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Abstract: 
 
Judgments about objects in the world are often based on probabilistic information (or cues). A frugal judgment strategy that utilizes memory (i.e., 
the ability to discriminate between known and unknown objects) as a cue for inference is the recognition heuristic (RH). The usefulness of the RH 
depends on the structure of the environment, particularly the predictive power (validity) of recognition. Little is known about developmental 
differences in use of the RH. In this study, the authors examined (a) to what extent children and adolescents recruit the RH when making 
judgments, and (b) around what age adaptive use of the RH emerges. Primary schoolchildren (M = 9 years), younger adolescents (M = 12 years), 
and older adolescents (M = 17 years) made comparative judgments in task environments with either high or low recognition validity. Reliance on 
the RH was measured with a hierarchical multinomial model. Results indicated that primary schoolchildren already made systematic use of the 
RH. However, only older adolescents adaptively adjusted their strategy use between environments and were better able to discriminate between 
situations in which the RH led to correct versus incorrect inferences. These findings suggest that the use of simple heuristics does not progress 
unidirectionally across development but strongly depends on the task environment, in line with the perspective of ecological rationality. Moreover, 
adaptive heuristic inference seems to require experience and a developed base of domain knowledge. 
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From infancy to old age, humans make judgments based on pieces of information (or cues) that are only probabilistically related to some criterion 
(Brunswik, 1943). For example, infants may infer the edibility of objects based on probabilistic combinations of color, shape, or smell (Wertz & 
Wynn, 2014); children judge whether it is safe to cross a street from the distance of oncoming vehicles (Hoffrage, Weber, Hertwig, & Chase, 
2003); and taxi drivers must quickly evaluate signs of trustworthiness before giving potential customers a ride (Gambetta & Hamill, 2005). How 

does the ability to make such inferences develop?1 

A growing body of research suggests that the core cognitive abilities and “building blocks” required for probabilistic inference are developed 
relatively early (Bonawitz, Denison, Gopnik, & Griffiths, 2014; Denison & Xu, 2014; for reviews, see Reyna & Brainerd, 1994; Schlottmann & 
Wilkening, 2011). However, the strategic and adaptive use of probabilistic cues may emerge considerably later (Betsch & Lang, 2013; Mata, von 
Helversen, & Rieskamp, 2011). 
The way humans utilize cues for inference has often been described in terms of strategies, that is, goal-directed mental operations used to  
 
 

 
1 

We use the term “inference” to refer to probabilistic judgments about magnitudes on a criterion dimension that is not directly accessible, based on available pieces of 

information (i.e., cues; Brunswik, 1943). The inference task in our investigation thus differs conceptually from the inference problems typically examined in the context 
of sentence and language comprehension (e.g., Reyna & Kiernan, 1994), which are not the topic of this article. 
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solve a problem (e.g., Bereby-Meyer, Assor, & Katz, 2004; Betsch & Lang, 2013; Davidson, 1991a; Mata et al., 2011; Mata, Josef, & Lemaire, 
2015). The discovery and application of such strategies are key aspects during cognitive development, as children encounter many unfamiliar 
situations that require efficient use of information (Siegler, 1999). In this view, children acquire a repertoire of strategies and adaptive behavior 
arises from selecting an appropriate strategy as a function of the situation—an idea that also figures prominently in the adaptive-toolbox 
perspective on judgment and decision making (Gigerenzer, 2003). Perhaps the most basic strategy in the context of cue-based inference is to rely 
on recognition memory, that is, to consider whether or not an object has been encountered before. The capacity for recognition appears to be 
early developed and robust. Already newborns are able to discriminate between familiar and unfamiliar faces or voices, and infants’ recognition 
memories for objects can last several weeks or months (Bjorklund, 2011; Fagan, 1970; Schneider, 2015). Importantly, recognition—or a lack 
thereof—is an informative cue in many natural environments, where it is systematically rather than randomly distributed (Goldstein & Gigerenzer, 
2002). Recognized objects thus often differ from novel ones on relevant dimensions. Life-span research has shown that both younger and older 
adults strategically rely on recognition when making inferences. Moreover, adults’ reliance on recognition seems to be largely adaptive, in the 
sense that they are more likely to follow recognition in environments where it is a good rather than poor cue (Pachur, Mata, & Schooler, 2009; 
Pohl, 2006). Notably, it is an open question whether (and to what extent) individuals at the beginning of their life span are already able to 
strategically rely on recognition for their judgments and whether they adapt their reliance on this cue across contexts, depending on its predictive 
power. 
In this study, we investigate developmental differences in the use of the recognition heuristic (RH), which models people’s strategic use of 
recognition when making inferences about objects in the world (Goldstein & Gigerenzer, 2002). We presented school-age children, younger 
adolescents, and older adolescents with an inference task in two environments—one in which recognition was a good cue, and one in which it 
was a poor cue. We then used a hierarchical cognitive-modeling approach to measure participants’ reliance on the RH when making these 
inferences. In contrast to most developmental studies on cue-based inference, which have trained children in the lab to consider a set of 
predefined cues (e.g., Betsch & Lang, 2013; Davidson, 1991a; Mata et al., 2011), we took a complementary, ecological approach (Brunswik, 
1943; see also Bronfenbrenner, 1979) and examined children’s and adolescents’ use of cue knowledge acquired in the real world, such as 
whether or not they had heard of certain names of cities before. In the following, we first outline previous research on developmental trends in the 
use of judgment and decision strategies. We then turn to the development of recognition memory and discuss the RH in more detail. Finally, we 
present the research questions and hypotheses of the current study. 
 
Developmental Trends in the Use of Judgment and Decision Strategies 
 
Decision performance shows substantial improvement across childhood and adolescence (Jacobs & Klaczynski, 2005). One way to understand 
these changes is in terms of developments in strategy use, which have been shown to be closely coupled to changes in basic-level processes of 
cognitive control and attentional resources (Bjorklund, 2011). Due to constraints in working memory capacity and processing speed (Fry & Hale, 
2000), younger children may rely more on simple, information-frugal decision strategies than older children or adolescents do, even in situations 
in which more complex strategies (i.e., so-called compensatory strategies that weigh and integrate multiple pieces of information) would yield 
higher performance. Developmental research on probabilistic, cue-based judgments and on multiattribute decisions has indeed shown that 

younger children sometimes overrely on simple strategies.2 For instance, Bereby-Meyer et al. (2004) found in multiattribute choice between 

consumer products (e.g., bicycles, computer games) that 8- to 9-year-olds relied more frequently on noncompensatory strategies than 12- to 13-
year-olds did. Noncompensatory strategies consider only one piece of information at a time and ignore any further information that might be 
available. Several studies with adults have found that decision makers are more likely to select such simple strategies when resources are scarce 
(e.g., under working memory load, Bröder & Schiffer, 2006; or under time pressure, Hilbig, Erdfelder, & Pohl, 2012; Pachur & Hertwig, 2006). 
Relatedly, Mata, Schooler, and Rieskamp (2007) observed reduced information search and increased reliance on simple heuristic strategies in 
older adults and found that it was attributable to age-related reductions in fluid cognitive abilities. From a life span view, these latter findings are 
also of interest for developmental research on children’s inferences, because older adults and younger children can show similar patterns of 
performance in cognitive tasks (e.g., Dempster, 1992). 
On the contrary, there also is evidence suggesting that younger children have greater difficulty than older children in implementing simple 
strategies. Mata et al. (2011) examined cue-based decisions in 9- to 10-year-olds, 11- to 12-year-olds, and young adults. Their participants were 
asked to infer, on the basis of six cues (that were probabilistically related to the criterion), which of three cars would win a race. Younger children 
had more difficulty than older children in using an information-frugal heuristic strategy, and this finding was attributed to their less-developed 
abilities to attend selectively to relevant information. Davidson (1991b) reported that younger children were less likely than older children to focus 
on important information, and Betsch, Lang, Lehmann, and Axmann (2014) found that only adults—but neither preschoolers (M = 6 years) nor 
elementary schoolchildren (M = 10 years)—were guided in their search by the validity of the cues. Davidson (1991a) found that younger children 
(aged 7–9 years) searched information less systematically and more exhaustively than older children (aged 10–11 and 13–14 years), often 
attending to irrelevant information. As suggested by Gregan-Paxton and John (1997), such patterns could be due to younger children being less 
sensitive to the search cost required by more complex strategies. These authors have shown that 9-year-olds benefit from the  
 
 

 
2 In this section, we consider strategy use in both (nonprobabilistic) multiattribute tasks and (probabilistic) multiple-cue tasks. In both task types, individuals are 

exposed to multiple pieces of information that may inform judgment or choice. Note, however, that adaptive search abilities may develop earlier in nonprobabilistic 
than in probabilistic tasks (Betsch, Lehmann, Lindow, Lang, & Schoemann, 2016). Relatedly, Schlottmann and Wilkening (2011) suggested that judgment tasks are 
often less complex than choice tasks and younger children could more likely incorporate probabilistic information in the former than the latter. For further discussion of 
task-format effects, see Betsch et al. (2016). 
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imposition of additional cost that prevents them from engaging in overly extensive search. 
In sum, adolescents and older children may be less reliant on simple heuristics than younger children, because working memory development 
allows them to use increasingly complex strategies (e.g., Bereby-Meyer et al., 2004). Conversely, there is also evidence suggesting that 
increasing age could be associated with a more pronounced use of simple strategies, because reliance on heuristic strategies can require 
selective attention (ignoring less important cues) and inhibition of inappropriate responses—abilities that develop only later in childhood (Mata et 
al., 2011; see also Betsch et al., 2014). 
Notably, this latter possibility is also supported by findings showing that access to semantic relations between items (Bjorklund, 1987) and 
reliance on meaning-based memory representations (“gist” memories), both of which have been argued to promote the use of heuristics and rules 
of thumb, seem to increase from childhood to adulthood (Reyna & Brainerd, 1994; see also Jacobs & Klaczynski, 2005). Further, several 
developmental studies have reported age-related increases in heuristic reliance on information such as “availability” (Davies & White, 1994) or 
“representativeness” (Jacobs & Potenza, 1991). In the next section, we introduce a specific model of recognition-based inference—the RH—and 
consider how developmental trends might impact its use (for a discussion of conceptual differences between heuristic use of recognition, fluency, 
and availability, see Pachur, Todd, Gigerenzer, Schooler, & Goldstein, 2011). 
 
Strategic Use of Recognition 
 
The RH (Goldstein & Gigerenzer, 2002) is a model of comparative judgment on a criterion dimension that is not directly accessible (i.e., on which 
exact properties or values of objects are unknown). According to the RH, if one item is recognized (e.g., Chicago), but the other not (e.g., Akron), 
then the recognized item is judged to have the higher value on the criterion (the population of cities). The RH makes the strong assumption that 
recognition is used as a noncompensatory cue, implying that any further cue knowledge available about the object cannot override the recognition 
cue. Although people often give recognition precedence over other knowledge, empirical tests indicate that they do not always neglect further 
information as strictly as predicted by the RH (e.g., Bröder & Eichler, 2006; Hilbig, Erdfelder, & Pohl, 2010; Newell & Shanks, 2004). Moreover, 
there are considerable individual differences in the use of the RH, with some people following it more consistently than others (Michalkiewicz & 
Erdfelder, 2016). 
The performance that can be achieved by relying on the RH is domain specific and depends on the interplay with the environment, particularly the 
correlation between recognition and the criterion dimension (Gigerenzer, 2003; Goldstein & Gigerenzer, 2002); as with any other rule of thumb or 
strategy, it is thus important to consider in which situations the RH fares well and where it fails. The degree to which recognition predicts a 

criterion in a given environment can be quantified as recognition validity.3 Ecological analyses suggest that name recognition is a valid cue in 

many domains (e.g., in identifying larger cities, more successful teams, stocks, or colleges). However, when more frequent object mentions (e.g., 
by people, books, and other media) do not uniquely imply higher criterion values, the RH tends to fare poorly, for instance, when judging which of 
two diseases occurs more frequently (Pachur & Hertwig, 2006). 
 
Adaptive Use of Recognition 
 
Environment Adaptivity 
 
Past and present research emphasizes the significance of adaptations to the environment during cognitive development (e.g., Bronfenbrenner, 
1979). In the current context, using the RH adaptively means adjusting one’s strategy use depending on whether the recognition validity in a given 
environment is high or low. We refer to this aspect as environment adaptivity. Adults are largely sensitive to the predictive power of recognition 
and rely considerably less on the RH in environments with low recognition validity than in environments with high recognition validity (Pachur et 
al., 2009, 2011). Although some developmental research suggests that children as young as 7 years adapt their information search strategies to 
the statistical structure of the environment to some extent and can identify useful cues (Nelson, Divjak, Gudmundsdottir, Martignon, & Meder, 
2014; Ruggeri & Katsikopoulos, 2013; Ruggeri & Lombrozo, 2015), other studies have found that 10-year-olds still have pronounced difficulties in 
doing so (Betsch et al., 2014; Mata et al., 2011). It is thus an open question to what extent adaptive use of the RH can also be observed in 
children, and when adaptivity in using the RH emerges. 
 
Discriminability in the Use of the RH 
 
Adaptive selection of the RH may also include evaluation checks to selectively suspend its application when item-specific knowledge indicates 
that its use would lead to an incorrect decision (e.g., realizing that the town Woodstock is famous for lending its name to a music festival and is 
thus possibly recognized for a reason that has little to do with its size). There is evidence that such evaluation processes require additional time: 
RH-inconsistent decisions take longer than RH-consistent decisions and are associated with evaluative frontal brain activation (Volz et al., 2006). 
To quantify people’s ability to discriminate between cases where the RH led to correct versus incorrect predictions on specific trials, the 
discriminability measure d′ of signal-detection theory has been proposed (Pachur & Hertwig, 2006; see Footnote 8 for details). In an environment 
with low recognition validity, older adults had lower discriminability than younger adults did (Pachur et al., 2009). This age difference in 
discriminability was attributed to older adults’ lower scores in tests of fluid cognitive abilities, suggesting that older adults, although having a well-
developed base of knowledge and experience (Baltes, Staudinger, & Lindenberger, 1999), were constrained in flexibly retrieving it. It is  
 

 
3 The recognition validity α (Goldstein & Gigerenzer, 2002) can be calculated as α = CRU/(CRU + IRU), where CRU and IRU are the correct and incorrect inferences, 

respectively, in cases in which one of two objects in comparative judgments is recognized (RU cases). If α = 1, following the recognition cue will always lead to correct 
inference; if α = .50, recognition is uncorrelated with the criterion and following the recognition cue will lead to chance-level performance. As we shall explain below, 
we used a model-based measure (parameter a) that is formally equivalent to α to quantify the validity of recognition. 
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currently unclear how the ability to discriminate between cases where the RH would lead to correct or incorrect decisions develops across 
childhood, and which cognitive abilities underlie any differences between children and adolescents in this respect. 
 
Research Questions of the Current Study 
 
Despite the extensive literature on adults’ use of the RH (e.g., Goldstein & Gigerenzer, 2002; Hilbig et al., 2010; Marewski, Pohl, & Vitouch, 2010; 
Newell & Shanks, 2004; Pachur et al., 2009, 2011; Pohl, 2006), hardly any research has been conducted about children’s and adolescents’ use of 
the RH (Pohl, von Massow, & Beckmann-Schumacher, 2016). In this study, we aim to fill this gap by addressing the following research questions. 
(a) To what extent does recognition knowledge of children and adolescents enable them to make accurate inferences about the world? (b) Do 9-
year-olds already use the RH and, if so, (c) how adaptive are children and adolescents in selecting the RH? Finally, (d) how do children’s verbal 
knowledge and fluid cognitive abilities affect their recognition-based inferences? 
 
The Development of Recognition Validity 
 
Developmental differences in recognition validity could arise because children and adolescents are exposed to different environments (e.g., they 
encounter different objects with different frequencies) or because younger children’s recognition memory reflects the environment less accurately. 
Because recognition performance peaks in early adulthood (Schneider, 2015), and because recognition validity is a function of the accuracy of 
recognition memory (Pleskac, 2007), it may increase from childhood to adolescence. As outlined above, however, numerous studies on infants’ 
habituation document their early and robust ability to remember and discriminate old from new stimuli (e.g., Fagan, 1970; Schneider, 2015). This 
may hold particularly for familiarity-based recognition, which is tapped by the RH (Pachur et al., 2009; for further discussion about recollection- vs. 
familiarity-based recognition processes, see, e.g., Rosburg, Mecklinger, & Frings, 2011; Schneider, 2015). It is thus conceivable that school-age 
children’s recognition abilities will, to some extent, enable them to make accurate inferences in environments where recognition is a valid cue, but 
that recognition validity nevertheless increases with age. 
 
Do School-Age Children Use the RH? 
 
Recognition emerges rapidly and with little retrieval effort on the mental stage (e.g., Pachur & Hertwig, 2006; Rosburg et al., 2011). It could 
therefore be a particularly attractive cue for younger children, who have been shown to have difficulty applying more resource-demanding or 
complex inference strategies (e.g., Bereby-Meyer et al., 2004). We thus expected to find that school-age children already use the RH 
systematically. Moreover, based on the evidence on working memory development, it seems possible that children might rely more on the RH 
than younger and older adolescents do, implying a decreasing use as a function of age. On the contrary, previous research on children’s use of 
heuristics that involve availability (Davies & White, 1994) or representativeness (Jacobs & Potenza, 1991) has shown that, although children 
begin to apply such strategies from the age of 7 years, the use of these heuristics nevertheless increases with age. Moreover, the requirement to 
selectively attend to a single cue (and to ignore further information) could be more challenging for children than for adolescents (Mata et al., 
2011). Thus, to the extent that children have difficulty systematically implementing a noncompensatory strategy, the use of the RH might increase 
with age. 
 
Developmental Differences in the Adaptive Use of the RH 
 
Because experience and knowledge about domains (e.g., about the usefulness of cues) is important for the adaptive use of the RH, and 
assuming that this knowledge increases during childhood (e.g., Bjorklund, 2011), environment adaptivity may be lower in children than in 
adolescents. Relatedly, because younger children have less developed metacognitive skills and possibly less insight into the task structure than 
adolescents (see Jacobs & Klaczynski, 2005), we expected that children would show lower ability than adolescents to discriminate between 
situations in which the RH leads to a correct versus incorrect inference. Note that these considerations imply environment-dependent (and 
possibly diverging) developmental trends in using the RH. Finally, this line of reasoning could suggest that age differences in discriminability 
between children and adolescents are explained by different types of cognitive abilities than the differences between younger and older adults. 
Pachur et al. (2009) reported that decrements in adaptive RH use in older age were mediated by fluid abilities—possibly reflecting deficits in older 
adults’ ability to flexibly retrieve knowledge relevant for evaluating whether the RH arrives at a correct inference. In children, by contrast, such 
knowledge might be only partially available in the first place. In consequence, crystallized abilities might account more strongly for children’s lower 
discriminability. 
To test these research questions and hypotheses, we conducted a study in which children and adolescents completed inference tasks in which 
they judged cities and diseases in terms of their size and frequency of occurrence, respectively. 
 
Method 
 
Participants 
 
The study involved 117 participants: 38 fourth-grade children (M = 9.29 years of age, SD = 0.65; 14 female) from a primary school, 38 younger 
adolescents (M = 12.42 years, SD = 1.15; 17 female) from a secondary school, and 41 older adolescents (M = 16.80 years, SD = 0.60; 33 female) 
from a high school. We chose these age groups based on previous developmental studies that reported significant changes in adaptive strategy 
selection within this range (Mata et al., 2011) and because, according to pilot testing, 9-year-olds were the youngest able to understand all task 
instructions. All participants were recruited and tested in schools in Livorno, Italy, and were native Italian speakers; participants had diverse 
socioeconomic backgrounds. 
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Materials 
 
To develop the materials used in the inference task, we asked samples of 8- to 9-year-olds (N = 19), 11- to 12-year-olds (N = 23), and younger 
adults (N = 19) who did not participate in the main study to indicate which of 60 United States cities and 23 notifiable diseases they recognized. 
We aimed at using task environments compatible with those used in previous studies with younger and older adults (Horn, Pachur, & Mata, 2015; 
Pachur et al., 2009) in order to permit life span comparisons, but our main goal was to ensure that school-age children would be able to handle 
the materials selected. Based on the findings of this pilot study, 18 cities and 18 diseases were selected such that the proportion of recognized 
items was matched between the two environments (in terms of Ms and SDs), thereby making the applicability of the RH comparable across these 
two conditions. Information on the sizes of the cities was taken from a previous study (Pachur et al., 2009); information on the incidence rates of 

the diseases was obtained from official statistical databases maintained by the Italian Ministry of Health.4 Table 1provides further details about the 

stimuli. 
 
Design 
 
Participants in each age group were randomly assigned to either the cities or the diseases environment, resulting in a 2 × 3 (Environment × Age 
Group) between-subjects design. They were presented with two computer-based tasks. In the inference task, participants were asked to judge 
which of two cities had a larger population (cities environment) or which of two diseases occurred more frequently per year in Italy (diseases 
environment). The 18 items were exhaustively paired, resulting in 153 trials. In the recognition task, participants indicated which of the items 
(either 18 cities or 18 infectious diseases) they had heard of before the experiment. The order of the recognition and inference tasks was 
counterbalanced across participants within each age group. 
 
Procedure 
 
The tasks were administered to groups of six to 10 participants of the same age group. Participants first read an introductory text, and all 
instructions and explanations were also provided verbally by the experimenter. They then worked on either the inference task or the recognition 
task, depending on block order. In the inference task, the names of two cities (or diseases) appeared in 24-point sans-serif font, one on the left 
and one on the right side of the computer screen, surrounded by yellow and green rectangles, respectively. Participants indicated their inference 
by pressing a corresponding left or right key labeled with a yellow or green sticker, respectively. After a brief practice phase, 153 item pairs were 
presented in three blocks of 51 trials, with participants being given the opportunity to rest briefly between blocks to avoid fatigue. Each participant 
saw the item pairs in a different, random sequence. Moreover, one half of the participants (randomly determined) saw a specific item of a name 
pair on the left side of the screen; the other half saw this item on the right side. Participants were told that they would earn 1 point for each correct 
judgment and lose 1 point for each incorrect judgment, but feedback was provided only after the experiment. They were also told that the best two 
participants (in each age group and condition) would receive book vouchers worth 50 EUR (∼56 USD). 
In the recognition task, the names of the 18 diseases (or cities) were presented sequentially and in random order. Participants indicated whether 
they had heard of the disease (or the city) before the experiment by pressing one of two keys (marked with red and blue stickers). 
In a final task block, we measured participants’ fluid cognitive abilities and verbal comprehension using pencil-and-paper versions of the digit-
symbol substitution and vocabulary subtests of the Italian translation and adaptation of the Wechsler Intelligence Scale for Children (Wechsler, 
1991). These tests scores served as indicators for participants’ speed of information processing and their verbal item knowledge/concept 
formation, respectively. 
The entire session lasted about 30 min. All experimental procedures were approved by the Ethics Committee of the Max Planck Institute for 
Human Development, Berlin, Germany, and we obtained informed consent from the teachers and parents of all participating children. 
 
Results 
 
An alpha level of .05 was chosen as criterion of significance for the statistical tests. We followed conventional classification in characterizing effect 

size estimates as “small” (η𝑝
2

 < .06), “medium” (η𝑝
2

 ≥ .06), or “large” (η𝑝
2

 ≥ .14). 

 
Proportion of Recognized Objects 
 
How many objects did participants recognize? And were there differences between the age groups? To address these questions, we examined 
the proportion of recognized objects in a 2 × 3 (Environment × Age Group) analysis of variance (ANOVA). As shown in Table 2, 9-year-olds 
recognized around 45% of the cities and diseases, and there was an age-related increase in the proportion of recognized objects, as indicated by 

a main effect of age group, F(2, 111) = 10.42, p < .01, η𝑝
2

 = .16. There was neither an interaction of age group with environment, F < 1, nor a 

significant effect of environment, F(1, 111) = 2.38, p = .13, η𝑝
2

 = .02. Next, we examined the proportion of cases in the inference task in which the 

RH was applicable (i.e., the proportion of RU cases, in which one of two objects was recognized). As intended, there were no differences between 

the environments, F(1, 111) = 1.05, p = .31, η𝑝
2

= .01. There was a marginally significant age-related increase, F(2, 111) = 3.05, p = .05, η𝑝
2

 = .05, 

and this increase did not differ between the two environments (F < 1 for the interaction between age group and environment). 
 
Performance in the Inference Task 
 
Table 2 reports the proportion of accurate judgments in the inference task, separately for the three age groups. As indicated by a main effect of 

age, inferential accuracy increased from children to older adolescents, F(2, 111) = 15.36, p < .01, η𝑝
2

= .22. Further, accuracy was higher in the 

cities than in the diseases environment, F(1, 111) = 69.03, p < .01, η𝑝
2

= .38. These factors did not interact (F < 1). Moreover, an analysis of 

participants’ 
 

 
4 
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response times (RTs) with a 2 × 3 × 2 (Environment × Age Group × Choice) ANOVA indicated that inferences became faster with increasing age, 

F(2, 111) = 3.83, p = .02, η𝑝
2

= .06 (see Table 2, which reports RTs separately for choices of recognized and unrecognized objects).5 RTs did not 

differ significantly between the two environments, and this held irrespective of age group (indicated by a nonsignificant interaction between 
environment and age group, F < 1). Notably, participants’ inferences in RU cases were faster when the recognized object was chosen than when 

the unrecognized object was chosen, F(1, 111) = 20.24, p < .01, η𝑝
2

= .15. This extends previous findings with adults (e.g., Volz et al., 2006) and 

indicates an analogous choice effect on children’s and adolescents’ RTs. The effect did not interact with age group (all Fs < 1.39, ps > .25, for 
interactions involving age group), but was more pronounced in the cities than in the diseases environment, as indicated by an Environment × 

Choice interaction, F(1, 111) = 6.47, p = .01, η𝑝
2

= .06. 

 
Formal Modeling Analysis 
 
We used a cognitive-modeling approach to decompose observed responses in the inference task. Specifically, we adopted a multinomial 
processing tree (MPT) model to measure use of the RH and the validity of recognition and of further knowledge. In the inference task, the choice 
of a recognized object may result from reliance on the RH, but also from guessing, reliance on another strategy, or other knowledge/cues 
correlated with the criterion. Consequently, the proportion of inferences in which people choose the recognized object (the adherence rate) is a 
confounded measure of RH use (Hilbig et al., 2010). A multinomial analysis allows us to address this issue by disentangling pure reliance on 
recognition (as assumed by the RH) from the use of further knowledge (or any other strategy). Moreover, MPT modeling provides a well-
developed statistical machinery for model comparison and goodness-of-fit tests (see Batchelder & Riefer, 1999; Erdfelder et al., 2009, for 
reviews). The r-model used in this study provides measures for the probability of using the RH (parameter r), for the cue validity of recognition 
(parameter a), and of further knowledge (parameter b). Further details are described in Appendix A (see also Hilbig et al., 2010; Horn et al., 
2015). 
The parameter estimates in MPT models are often based on the pooled data from a group of participants. However, ignoring diversity between 
individuals may lead to severe problems when drawing conclusions about strategy use (Siegler, 1987) or when populations are likely to be 
heterogeneous, as in developmental or clinical settings (Arnold, Bayen, & Böhm, 2015; Batchelder & Riefer, 1999). To address these issues, we 
used a hierarchical model implementation that has been successfully applied in previous research (Horn et al., 2015) and that accounts for 
differences and similarities across individuals by specifying an overarching group-level distribution. An advantage of this approach is that the 
group distribution constrains individual-level estimates in a theoretically principled way, which promises to yield more reliable individual 
parameters (Gelman, Carlin, Stern, & Rubin, 2004). Here, we used Smith and Batchelder’s (2010) beta-MPT implementation that assumes that 
the individual-level estimates for each parameter of an MPT model (e.g., parameters a, b, g, r, in the r-model) stem from independent group-level 
beta distributions, where the variance of the distributions captures the diversity 
 
 
 

 
5 The reaction time (RT) analyses were based on the individual medians of untrimmed RTs; various further methods for dealing with extreme RTs 

would have led to the same conclusions. We focus on the RTs in RU cases, in which the RH was applicable (i.e., in which only one object in the 
pair comparison was recognized). 
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between individuals (for related model developments see, e.g., Matzke, Dolan, 
Batchelder, & Wagenmakers, 2015). 
Parameter estimation relied on a Bayesian approach. We used the Markov chain 

Monte Carlo (MCMC) methodology for posterior sampling6 to determine the most 

probable value ranges of the parameters in the posterior distributions, given the 
data (see Lee & Wagenmakers, 2013, for an overview). In the following, we focus 

on group-level differences of the means between age groups and environments.7 

Validity of recognition and of further knowledge. We first consider the validity 
of recognition, as measured by the MPT model parameter a. Figure 1a shows the 
group means and the distribution of the individual estimates of this parameter 
separately for the three age groups and two environments. As expected per our 

design, the posterior difference in parameter a, 

, indicated substantially higher 
recognition validity in the cities than diseases environment, and this held for all 

age groups [that is, all ]. Importantly, for 
cities, recognition validity did not differ between any of the age groups and was 

similarly high for the 9-year-olds as for the 17-year-olds, 

; 95% CI [−0.16, 0.06], for this difference. In 
other words, recognition was already a (relatively) useful cue for the youngest 

age group in this environment, with a validity far above chance level, 

. In the diseases environment, in which 
recognition validity was gen-  
 

 
6 The method requires specification of prior distributions for the parameters. 
Following Smith and Batchelder (2010), we used uniform (“vague”) priors for the 
group-level parameters that are easily overruled by data and thus should not 
have substantial impact on statistical inference. The resulting posterior 
distributions represent the belief about the parameters after having seen the data. 
For parameter estimation, we report the medians of the MCMC chains and 95% 
Bayesian confidence/credible intervals (CIs). A graphical representation of the 
hierarchical MPT model, further details about convergence of the MCMC 
sampling, and model fit are provided in the online supplemental materials. 

 
7 To conduct contrasts between environments and age groups for any of the MPT r-model parameters θ = (a, b, g, r) we calculated the difference 

of the group-level means, , from the posterior distributions. For any difference of interest in a parameter θ, we 

then calculated the mass of the posterior distribution above zero, given the data D, to quantify the evidence in favor of an effect: 

. 
 

 
Figure 1. The figures show posterior estimates of the group-level means (filled 
symbols) and the individual-level parameters (nonfilled symbols). Error bars 
represent 95% credible intervals for the group means. (a) Predictive power of 
recognition (recognition cue validity as measured with multinomial processing 
tree [MPT] model parameter a) as a function of age group and environment. (b) 
Validity of further knowledge (MPT model parameter b) as a function of age 
group and environment. See the online article for the color version of this figure.  
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erally low, validity did not differ between 12- and 17-year-olds, 95% CI [−0.08, 0.04], but increased from the youngest to the oldest age group, 

; the patterns of recognition knowledge (see Table 1) suggest that this finding might be due to the youngest age 

group not yet having heard of the more frequent diseases (e.g., hepatitis, tuberculosis). 

The model parameter b, expressing the validity of further knowledge (or of any other information beyond recognition), tended to be higher for 
cities than for diseases (Figure 1b), suggesting that participants had somewhat better knowledge about the cities than about the diseases [for 

younger and older adolescents, ; for children, ]. Within both the cities and 
the diseases environment, the b parameter increased from the youngest to the oldest age group, and the 17-year-olds had more valid knowledge 

than either the 9- or the 12- year-olds, . 
Use of the RH and environment adaptivity. Is there evidence that the school-age children in our study already applied the RH? And to what 
extent did the three age groups adjust their reliance on the RH between environments with high and low recognition validities?  
Figure 2 shows the group means and the distributions of the individual estimates of the r parameter. As can be seen, the means clearly exceeded 

zero for 9- and 12-year-olds ], indicating a systematic use of the RH. This also indicates that even in the 
diseases environment (where the younger age groups’ accuracy was around chance level), their responses did not merely reflect guessing 
behavior. Rather, responses resulted—at least to some extent—from the systematic use of a judgment strategy (which, however, rested on a cue 
that had low validity in this environment). The finding that 9-year-olds already relied on the RH is consistent with the idea that the basic cognitive 
abilities required to apply this simple heuristic (i.e., discrimination between novel and familiar objects) are developed from an early age. Crucially, 
however, in both younger age groups, there was no difference in reliance on the RH between the high- and low-recognition validity environments: 

Analyses of the posterior difference in the r parameter between environments, , indicated no effect 

of environment on RH use in children, , or in younger adolescents, .  
 

Figure 2. Probability of using the recognition heuristic (model parameter r) as a 
function of age group and environment. See the online article for the color 
version of this figure.  
 
 
 
 
 
 
 
 
 
 
 
 

In contrast, there was a large effect of environment in older adolescents, . That is, older adolescents used the 
RH substantially more often in the environment with high than low recognition validity, and their RH use even fell below that of the younger age 

groups when validity was low and , for the comparison with 12- and 9-year-
olds, respectively]. These findings suggest that only the older adolescents—but neither children nor younger adolescents—adaptively adjusted 
their reliance on the RH between environments with different recognition validities. Finally, we note that the younger age groups were highly 
diverse in their strategy use (underlining the relevance of modeling heterogeneity), whereas older adolescents were more homogeneous in either 
using or suspending the RH, depending on the task environment. 
 
Discriminability in RH Use 
 
To evaluate participants’ ability to discriminate between cases in which recognition leads to a correct versus an incorrect inference, we used the 

d′RH index mentioned above.8 Higher d′RH scores imply increased reliance on the RH when it leads to a correct inference and decreased reliance 

when it leads to an incorrect inference. Overall, discriminability (see Table 2) increased across age groups, F(2, 111) = 12.60, p < .01, η𝑝
2

= .19, 

and was higher in the cities than the diseases environment, F(1, 111) = 8.48, p < .01, η𝑝
2

= .07; these two factors did not interact (F < 1). 

 
Relation to Measures of Cognitive Speed and Verbal Knowledge 
 
A previous study reported that adult age differences in discriminability in RH use (d′RH) were mediated through measures of cognitive speed 
(Pachur et al., 2009). Here, we explored the same relations at the beginning of the life span. As argued above, however, findings of lower 
discriminability in children than in adolescents might instead result from differences in their knowledge base. Overall, test scores for both verbal 

knowledge and cognitive speed increased with age (Table 3).9 Does performance in either or both of these measures account for developmental 

 

 
8 The discriminability measure d′RH is derived from an equal-variance signal detection model and uses each participant’s hit rate (HR) and false-alarm rate (FA) on 

one-recognized (RU) trials (Pachur et al., 2009). In this context, HR is defined as the proportion of RU cases in which the decision maker chooses the recognized 
object when it scores higher on the criterion, thus leading to a correct inference; FA is defined as the proportion of RU cases in which the decision maker chooses the 

recognized object when it scores lower on the criterion, thus leading to an incorrect inference; d′RH is then calculated for each participant as d′RH = z(HR) – z(FA), 

where z(HR) and z(FA) are the corresponding z values that cut off areas of HR and FA, respectively, from the standard normal distribution. Note that significant 

correlations between d′RH and model parameter b (validity of further knowledge) can be expected, as both measures capture processes beyond exclusive use of the 

RH (e.g., Horn et al., 2015). The online supplemental materials include tables of intercorrelations among the measures used in this study. 
9 Main effects of age emerged for all cognitive measures; we did not plan to test specific contrasts between age groups. We notice, however, that the verbal test 

scores between 9- and 12-year-olds did not differ significantly, which was unexpected. We are therefore cautious in basing conclusions on specific comparisons 
between these two age groups with that measure.  
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differences in d′RH in the present study? To test this possibility, we conducted a series of regression and mediation analyses (e.g., Hayes, 2013) 
predicting participants’ discriminability. As shown in Table 4, an indirect effect of age through verbal knowledge on d′RH emerged (z = 2.44, p < 
.05). Moreover, verbal knowledge scores accounted for age differences in inference accuracy (z = 2.96, p < .01) and in the validity of further 
information (model parameter b), z = 2.90, p < .01. These results are in line with the notion that item-specific knowledge helps adolescents to 
adaptively suspend the RH on particular trials. In contrast, cognitive speed scores did not mediate effects of age on any of these variables (all zs 
< 0.70; ps > .48). Further details of these path analyses are in given Appendix B. 
Notably, we also observed an association between verbal knowledge scores and use of the RH (parameter r), but the mediating role of 
knowledge differed significantly between task environments. That is, we found conditional indirect effects of age through verbal knowledge—but 
not through speed—on use of the RH when task environment was included as moderator in the mediation analyses. The effect was positive for 
cities (more knowledge implying increased RH use) but negative for diseases (more knowledge implying reduced RH use), in line with the 
assumption that knowledge is associated with adaptive (task-dependent) selection of the RH (Table B2). We note, however, that our analyses 
with concurrent data may differ from longitudinal mediations (e.g., Lindenberger, von Oertzen, Ghisletta, & Hertzog, 2011) and serve to test 
necessary but not sufficient conditions for mediation mechanisms. We thus refrain from any causal interpretation of processes developing over 
time. 
 
Discussion 
 
It has previously been shown that recognition information—that is, knowledge about whether or not an object has been encountered before—can 
be an informative cue for making inferences about properties of that object. In this study, we investigated to what extent school-age children and 
adolescents can and do make use of the RH, which relies on real-world recognition knowledge. Further, as the success of a heuristic strongly 
hinges on its match with the environment, we investigated developmental trends in the adaptive selection of the RH when cue validities differed 
between domains. The main findings can be summarized as follows: First, primary schoolchildren and younger adolescents already possessed 
valid recognition knowledge and relied on the RH to some extent, as indicated by a formal measurement model. Second, however, environment 
adaptivity of RH use was observed only in the older adolescents, who increased their reliance on the RH substantially in an environment with high 
recognition validity, but adaptively reduced their reliance when recognition validity was low. Third, these developmental differences in environment 
adaptivity were accompanied by differences in having valid further knowledge and in discriminability (d′RH) between correct and incorrect 
inferences (including the ability to suspend the use of the RH for a specific judgment). Specifically, older adolescents were better able to 
discriminate between trials in which the RH led to a correct or an incorrect inference than were younger adolescents or children. As a corollary of 
these differences in adaptive RH use, older adolescents made more accurate inferences in both environments than the younger age groups did. 
Finally, we obtained some evidence that developmental differences in discriminability (d′RH) were mediated through participants’ verbal 
knowledge. In consequence, younger children’s lower adaptivity could be partially attributed to a lack of item-specific knowledge to discriminate 
between situations in which the RH arrives at a correct versus an incorrect inference. In the following, we discuss further implications of these 
results. 
 
Developmental Differences in Adaptive Strategy Selection 
 
Given that a central topic of our investigation was the development of adaptive RH use—which presupposes information about the cue validity of 
recognition—the question arises how such information might be acquired. One possibility is that both the size and direction of the correlation 

between recognition and a criterion are learned from experience (e.g., Gigerenzer, 2003).10 A stream of research indicates that individuals can 

encode event frequencies and co-occurrences rather accurately and with little effort, implying that some ingredients of cue learning may have a 
robust cognitive foundation (Sedlmeier & Betsch, 2002, provide an overview). Moreover, in laboratory studies, the learning of cue validities—
including recognition—is often successfully implemented as experiential learning, given sufficient feedback and possibilities for active exploration 
(Newell, Lagnado, & Shanks, 2007; Newell & Shanks, 2004; see also Klayman, 1985). Notably, however, it has been emphasized that in realistic 
situations outside the laboratory, learning of cue validities could be very taxing, as individuals might need to monitor a vast number of 
associations and 
 

 
10 Apart from individual learning, adaptive use of recognition could also result from social and evolutionary learning and may rely more on 
approximate discrimination between contexts rather than exact computation of cue values. 
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feedback could be lacking or unreliable (Dougherty, Franco-Watkins, & Thomas, 2008). Individuals may thus have only fuzzier intuitions about the 
validity of recognition in different environments and adjust their strategy use accordingly (Pachur, 2011); even though these intuitions may not be 
perfect, they could still capture relative differences in recognition validities between environments in a surprisingly robust fashion (Wright & 
Murphy, 1984). Importantly, adaptivity to different domains could also arise through insight into the structure of a task (Newell et al., 2007) or 
beliefs and subjective theories about these domains. According to Klaczynski (2005), the evaluation (and justification) of such beliefs requires 
metacognitive abilities of monitoring and controlling information processing that change across development. 
One interesting implication of our findings is that the use of simple heuristics does not progress unidirectionally across childhood (Jacobs & 
Klaczynski, 2005), but may instead depend on features of the task environment and on the decision maker’s sensitivity to those features. 
Specifically, the results indicate that younger children do not generally resort to the simple RH due to limitations in their information processing 
skills and cognitive resources (Bereby-Meyer et al., 2004; see also Payne, Bettman, & Johnson, 1993). In fact, when recognition validity was high, 
the 9- and 12- year-olds applied the RH less frequently than older adolescents did. Together with the observation that their RH use did not differ 
between environments, this finding indicates that younger children may have difficulties in focusing selectively on a single relevant cue (i.e., 
recognition). This is in line with developmental research on the use of other cue-based strategies (Mata et al., 2011; see also Betsch et al., 2014, 
Betsch, Lehmann, Lindow, Lang, & Schoemann, 2016), which indicates that the adaptive selection of simple heuristic strategies (such as the RH) 
appears to be harder for children than initially assumed—even if the required cognitive ingredients or building blocks needed to carry out a 
strategy’s subcomponents are developed relatively early. 
 
The Role of Recognition Knowledge 
 
Application of the RH requires some level of ignorance (i.e., individuals who recognize all or none of the objects cannot apply it). In this study, 
developmental differences in the amount of recognition knowledge had little impact on the applicability of the RH because the proportion of 
recognized cities and diseases varied only moderately between age groups (from 43% to 62%). Consequently, opportunities (proportion of cases) 
where the RH could be applied were relatively similar across age groups. 
Could age differences in recognition validity account for the differential use of the RH observed between the groups? In principle, developmental 
differences in the predictive power of recognition knowledge could emerge because children and adolescents dwell in environments with different 
statistical structures, leading to different patterns of recognized and unrecognized objects. Second, validity differences could emerge if younger 
children’s recognition memory reflects the environment less accurately than that of adolescents (Pleskac, 2007). Finally, because response 
biases appear to decline from early childhood to young adulthood (Reyna & Kiernan, 1994), younger children could have a stronger tendency to 
claim to recognize objects that they have never encountered before (“false alarms”), thereby inflating estimates in the recognition test (and thus 
decreasing the recognition validity). Notably, our results suggest that these possibilities had little impact in the present study because the 
recognition validities were rather similar across age groups in the cities environment. Therefore, the younger age groups’ infrequent use of the RH 
in this environment does not reflect an adaptive adjustment to potentially less-accurate memories. 
 
Outlook and Limitations 
 
It is possible that the task domains we selected (to permit life span comparisons with data from previous studies with older and younger adults; 
Horn et al., 2015; Pachur et al., 2009) were relatively unfamiliar to the youngest children (whose inference  
  



Originally published in: Developmental Psychology, 52(9), 2016, p. 1480 

 
 
accuracy in one of the conditions, the diseases environment, was around chance). It has been emphasized, however, that the RH exploits 
patterns of ignorance (e.g., Goldstein & Gigerenzer, 2002) and may play out its strength in uncertain environments, where knowledge is scarce. It 
is thus an interesting question whether children would make more accurate inferences in domains in which they have more expertise (e.g., 
animals, comic characters, etc.) or whether this knowledge would ironically prevent them from using simpler strategies that can fare surprisingly 
well (Goldstein & Gigerenzer, 2002, p. 79, and Pachur, 2010, provide further discussion of such “less-can-be-more” effects). 
In this study, we focused on children’s strategic use of recognition, with a particular interest in adaptivity of RH use. The results suggest that 
school-age children’s RH use, though already present, was not very pronounced. Hence, an interesting question is what other strategies children 
might have employed whenever they did not apply the RH. The model estimates suggest that the validity of further information available on those 
occasions was relatively low. One possibility, therefore, is that children resorted to guessing because further knowledge was scarce (particularly 
in the diseases environment). Another possibility is that children were influenced by further information associated with the objects that was not 
very helpful (or even irrelevant) and that might have been automatically activated (Khader, Pachur, & Jost, 2013). Finally, children may have used 
various idiosyncratic strategies, such as reliance on specific visual, phonemic, or orthographic features of the presented items. The employed 
MPT-modeling approach does not allow us to disentangle guessing, errors in strategy execution, and the use of alternative knowledge-based 
strategies. Further research could address and dissociate these possibilities through experimental extensions of the comparative-judgment 
paradigm and further modeling developments. 
Our experimental design followed an ecological approach to investigate how children’s and adolescents’ natural knowledge acquisition (in the 
environments to which they are exposed) equip them with the ability to make recognition-based inferences adaptively. We thus selected names of 
real-world objects as stimuli and relied on participants’ recognition knowledge acquired outside the lab. A raison d’être for this approach is that the 
RH is assumed to exploit regularities in exposure frequencies to objects in natural environments (Goldstein & Gigerenzer, 2002) and there is 
some evidence that individuals might treat recognition induced in the lab differently from naturally acquired recognition when making inferences 
(Pachur et al., 2011). Nonetheless, an important limitation of this approach is the lack of experimental control over stimuli (e.g., further knowledge 
about items) and cue learning. Therefore, testing to what extent our conclusions generalize to situations in which recognition and further 
knowledge are induced experimentally in the lab (Bröder & Eichler, 2006; Newell & Shanks, 2004) would provide an important complementary 
contribution. 
Finally, given our cross-sectional design, it remains an open question whether the adaptive use of the RH follows a discontinuous staircase 
pattern across development (as implied by traditional models; e.g., Piaget & Inhelder, 1951), or a gradually changing pattern, possibly resulting 
from a repertoire of different rules or algorithms that are at a child’s disposal at any given time (Siegler, 1999). In light of the high diversity in 
strategy use that we observed in school-age children, longitudinal analyses with frequent measurement time points could provide an exciting 
avenue for future research. 
 
Conclusion 
 
Making good decisions in an uncertain world requires the adaptive selection of strategies that are attuned to the structure of the environment. We 
examined developmental differences in adaptive strategy selection, focusing on a prime example of an ecologically rational inference strategy: the 
RH. Our results are in line with the assumption that core cognitive abilities required to implement this strategy are developed relatively early; we 
observed that 9- and 12-year-olds make systematic use of the RH. Crucially, however, only older adolescents could use the RH adaptively across 
different task environments. Our findings thus highlight the importance of examining the interplay between cognition and environment to gain 
insight into the development of decision making. 
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Appendix A: 
 
Description of the Multinomial Processing Tree Model 
 
The class of multinomial processing tree (MPT) models (see Batchelder & Riefer, 1999; Erdfelder et al., 2009, for overviews) treats categorical 
response frequencies as probabilistic realizations of a set of underlying cognitive states (represented by the model parameters). The r-model 
(Hilbig, Erdfelder, & Pohl, 2010) used in the present analyses belongs to this class and can be illustrated in form of a tree diagram (Figure A1). 
The model considers three possible cases in a comparative judgment task (i.e., RR, RU, and UU trial types), represented by J = 3 separate trees. 
In each of the model trees, possible responses are assigned to one of the K mutually exclusive outcome categories Cjk, distinguishing between 
inference accuracy (correct vs. false) and choice of recognized (+) versus unrecognized (−) objects. In the upper tree, a dec ision maker 
recognizes both objects (RR case) and therefore recruits further information beyond recognition, leading to a correct inference with probability b 
and to an incorrect inference with complementary probability 1 − b. Parameter b thus indexes the validity of the decision maker’s further 
knowledge (or any other information or strategy beyond recognition) in conceptual equivalence to knowledge validity, β. The second tree 
represents the situation in which one of the two objects is recognized (RU case) and the RH can thus be applied. With probability r, the decision 
maker uses the RH and chooses the recognized item. This leads to a correct inference with probability a and to an incorrect inference with 
probability 1 − a. Parameter a reflects the strength of association between recognition and the criterion variable and is equivalent to the validity of 
recognition α (Goldstein & Gigerenzer, 2002). Importantly, with complementary probability 1 − r, the RH is not applied and the inference is based 
on further information beyond recognition (or any other strategy). This leads to a correct inference with probability b. In this case, the recognized 
object is chosen with probability a and the unrecognized object is chosen with probability 1 − a. With probability 1 − b, the inference is incorrect. In 
this case, the unrecognized item is chosen with probability a and the recognized item is chosen with probability 1 − a. In the bottom tree, neither 
of the objects is recognized (UU case) and the decision maker has to guess, leading to a correct inference with probability g. 
We employed a hierarchical Bayesian implementation of the r-model to account for individual differences in RH use. Further details are in the 
online supplementary materials. 
 
 

  
 
Figure A1. The r-model with parameters b (validity of further knowledge), g (probability of a correct guess), r (probability of applying the 
recognition heuristic), and a (recognition validity).  
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Appendix B: 
 
Regression Analyses 
 
This section provides further details about the mediation analyses mentioned in the Results section and includes tables of regression coefficients 
(Table B1) with corresponding model diagrams (see Model 1 in Figures B1 and B2) for ease of reference. The findings can be summarized as 
follows: significant indirect effects of age through a measure of verbal knowledge emerged on inference accuracy, discrimination ability (d’RH), 
and validity of further information (parameter b). Analogous indirect effects of age did not emerge through a measure of cognitive speed. 
Use of the recognition heuristic was not predicted by age, but strongly hinged on the interaction with environment. Consequently, when task 
environment was included as a moderator in the mediation model (Model 2 in Figures B1/B2 [figure B1, figure B2]), we also observed an indirect 
effect of age through knowledge (but not through speed) on adaptive use of the recognition heuristic. Notably, a positive indirect effect (mediation 
through knowledge) on use of the recognition heuristic emerged in the cities environment, whereas this effect was negative in the diseases 
environment (see Table B2). 
 
 

 
 
 
 

 
 
 
Figure B1. Conceptual diagrams.  
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Figure B2. Statistical diagrams.  
 
 

 
 
 
 

 
 
 
Finally, to explore whether mediation differed between age groups, we also considered moderated mediation models with age as both predictor 
and moderator (Model 3/Table B3). These explorations provided little evidence for systematic moderating effects of age. Finally, please note that 
all path analyses serve to describe interrelations of variables of interest. With concurrent data, they should be interpreted with caution, cannot 
provide evidence for any causal relationships, and serve to test necessary (but not sufficient) preconditions for mediation mechanisms (e.g., 
Lindenberger, von Oertzen, Ghisletta, & Hertzog, 2011). 


