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1. Gradients derived from RS represent 
well-known networks and relationships 
between them (Fig 2)

2.  Gradients show remarkable 
consistency across subjects and 
sessions (Fig. 3)

3. Relatively good classification accuracy 
could be achieved by manually drawing 
lines on a 2D plane (Fig. 4)

4. Very small subsets of gradients allow 
to achieve high classification accura-
cies of states within tasks (Fig. 5 and 6)

5. Low-frequency gradients perform 
best for tasks which engage consistent 
sets of large-scale networks (Fig. 6)

6. Further research is needed for devel-
opment and interpretation of individual 
connectivity gradients

Anatomical description of the human connectome has largely focused 
on delineating distinct cortical areas and network modules using 
various forms of categorical clustering. However, such approaches 
are limited in revealing the presence of: 1. broader gradations across 
distinct parcels; and, 2. gradual transitions between distinct areas, 
as previously demonstrated in cytoarchitectonic data. Evidence 
from gold-standard tract- tracing studies in the macaque monkey 
indicates the presence of stepwise gradations in patterns of connec-
tivity. For example, direct projections occur predominantly between 
areas that are one level away in the architectonic hierarchy. In the 
frontal lobe, this pattern of progressive architectonic differentiation 
is spatially organized along orthogonal gradients spanning the dor-
so-ventral and rostro-caudal axes. Nonetheless, current applications 
of clustering methods to connectivity data acquired with MRI are not 
optimized to capture these overarching patterns. Previous studies 
have used MRI-based in vivo methods to investigate the similarity 
in the connectivity profiles of thousands of voxels simultaneously, 
and has shown the ability to identify boundaries between regions 
featuring a sharp transitions. However the presence of gradients of 
connectivity across regions has been thus far been neglected. Here 
we employed an original manifold learning method to recover com-
plex connectivity structure, such as the overlapping gradients docu-
mented by the neuroanatomical literature.

We have used the ‘dense connectome’ derived from Human 
Connectome Project (HCP) [3,4] as the input to manifold 
learning algorithm, consisting of total 91282 cortical and sub-
cortical nodes. The connectome was non-linearly decomposed 
into a set of spatial maps, which we call connectivity gradients 
(Fig 1a) [2]. The gradients represent sets of well-known resting 
state networks and relationships between them. Here we hy-
pothesized that the set of gradients derived from resting state 
can be used as a basis set for the macroscale connectivity pat-
terns [1]. 
To test this hypothesis, we have tested if the gradients can ap-
proximate the activation patterns observed in 7 tasks used in 
HCP.  For each task, we have re-expressed each volume in time-
series as a linear combination of 300 gradients derived from 
resting state (Fig 1b). For each subject and state, the weights of 
respective gradients were averaged. 
We have trained a SVM with L1-penalty to classify between 
states within each task - fixation, control task and main task. L1 
penalty allowed to get a sparse solution. The goal was to get 
reasonable classification accuracy with the most sparse set of 
gradients possible. We report accuracies for training, test and 
validation sets, each consisting of approximately 90 subjects
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Fig. 2 Average gradients timecourses (N=50) in WM task. Blue line 
represents run 1, orange - run 2. Red background represent 2-back 
condition, green - 0-back, white - fixation, brown - 2-back and 0-back 
switched between runs.
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Fig. 3. States within WM task in space defined by 3 gradients. The plots
indicate that conditions within n-back task are clearly separated in this 
space.
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Fig. 4. Model selection procedure. 3 gradients are 
sufficient to achieve very high classification accuracy
within the n-back task.

6

Fig. 5. Classification accuracies and selected gradients
for all 7 HCP tasks. TR - training set, TE1 - test set 1, 
TE2, TE3 - independent test sets (different subjects)

Fig. 2. Ten gradients based on resting 
state connectivity.
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