastable states: 21S in the singlet 
system and 23S in the triplet system. For high electron densities, the dominant depopulating process 
for these states is excitation and de-excitation by electron collisions. In plasmas with low ne transport 
of particles in the metastable states can take over. If population models for helium are applied to 
such plasmas, the relevant loss processes for the metastable states have to be included either 
self-consistently or by using fixed transport coefficients as input. 

Depending on the ground state density, optical thickness can play an important role for the 
resonant emission lines. For high population densities of the metastable states (caused by a low 
probability for processes depopulating these states), optical thickness of the emission lines ending on 
21S and 23S can also be of relevance. 

3.1.2. The CR Model for Helium and Results 
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The CR model for helium based on Yacora comprises all states with p ≤ 4 and the singly ionized 
positive ion. 

The electron excitation cross-sections are taken from [10,11], and the probabilities for 
spontaneous emission from [12]. De-excitation cross-sections are calculated by the detailed balance 
principle [13]. Optical thickness of all resonant emission lines and lines ending at the two metastable 
states is included based on population escape factors calculated following [7]. The transport of the 
metastable states via diffusion is approximated by an effective lifetime valid for low-pressure 
plasmas, calculated from the diffusion constant for helium atoms in a helium background [14].  

Figure 2 shows the model results for the excited states with p = 2 and p = 3 (divided by the 
statistical weight and normalized to the ground state density n0) together with line-of-sight averaged 
population densities measured for a pressure of 10 Pa by absorption spectroscopy (p = 2) and OES (p 
= 3) in a microwave electron cyclotron resonance (ECR) discharge (f = 2.45 GHz) in which the 
magnetic field is created by permanent magnets attached to one of the outer walls of the vacuum 
vessel (diameter d = 15 cm, height h = 56 cm). The plasma experiment is described in detail in [15]. 
For deducing the population densities of the excited states with p = 3, measured intensities of 
emission lines originating from these states have been divided by the respective Einstein coefficients. 

 
Figure 2. Line-of-sight averaged population densities np for electronically excited states of He 
measured by optical absorption (p = 2) and emission (p = 3) spectroscopy and results of calculations 
using the Yacora collisional radiative (CR) model for He. The population densities are divided by the 
statistical weight of the states and normalized to the ground state density n0 of He. 

The plasma parameters used as input for the model have been measured independently (Te = 
3.8 eV from a Langmuir probe, ne = 7 × 1016 m−3 from microwave interferometry) and the calculations 
have been performed using a Maxwell EEDF. The agreement between model and measurement is 
excellent (deviations well below 35%), indicating a high accuracy of the experimental results 
(population densities and plasma parameters) but in particular also of the reaction probabilities used 
in the CR model. 

3.2. Atomic Hydrogen 

3.2.1. Properties of the Hydrogen Atom 

The hydrogen atom, consisting of one proton and one electron, is the simplest existing atom. 
The excited states can split up into sublevels due to different possible orientations of the angular 
momentum and the spin of the electron. In absence of strong external (electric or magnetic) fields 
these sub-levels are degenerated. 

Due to strong coupling processes with non-metastable states of the same principal quantum 
number, the metastable substate 2 s is not needed to be considered explicitly [2]. Thus, it is sufficient 
to resolve in population models for the hydrogen atom only the principal quantum number. 
Depending on the ground state density, self-absorption due to optical thickness can affect the 
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population density of excited states. If optical thickness takes place in low-pressure plasmas, in most 
cases it affects the resonant Lyman emission lines only. 

Different particle species with quasi-constant density play a role in populating the excited 
atomic states. The respective reaction channels are shown in Figure 3a. The probabilities for these 
reactions strongly depend on the plasma parameters and the densities of the involved particle 
species. In ionizing (typically Te > a few eV) plasmas direct excitation from the ground state H(1) and 
dissociative excitation from H2 take place predominately (Figure 3b). In recombining (typically Te ≤ 1 
eV) plasmas, (dissociative) recombination of positive ions and mutual neutralization of negative 
ions, H− and positive ions can dominate (Figure 3c). Models for so-called partially recombining 
plasmas have to include all six particle species and reaction channels shown in Figure 3. 

   
(a) (b) (c) 

Figure 3. Excitation channels for atomic hydrogen included to the Yacora CR model for atomic 
hydrogen: (a) all channels; (b) channels relevant in ionizing plasmas; (c) channels relevant in 
recombining plasmas. 

3.2.2. The CR Model for Atomic Hydrogen 

The CR model for atomic hydrogen comprises all excited states with p ≤ 40, including the 
transition to the ionic continuum. This number is much higher than the number of states included to 
the model for helium (Section 3.1.2) and it is a prerequisite for performing calculations of population 
densities up to the principal quantum number p = 9, as described in Section 3.2.4. In order to 
reproduce the transition to the ionic continuum, the population density of the states with p ≥ 36 is 
deduced from the population of the positive ion by applying the Saha equation. The cross-sections 
for electron collision excitation are from [16,17]. De-excitation cross-sections are calculated by the 
detailed balance. Optical thickness of the resonant Lyman emission lines is included based on 
population escape factors calculated as described in [7]. 

Cross-sections for the coupling reactions shown in Figure 3 are taken from the following 
sources: direct excitation from H [16,17], recombination of H+ [18], dissociative excitation of H2 [18], 
dissociative recombination of H2+ [17], dissociative recombination of H3+ [19,20], mutual 
neutralization of H− with positive ions [17,21]. 

As described in detail in [5] for collision energies close to the threshold, the electron collision 
cross-sections for direct excitation from [17] showed a discontinuous nonphysical behavior over the 
principal quantum number. A fitting procedure based on the rate coefficients from [22] was 
performed in order to smooth this discontinuity. The obtained modified set of reaction probabilities 
was successfully benchmarked [5] using the Yacora model for atomic hydrogen and Balmer line 
intensities measured in a uniform and stationary low-pressure, low-temperature ECR plasma 
experiment (f = 2.45 MHz) with a cylindrical vacuum vessel (d = 15 cm, h = 31 cm).  

For dissociative recombination of H3+, two different reaction channels are possible: producing 
either three atoms in the ground state or one molecule in its ground state and an excited atom. While 
the total cross-section for this recombination process and the branching ratio for the two reaction 
channels are well known, mainly from storage ring experiments [20], not much is known about the 
quantum state distribution of the excited atom produced by the second reaction. It is stated in [19] 
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that for low-collision energies, predominately atoms in p = 2 are produced. Thus, in the CR model 
for atomic hydrogen, p = 2 is implemented as the only product for dissociative recombination of H3+. 

While all existing cross-section calculations and measurements show that mutual neutralization 
of H− with the atomic positive ion H+ produces an atom in its ground state and a second atom in p = 2 
or p = 3 (depending on the collision energy), disagreement exists regarding the reaction channels for 
mutual neutralization with H2+: while in [21] it is stated that this reaction ends in a hydrogen 
molecule in its ground state and an excited atom, according to [17] the reaction products are an atom 
in the ground state and an excited molecule. In order to enable investigations on this topic, both 
reaction channels have been implemented to the CR model. By changing the respective branching 
ratio, the relative relevance of the two channels can be varied. 

3.2.3. Application of the CR Model for H to an Ionizing Plasma 

The Yacora CR model for atomic hydrogen is applied to the ionizing plasma in the plasma 
generation region (d = 24.5 cm, h = 16 cm) of the radio frequency (RF)-driven negative hydrogen ion 
source prototype for the internuclear thermonuclear experimental reactor (ITER) neutral beam 
injection (NBI) [23,24]. The plasma is generated by inductive coupling (f = 1 MHz) and the typical 
pressure range is 0.3–0.6 Pa. As shown in Figure 3b, in fully ionizing plasmas only two reaction 
channels have to be taken into account, namely direct excitation from the ground state H and 
dissociative excitation of H2. 

A frequently used method for determining the plasma parameters Te and ne in ionizing plasmas 
is to compare measured line ratios Hα/Hβ and Hβ/Hγ with results of an atomic CR model, as 
described in detail in [1,25]. If, additionally, the molecular emission is taken into account, also the 
ratio n(H)/n(H2) can be determined and additionally the uncertainty of the results can be reduced. 
The aim of the present work was to implement and benchmark an automated version of this 
technique, based on a fitting procedure. 

Several plasma pulses have been performed with different values PRF of the RF power coupled 
into the plasma and of the filling pressure pfill. Measured are the Balmer lines Hα … Hδ and the Q 
lines of the first four diagonal vibrational bands (0→0 … 3→3) of the molecular transition d3→a3 (see 
Section 4.1). By assigning rotational temperatures to the vibrational bands of this band and 
appropriate scaling based on the CR model for H2 (see Section 4.2) the total emission of d3→a3 is 
deduced. 

Figure 4a shows the smallest obtainable residual found by the fitting procedure for PRF = 70 kW, 
pfill = 0.8 Pa, and a broad range of Te and ne. The residual is defined as the absolute value of the 
logarithm of the deviation between calculated (based on a Maxwell EEDF) and measured emission, 
summed for Hα, Hβ, Hγ, Hδ, and d3→a3. The blue band depicts the parameter space with the smallest 
residuals. The band shows a horizontal structure and ne can be determined with an acceptable error 
bar to 1.25 ± 0.75 × 1018 m−3.  

Due to the flat behavior of electron collision excitation cross-sections for temperatures well 
above the threshold it is, however, in principle not possible to determine Te with good accuracy. 
Thus, Te is taken from the absolute minimum of the residuals (12.1 eV). 

Figure 4b shows (in green) the measured emission of the first four Balmer lines and the 
molecular band d3→a3 as well as (in red) the model result for Te = 12.1 eV and ne = 1.25 × 1018 m−3. The 
agreement between measurement and the model is excellent (the deviations are below 12%). 
Additionally shown are the fractions of the Balmer radiation that can be attributed to direct (“H”) 
and dissociative (“H2”) excitation. 

These results demonstrate that it is possible to apply an automated fitting routine to the Balmer 
and Fulcher emission measured in ionizing plasmas. Even in this very simple case (only two 
relevant excitation channels), however, due to the ambiguity in determining Te, the result can have a 
high uncertainty. 
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(a) (b) 

Figure 4. Comparison of Yacora CR model results with the Balmer line emission and the emission of 
the molecular band d3→a3 measured in an ionizing plasma: (a) 2D matrix illustrating a parameter 
space in Te and ne the best possible agreement between measurement and model; (b) comparison of 
the measured emission vs model results for Te = 12.1 eV and ne = 1.25 × 1018 m−3 (depicted by the 
orange ellipse in Figure 4a). Additionally, shown are the calculated fractions of emission that can be 
attributed to direct excitation of H and from dissociative excitation of H2. 

3.2.4. Application of the CR Model for H to a Recombining Plasma 

A second test case for the CR model for atomic hydrogen is a magnetized plasma expansion, 
described in detail in [26,27]. The plasma in this experiment is generated by a cascaded arc, leaves a 
nozzle and expands into a low-pressure surrounding (typically p ≈ 10 Pa) where it is confined by an 
axial magnetic field. An electron current driven between anode and cathode is present in the first 
few centimeters of the discharge. This current heats the plasma by means of ohmic heating. The 
current decreases with the distance from the nozzle and at a certain position (at z ≈ 20 cm) the ohmic 
heating becomes inefficient: a sudden drop in electron temperature (from ≈1.2 eV to ≈0.1 eV) and 
electron density (from ≈2 × 1019 m−3 to ≈1017 m−3) is observed. The drop of the plasma parameters is 
accompanied with a change of the plasma emission: for smaller distances from the nozzle the plasma 
is red (partially recombining plasma), for larger distances it is blue (fully recombining plasma). 

Measurements taken at this magnetized plasma and the CR model for H have been used for the 
following two purposes: firstly, to check the assumption that excited atoms produced by dissociative 
recombination of H3+ are predominately in the state p = 2 (Section 3.2.2); secondly, to check the 
existence and relevance of the two different reaction channels for mutual neutralization of H− with 
H2+ (production of either excited atoms or excited molecules) suggested by [17,21] (Section 3.2.2). 

The electron temperature and density have been measured by a double Langmuir probe. 
Line-of-sight averaged densities of the atomic ground state have been determined [28] by TALIF, 
population densities of the state p = 2 by TDLAS, and the population densities of all other exited 
states by OES. Axially and radially resolved profiles for the population densities have been obtained 
by deconvoluting the results of the optical measurements by means of Abel inversion [29]. 

Based on the measured profiles of Te and ne, a fitting procedure was performed in order to 
adapt the measured excited state population densities to results of the CR model for H, calculated 
using a Maxwell EEDF. Variable parameters in this fit are the unknown particle densities (n(H2), 
n(H+), n(H2+), n(H3+), and n(H−)), considering the plasma quasi-neutrality. An additional free 
parameter is the branching ratio of the two reaction channels for mutual neutralization of H− with 
H3+. Since in recombining plasmas the amount of relevant excitation channels can be higher than in 
ionizing plasmas (as shown in Figure 3), the fitting procedure was performed manually. 

Figure 5 shows (in green) the population densities of the first eight excited states of H (divided 
by their statistical weight) measured in the center and along the axis of the plasma expansion as well 
as (in red) the respective model results. Figure 5a shows the results for the partially recombining red 



Atoms 2016, 4, x FOR PEER REVIEW 8 of 21 

plasma and Figure 5b shows the results for the blue fully recombining plasma. The agreement 
between measurement and the model is very good. 

Additionally shown in both parts of Figure 5 are the fractions of the Balmer radiation than can 
be attributed to the different excitation channels. While in the partially recombining plasma, besides 
the recombining processes, direct excitation (and for p = 2 dissociative excitation) also plays a minor 
role, in the fully recombining plasma only (dissociative) recombination and mutual neutralization 
are of relevance. 

This result allows provision of the following answers to the questions raised above: firstly, 
using the cross-section data implemented to the CR model and for the parameters of the magnetized 
plasma expansion, the assumption that excited atoms produced by dissociative recombination of H3+ 
are predominately in the state p = 2 is correct. Secondly, in the plasma under investigation both 
proposed reaction channels for mutual neutralization of H− with H2+ take place. The branching ratio 
between the two channels was determined to be approximately 0.16:0.84 over the complete volume 
of the plasma expansion, i.e., 16% of such reactions create an excited atom and the other 84% an 
excited molecule. 

  
(a) (b) 

Figure 5. Comparison of population densities in the hydrogen atom (divided by the statistical 
weight) calculated by the CR model and measured in the plasma of a magnetized plasma expansion: 
(a) partially recombining red part of the plasma; (b) fully recombining blue part of the plasma. 

4. Population Models for Molecular Hydrogen and Deuterium 

4.1. The Hydrogen Molecule 

Shown in Figure 6 is an energy-level diagram for molecular hydrogen. Similar as in the case of 
atomic helium, a singlet and a triplet system exist; the reason is the quantization of the projection of 
the total electron angular momentum onto the axis connecting the two protons (the two cores of the 
molecule). The electronic energy levels are abbreviated by upper (singlet system) and lower case 
(triplet system) letters, followed by a digit indicating the multiplet system. The electronic ground 
state, for example, is X1. 

Due to the different forms of movement of the two protons against each other, each electronic 
state consists of a set of vibrational (quantum number v) and rotational (quantum number J) 
sublevels. The vibrational levels of X1 are indicated in the figure. The rotational levels are not shown 
since the energy difference between two consecutive rotational levels is significantly smaller than 
the one between the vibrational levels. 

Due to the presence of vibrational and rotational excitation, optical transitions between two 
electronic states in diatomic molecules consist of vibrational bands with a rotational substructure. 
The ro-vibrational bands of a transition between two electronic states can spread over a broad 
wavelength range (up to hundreds of nanometers). As a consequence of this ro-vibrational band 
structure, the relevance of self-absorption due to optical thickness is much lower than in atoms and it 
is often neglected in population models for molecules.  
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Figure 6. Energy-level diagram of the hydrogen molecule. 

As a result of the higher mass the energetic distances between rotational and vibrational 
eigenvalues in deuterium are smaller than in hydrogen. This results in an increased number of 
rotational and vibrational levels and consequently also of reactions interconnecting these levels. 
Population models that do not neglect ro-vibrational excitation need to take this isotope effect into 
account, and for application in deuterium the development of specific models is necessary. 

As result of the small energy difference between vibrational and rotational sublevels in the 
electronic ground state X1, even in in low-density, low-temperature plasmas the population of these 
states can (partially) thermalize [30]. Typically, the population of the lowest rotational levels can be 
described by a rotational temperature that is identical to the gas temperature [30]. For higher 
rotational quantum numbers, a significantly increased population can occur—caused most likely by 
surface recombination of H atoms to H2—resulting in a so-called hockey-stick structure of the 
rotational population distribution [31]. Typical vibrational temperatures are much higher than the 
rotational temperature [32]. The rotational and vibrational population distributions in X1 are 
correlated to the respective distributions in the electronically excited states by an excitation–
deactivation balance [30]. 

Indicated by blue arrows are selected optically allowed transitions. These transitions are of high 
relevance for plasma diagnostics based on emission spectroscopy [30,32–34]. The wavelength given 
in the figure represents the most intense part of the bands. 

The electronic states of a principal quantum number in both multiplet systems split up due to 
different angular momentum of the excited electron and symmetry of the electronic wave function. 
Additionally, two different modifications of the hydrogen molecule exist, caused by different 
orientation of the proton spins: orthohydrogen (parallel configuration) and parahydrogen 
(antiparallel configuration). 

For the first exited state in the triplet system, b3, an energy interval is indicated because the 
potential energy curve (the electronic eigenvalues of the total wave function vs the internuclear 
distance) for this state is repulsive, i.e., it shows no minimum. The internuclear distance of a 
hydrogen molecule in b3 will increase until dissociation into two atoms takes place. Radiative 
transition into b3 does not result in a ro-vibrational emission band structure but in continuum 
radiation [35]. 

Depopulation of the vibrational level v = 0 in c3 in the triplet system by spontaneous emission 
can take place only via electric quadrupol or magnetic dipole radiation with very low transition 
probability, and the radiative lifetime is around 1 ms [17]. Other reactions will take over the role as 
relevant depopulation mechanisms. One of these reactions can be electron collision transfer into the 
state a3. These two states are energetically very close and depending on the involved vibrational and 
rotational sublevels, the cross-section for electron collision can reach high values (up to 10−16 m2 [17]). 
Secondly, quenching (de-excitation by heavy particle collisions) can be dominant for high molecular 
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densities. Cross-sections of 7.5 × 10−16 m2 have been measured for gas temperatures of 300 K [36]. 
Implementing such processes as accurately as possible in population models for H2 is of high 
relevance since, as shown in [37], stepwise excitation via the c3 state can play an important role for 
populating energetically higher levels. 

In case of a small distance between potential energy curves of two electronic states, even 
optically forbidden transitions from one state to the other one are possible. The probability for such 
reactions can be calculated by the perturbation theory (e.g., by techniques like the Landau–Zener 
method). If a bound state of H2 couples with the molecular ion or with the continuum of another 
bound state, such a transition will be equivalent to an ionizing reaction (autoionization) or 
dissociation (predissociation), respectively.  

Additionally, for high vibrational and rotational quantum numbers the Born–Oppenheimer 
approximation may break down completely. As a consequence, the wave function of the molecule 
can no longer be split up into an electronic, a vibrational, and a rotational part that can be treated 
independently from each other.  

4.2. Characteristics of the Models for H2 and D2 

For the hydrogen molecule several models based on the Yacora solver are available. The first 
model is a CR model including all states of the singlet and triplet systems up to the principal 
quantum number p = 10. For the electronically excited states with p ≤ 3 the splitting due to the 
angular momentum of the electrons is considered. 

Vibrational excitation of molecular states in low-temperature plasmas can drastically enhance 
the probabilities for processes like electron collision excitation or dissociation. The reason is the 
reduced energy threshold for these processes for molecules in excited vibrational levels. In order to 
reproduce these enhanced reaction probabilities, the ground state, all states in p = 2 and the states 
GK1, I1, e3, and d3 in p = 3 (the states indicated in red in Figure 6) are resolved for their vibrational 
levels. The population density of the vibrational levels in the ground state is treated as 
quasi-constant and thus Tvib is an input parameter for the CR model. 

Nonvibrationally resolved cross-sections for electron collision excitation from the ground state 
to the excited states with p = 2 and p = 3 in both multiplet systems have been taken from [17] or [38]; 
the code can be switched from the data from the one reference to the other one. For excitation of 
states with higher principal quantum numbers, cross-sections from [18] are used. The excitation 
cross-sections were vibrationally resolved—where necessary—by applying the Gryzinski [39] 
method. For two excitation processes (X1→B1, X1→C1) vibrationally resolved cross-sections from 
[40,41] are available; these data are implemented instead of the cross-sections from [17] or [38]. The 
total cross-sections for the transition X1→C1 from [17,38,40,41] are compared in Figure 8a. The 
cross-sections from [40,41] have been used while generating the data from [17] also, and thus these 
two curves show small deviations only (with the exception of the region close to the threshold 
energy). 

The Gryzinski method was used to calculate cross sections for electron collision processes 
between electronically excited states. Spin-exchange collisions between excited states are neglected. 
A comprehensive database for vibrationally resolved transition probabilities has been assembled 
[42] (see Section 4.3) and included in the model. Transition probabilities for the only electronically 
resolved states with p > 3 have been taken from [18]. 

Ro-vibrationally resolved CR models allow predicting the ro-vibrational structure of emission 
bands. The number of energy levels to be implemented in such models and the number of reactions 
interconnecting these levels is huge. Due to the lack of a consistent ro-vibrationally resolved set of 
reaction probabilities, instead of a CR model several ro-vibrationally resolved corona models for the 
transitions B1→X1 (Lyman band), C1→X1 (Werner band), and d3→a3 (Fulcher band) in H2 have been 
set up. Additionally, a ro-vibrationally resolved corona model for d3→a3 in D2 was constructed. Due 
to the quasi-constant character of the sublevels in the ground state Tvib and Trot of X1 are input 
parameters for the model. 
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As input for the ro-vibrationally resolved corona models, the vibrationally resolved 
cross-sections used in the CR model have been used. Again, the models can be switched between the 
data from [17] or [38]. The cross-sections have been scaled and split such that the cross-sections for 
excitation from v to v’ (i.e., summed over J and J’ in the corona model) used in both models are 
identical (the quantum numbers of the ro-vibrational levels in X1 are denominated by v and J, the 
ones in the electronically excited states by v’ and J’). In the corona model for constant v and v’ the 
identical cross-section is used for all combinations of rotational substates J and J’. As a result of this 
approach the rotational distribution in the ground state X1 is not mapped correctly to the rotational 
sublevels in the upper electronic state of the modeled transition. Thus, it is necessary to introduce an 
artificial thermalization process for the rotational sublevels, taking into account the rotational 
constants of the ground state and the upper electronic state. 

A newly established set of ro-vibrationally resolved Einstein coefficients (see Section 4.3) is 
used in the corona model. 

4.3. Franck–Condon Factors and Einstein Coefficients 

Franck–Condon factors (FCF) are a measure of the overlap of two vibrational eigenfunctions in 
a molecule [43,44]. In the Franck–Condon approximation, the internuclear distance is considered to 
be fixed during an electronic transition. If the perturbing Hamiltonian of the transition does not 
depend on the internuclear distance, then according to Fermi’s golden rule the FCF quantify the 
transition probability from one vibrational eigenstate to another. FCF can be applied to determine, 
for example, how much the vibrational population of an electronic state contributes by electron 
collisional excitation to the vibrational population of another electronic state [32]. 

If the perturbing Hamiltonian depends on the internuclear distance, an operator describing the 
physical interaction between the initial and the final state of the system has to be additionally taken 
into account. For optically allowed spontaneous (dipole) transitions, this operator is equivalent to 
the dipole transition moment. Together with an appropriate prefactor, the transition probability 
(Einstein coefficient) of dipole transitions is equal to the overlap of two vibrational wave functions, 
convoluted with the dipole transition moment [45]. 

The described calculation technique for vibrationally resolved FCF and Einstein coefficients can 
be applied in principle also for obtaining ro-vibrationally resolved results. For calculating 
ro-vibrational transition probabilities, additionally the Hönl–London factors characterizing the 
distribution amongst the different rotational emission branches have to be considered [46]. 

Based on a set of potential energy curves for the hydrogen molecule taken from the literature 
(described in detail in [42]) vibrationally resolved FCF and Einstein coefficients have been calculated 
for all states up to the principal quantum number p = 4 in H2 and its isotopomeres (D2, T2, HD, DT) 
[42]. Additionally available are FCF for coupling of the neutral molecule H2 with its positive ion H2+ 
[47]. Both datasets are accessible online [48,49]. Recently, ro-vibrationally resolved Einstein 
coefficients for some selected emission bands (B1→X1, C1→X1 and d3→a3) in H2 (and d3→a3 in D2) 
have been calculated. 

The vibrationally resolved FCF can be used as basis for efforts to extend the existing database of 
electron collision cross-sections (see Sections 4.4 and 4.5). The Einstein coefficients are essential for 
constructing population models for the hydrogen molecule. 

Shown in Figure 7 are—as an example—results for the excitation of d3 from the ground state X1 
and de-excitation of d3 via spontaneous transition to a3. Figure 7a shows for v and v’ < 10 
vibrationally resolved FCF for X1(v)→d3(v’). The highest values of the FCF do not follow the 
diagonal defined by v = v’. The reason is that the minima of the potential curves of X1 and d3 are 
located at different internuclear distances (0.74 Å for X1 compared to 1.1 Å for d3). As a consequence, 
the vibrational population in X1 and d3 differs and techniques like scaling with the FCF [32] have to 
be applied in order to deduce the vibrational population in d3 from the one in X1. 
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(a) (b) 

Figure 7. (a) Franck–Condon factors (FCF) for excitation from the ground state X1 to the excited state 
d3 in the triplet system; (b) Aik for spontaneous emission from d3 to a3. 

Since the shape of the potential curves of d3 and a3 is very similar, the Einstein coefficients for 
the emission band d3(v’)→a3(v’’) follow—as can be seen in Figure 7b for v’ and v’’ < 10—the diagonal 
defined by v’ = v’’. The diagonal transitions v’ = v’’ = 0 … 3, in the wavelength range 600–640 nm are 
the strongest parts of this system. 

4.4. Electron Collision Excitation Cross-Sections 

As described in Section 4.2, the electron collision excitation cross sections used in the CR model 
and the corona models have been taken from literature. Two different datasets with cross-sections 
for excitation from the ground state X1 to different electronically excited states exist: the one from 
[38] was created by semiempiric methods based on experimental information and phenomenological 
extensions of the Born approximation into the low-energy region. The data given in [17] represents a 
summary of recent measurements and calculations. Within the process of validating and 
benchmarking the models, a critical check of these cross-sections has been performed. 

Figure 8a shows cross-sections for electron collision excitation from v = 0 in the ground state X1 
to the excited state C1 (optically allowed transition), Figure 8b shows cross-sections for excitation of 
c3 (spin-exchange process). The difference in the type of excitation process results in a distinctively 
different shape of the cross-sections. 

  
(a) (b) 

Figure 8. Electron collision excitation cross-sections from the literature for molecular hydrogen: (a) 
excitation from the ground state X1 to the excited state C1 in the singlet system; (b) excitation from the 
ground state X1 to the excited state c3 in the triplet system. 
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Besides the cross-sections from [17,38] shown in Figure 8a,b are theoretical and experimental 
data from other different literature sources ([40,41,50–52] for excitation of C1 and [50,53–56] for 
excitation of c3; some of these data have been used for compiling the cross-sections given in [17]). All 
these cross-sections—with the exception of the vibrationally resolved data from [40,41]—are 
resolved only for the electronic levels. To do this comparison, the vibrationally resolved 
cross-sections for excitation X1→C1 were summed over the vibrational levels v’ in C1. 

Close to the threshold energy (Ethr = 12.3 eV) of the excitation X1→C1 the discrepancies between 
the cross-sections from the different data sources reach factors of larger than 10, for X1→c3 they reach 
a factor of about 5 at Ethr = 11.8 eV. Thus, also the uncertainty of plasma parameters determined 
using the current population models for H2 will be quite high for low Te (see Section 4.6). 

4.5. Electron Collision Ionization Cross-Sections 

In order to fill one of the gaps in the available set of cross sections for H2, vibrationally resolved 
electron collision ionization cross-sections for the ground state X1 and the first five electronically 
excited states (EF1, B1, C1, a3, and c3) have been calculated using the Gryzinski method [39] together 
with the Franck–Condon theory. 

The Gryzinski method is based on classical theory. For electron collision excitation—one 
electron gains a certain amount of energy and ends up in a specific excited state—the results of this 
method have large error bars [17]. Within the scope of the present work it was demonstrated, 
however, by comparison with experimental results from the literature for ionization of X1 (v = 0) that 
for ionization of H2—one electron is completely removed from the molecule—the Gryzinski method 
produces surprisingly accurate results [57]. 

Ionization of H2 can take place via two different reactions: non-dissociative ionization, ending 
in a molecular ion H2+, and dissociative ionization, producing an atom H in its ground state and a 
positive atomic ion H+: 

H2 + e− → H2+ + 2e− (1) 

H2 + e− → H + H+ + 2e− (2) 

The dissociative process itself consists of two reaction channels: excitation from H2 into the 
vibrational continuum of the H2+ ground state 2Σg+ (reaction 2a) and excitation into the repulsive 
state 2Σu+ (reaction 2b). As a prerequisite for determining cross-sections for Reactions 1 and 2, the 
respective Franck–Condon densities have been calculated [57].  

Figure 9 shows a comparison of the present cross sections for non-dissociative and dissociative 
ionization of X1 (v = 0) with cross-sections available in the literature. For non–dissociative ionization 
an excellent agreement was found between the present data and experimentally determined data 
[58–61] as well as theoretical [62] cross-sections. 

While for dissociative ionization the agreement of the present data with the most reliable 
experimental results [60,61] is very good, deviations within a factor of 3.5 are observed when 
comparing with theoretical cross-sections from literature [62]. These deviations are caused by a 
simplified theoretical framework which was applied for the previous calculations. Within this 
framework one of the reaction channels was neglected and simple approximation for the Franck–
Condon densities have been used. Thus, presently the new set of cross-sections represents the best 
available theoretical data for electron collision ionization of H2. 

Fit parameters for the vibrationally resolved non-dissociative and dissociative ionization 
cross-sections for the ground state and the first five electronically excited states are available online 
[63]. These data represent an important step toward a comprehensive set of vibrationally resolved 
cross-sections for the hydrogen molecule, and they are used as input in the present CR and corona 
models for H2. 
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Figure 9. Non-dissociative and dissociative ionization cross-sections for the vibrational level v = 0 in 
the electronic ground state X1 of the hydrogen molecule. 

4.6. Application of the Models 

In order to enable a critical check of the sensitivity of model results for H2 on the input data, 
measurements have been performed at two different low-pressure, low-temperature laboratory 
experiments: first, the emissivity of the molecular bands GK1→B1, I1→B1, e3→a3, and d3→a3 (see 
Figure 6) have been measured at the uniform ECR plasma experiment described in Section 3.2.2 both 
in hydrogen and deuterium. And second, the emission of all emission bands indicated by the blue 
arrows in Figure 6 has been determined for a hydrogen plasma in the microwave experiment 
described in Section 3.1.2. 

From the band emission the population densities of the respective upper electronically excited 
states have been determined (summed over the ro-vibrational substates) by dividing with the 
appropriate Einstein coefficients. Figure 10 shows for both plasma devices the population densities, 
normalized to the ground state densities, of the states I1 (i.e., an optically allowed excitation 
mechanism) and d3 (spin-exchange excitation) vs the electron temperature. Additionally shown in 
Figure 10 (in green and red lines) are the CR model results (summed over the vibrational substates) 
based on the input data sets by [17,38]. Te used as input for the calculations was determined by 
evaluating the Balmer line emission, as described in Section 3.2.3, and ne (≈1017 m−3) by means of 
microwave interferometry and double probe measurements. Different values of the electron 
temperature were achieved by varying the pressure. The ground state density was deduced from the 
ideal gas law, taking into account in an iterative way the dissociation of H2 into hydrogen atoms. 

The calculations for d3 were performed for different probabilities for quenching of the c3 state: 
no quenching and the quenching cross-section taken from [36]. Thus, for the calculated population 
density of d3, shaded areas are shown. This strong influence of the quenching probability (more than 
a factor of 2) demonstrates the high relevance of stepwise excitation via the c3 state for the 
population of the triplet states in H2. 

Symbolized by the blue and orange stars are the measurements results for hydrogen and 
deuterium plasmas, respectively, from the first plasma device; the diamonds depict the results from 
the second experiment.  

The discrepancies between the different sets of input cross-sections are directly reflected in the 
model results: while the two calculations for I1 are more or less on top of each other, the results for d3 
based on the data from [17] are higher by a factor of 3–4 than the results calculated using the data 
from [38]. This strong correlation of model results to input data is valid for all investigated emission 
bands. 
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(a) (b) 

Figure 10. Comparison of population densities (normalized to the molecular ground state density) 
calculated by the Yacora corona model for H2 with measurements taken in an ionizing plasma: (a) 
excited state I1; (b) excited state d3. 

Regarding the investigated excited states in the singlet system (B1, C1, GK1 and I1), no clear 
statement can be made which of the two cross-section sets describes the measurement best. In the 
triplet system (a3, b3, d3), however, generally the data from [38] seems to yield better results—as can 
be seen exemplarily for the state d3 in Figure 10b. This result is quite surprising since the 
cross-sections from [17] are a summary of measurements and calculations that are based on much 
more sophisticated techniques than the data from [38]. Either processes relevant for the population 
densities of triplet states missing in the current status of the CR model or discrepancies in the 
underlying cross-sections result in high error bars of the data suggested in [17]. In order to check the 
second explanation—and since most available cross-sections are not vibrationally or rotationally 
resolved—calculations aiming at a comprehensive electron collision excitation cross-section 
database for both multiplet systems are highly desirable. 

The lines of the diagonal part (v’ = v’’) of d3→a3 in the visible wavelength range (600–640 nm) 
can easily be distinguished from each other and the overlap with lines originating from other 
emission bands is negligible. Thus, this emission band is frequently used for plasma diagnostics 
[32,64–66]. Figure 11a,b show spectra of this band for v’ = v’’ = 0 and v’ = v’’ = 1 in hydrogen (between 
600 nm and 618 nm) and deuterium (between 598 nm and 612 nm), respectively. The spectra in the 
upper part of the figures have been calculated using the ro-vibrationally resolved corona models (Te 
= 10 eV, ne = 1018 m−3) whereas the ones in the lower part are measurements (taken in the plasma 
generation region of the negative ion source prototype for ITER NBI, PRF = 70 kW and pfill = 0.6 Pa). 
The calculations have been performed using the excitation cross-sections from [38] since these data, 
as discussed above, yield better results for the triplet states. The theoretical position of the most 
intense emission lines (the lines of the Q branch) is symbolized in Figure 11 by the blue stripes. 

The values for Te, ne, the vibrational temperature Tvib, and the rotational temperature Trot used as 
input for the model are taken from the experiment. For H2, besides the nominal Tvib = 5000 K, 
calculations for 1000 K and 10,000 K were performed in order to demonstrate the sensitivity of the 
band structure on Tvib. The resulting spectra are shown in red and green in the upper part of Figure 
11a (in order to increase the visibility of these spectra, the wavelength axes have been shifted slightly 
toward smaller and larger values, respectively). 

The model reproduces well the differences between the band structure in hydrogen and 
deuterium. The agreement in the absolute emission and the ro-vibrational structure between the 
model results and the measurement is good. However, some deviations are observed (for example in 
the relative emission of the Q lines of the v’ = 0→v’’ = 0 band). These deviations cannot be abolished 
by slightly adjusting Tvib or Trot. This result can be explained on the one hand by the fact that the 
model does not calculate the rotational population distribution in d3 self-consistently (due to the lack 
of ro-vibrationally excitation cross-sections, an artificial thermalization process was introduced, see 
Section 4.2). On the other hand, corona models do not take into account stepwise excitation (e.g., via 
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the c3 state) and population via cascades from energetically higher states. For the future it is planned 
to construct an extended corona model including such processes. 

  
(a) (b) 

Figure 11. Spectra of the emission band d3→a3 calculated by the Yacora corona model for molecular 
hydrogen and measured in an ionizing plasma: (a) hydrogen; (b) deuterium. 

In contrast to the easily distinguishable lines of the diagonal part of the d3→a3 band, the lines in 
each of the two emission bands B1→X1 and C1→X1 are much closer together and—depending on the 
apparatus profile of the used spectroscopic system—a significant overlap of lines can occur. 
Additionally, as can be seen in Figure 12, the two bands themselves overlap. The figure shows for 
the wavelength range between 110 nm and 175 nm in the upper part a spectrum calculated using the 
corona models for B1→X1 and C1→X1 (the radiation emitted by the two bands is shown in green and 
red, respectively) and in the lower part a spectrum measured for a pressure of 3 Pa (inductively 
coupled plasma (ICP) discharge, f = 13.56 MHz, d = 10 cm, h = 40 cm). While the measured spectrum 
comprises also the Lyman line Lα, this line was omitted by purpose in the calculation. In the model 
the cross-sections for excitation from the ground state by [40,41] have been used. Te and ne used as 
input for the calculations (Te = 2.7 eV, ne = 1.3 × 1017 m−3) have been determined by evaluating the 
Balmer line emission, as described in Section 3.2.3. 

 
Figure 12. VUV/UV spectra for molecular hydrogen: (a) calculated by the corona model; (b) 
measured in an inductively coupled plasma (ICP) discharge. 
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The agreement between the calculated spectrum and the measurement is good. Compared to 
the intensity of the band head of B1→X1 (at 160 nm) the modeled spectrum, however, shows a 
smaller number of photons emitted in the wavelength range between 135 nm and 155 nm. This 
smaller number of photons is most probably due to cascading processes (e.g., EF1→B1) that will be 
implemented to extended corona models for B1 and C1 in a next step. 

Due to the described overlapping, usually the total photon emission of these bands is—in 
contrast to the d3→a3 band—not determined by scaling the emission of a few measured lines. 
Instead, it is possible to fit a simulated spectrum (free parameters: Te, ne, ground state density, Tvib, 
and Trot) to the measured one. A similar procedure is described in [67] for the emission band C3→B3 
of molecular nitrogen. However, identifying proper values for all free parameters during 
performing such a fitting procedure can be quite elaborate. 

Presented here is a different method that is described already in [6]: for each emission band a 
wavelength interval is defined (indicated in Figure 12 by grey arrows): 130–190 nm for B1→X1 and 
117–130 nm for C1→X1). The integrated radiation in these intervals can be scaled to the total band 
emission by multiplication with a scaling factor. The following scaling factors have been derived 
from the simulated of the molecular bands for the parameters of the used ICP discharge: 2.0 for 
B1→X1 and 2.9 for C1→X1. 

In order to investigate the dependence of the scaling factors on the plasma parameters, 
calculations for two different values of Tvib have been performed: with decreasing Tvib from 4500 K to 
3000 K the relative changes in the scaling factors are below 6%. This indicates that a rough 
knowledge of the plasma parameters is sufficient for determining the scaling factors with sufficient 
accuracy. Preparing a set of scaling factors for the typical range of plasma parameters in a specific 
plasma discharge and scaling to the full band emission using these factors can significantly speed up 
the evaluation process compared to the fitting procedure mentioned above. 

5. Conclusions 

Population models for atomic helium and atomic hydrogen have reached a status in which 
population densities (or line emission) predicted for known plasma parameters agree extremely well 
with measurement results. 

Due to the existence of several different excitation channels, the complexity for hydrogen is 
significantly higher than for helium. For some of these channels (namely dissociative recombination 
of H3+ and mutual neutralization of H− with positive ions) cross-sections or branching ratios are 
known only with large error bars or are missing completely. 

After filling these last gaps in the available set of input data for these atomic population models, 
the models are ideally suited for plasma diagnostics. Users of such models will have to deal, 
however, with the restriction that in zero-dimensional models transport processes like the diffusion 
of metastable species of optical thickness can be included only in a simplified form. 

The final aim of population models for the hydrogen molecule is to predict for known plasma 
parameters both the absolute values of band emissions and the ro-vibrational band structure. 
Although the present results are impressive steps toward such a full description, still some issues 
remain. The most urgent of these issues regards the set of reaction probabilities used in the model. 
Although vibrationally resolved FCF, Einstein coefficients and electron collision ionization 
cross-sections have been calculated, the uncertainty in the available electron collision cross-sections 
is still too high. 

Establishing a new, complete, and comprehensive database for electron collision excitation 
cross-sections for molecular hydrogen is highly desirable. This database should take into account the 
vibrational substates, and ideally also the rotational substates. The latter requirements imply that the 
cross-section data has to be based on theory since performing ro-vibrational measurements for all 
transitions of interest would be by far too elaborate. Since involved are optically allowed transitions, 
optically forbidden transitions and spin-exchange processes, simple techniques like the impact 
parameter method cannot be applied; instead a full quantum mechanical treatment is necessary. Due 
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to the mass dependence of the ro-vibrational structure, also efforts regarding a set of cross-sections 
for deuterium are desirable. 

Only population models based on such an improved set of input data will be capable of 
predicting the ro-vibrational structure of molecular emission bands with a high accuracy. 

Abbreviations 

The following abbreviations are used in this manuscript: 

OES Optical emission spectroscopy 
TALIF Two-Photon Excited laser Induced Fluorescence 
TDLAS Tunable Diode Laser Absorption Spectroscopy 
CR model Collisional radiative model 
EEDF Electron energy distribution function 
ECR Electron cyclotron resonance 
RF Radio frequency 
ITER The internuclear thermonuclear experimental reactor (or latin for “the way”) 
NBI Neutral beam injection 
FCF Franck-Condon factor 
ICP Inductively coupled plasma 
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