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Abstract

The paper compares the impurity radiation behaviour of two types of H-mode
discharges. In the normal H-mode that reaches a quasi-stationary state the
energy (and particle) losses within the outer plasma half-radius are
characterized by the repetitive burst-like exhaust into the divertor and
constantly moderate radiation power losses. In contrast, the burst-free
variant of the H-mode with superior confinement properties is dominated by
radiation losses growing continuously up to 100 Z of the heating power. The
time evolution of the impurity concentration and the associated radiation
losses at the plasma centre is hardly influenced by the kind of H-mode. If
the concentration of medium~heavy metals in the burst-dominated H-mode
plasma is raised to sufficiently high values, e.g. by the accumulation of
intrinsic iron, the burst-free (or burst-deficient) H-mode is triggered
which after a new accumulation period usually ends by a radiation collapse.

1. Introduction

During the normal H-mode /1/ of neutral-injection heated divertor discharges
in the tokamak ASDEX the energy and particle flow from the main plasma vol-
ume into the divertor is modulated by highly repetitive bursts. While typi=-
cal bursts exhibit pulse lengths of around 0.5 ms and power amplitudes of
the order of 1 MW, the energy exhaust into the divertor is almost blocked
during the quiescent intervals between bursts /[2/.

In order to investigate the influence of the bursts, a discharge with a
long-lasting burst-free H-mode (shot #11447) has been produced /3/ and is
contrasted with that kind of H-mode endowed with the usual burst-pattern
(shot #11338). Both discharges have identical parameter settings at the
be%innin of the NI-heating interval (I, = 320 kA, B¢ = 2.17 T, ng = 3.5 x
1013 en— » Pog + Pyr = 3.3 MW, HO + pt (40 kV) tangential injection in co-
direction) except for the 4 em outward shift of the plasma needed to estab-
lish the long-lasting burst-free H-phase. The time history of various plasma
parameters (ng, Bp, TE* etc.) is discussed in Ref. /3/.

Figure 1 shows that the bolometrically measured total volume power losses
within the divertor (RADpyy) /4/ drop instantly at the L-to-H mode transi-
tion (t = 1.16 58) and remain at the low level of the ohmiec phase throughout
the burst-free H-mode, whereas they recover time-averaged over the bursts
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with growing burst activity during the second variant of H-mode. The total
radiation power losses of the main plasma volume (RAD) are considerably
higher in the burst-free H-discharge, even during the preceding L-phase.
This radiation enhancement indicates an impurity contamination of the plasma
produced by its shift to the outer stainless-steel protection limiters. The
burst-free H-mode is terminated when, after a continuous radiation increase
accelerated by a simultaneous rise of plasma density, the value of the main
plasma radiation (RAD) equalizes the total heating power.

2. Radiation power profiles

Figure 2 compares the two types of H-mode discharges at two discrete times
with regard to their chord-intensity profiles measured with a 19-bolometer
array, and Fig. 3 presents the time development of the respective radial
profiles of radiation power density (Prap(r)) derived by Abel-inversion
methed. During each kind of H-mode the radiation profiles evolve towards
shapes peaked at the plasma centre. The repetitive burst-like release of
plasma energy due to the Edge Localized Modes (ELMs) /3,5/ prevents any
long-term increase of radiation power at plasma radii between a/2 and a. In
this case, the growth of the central radiation peak is restricted to the
inner half-radius and at t = 1.260 s it is reversed into a decay towards an
equilibrium profile identical to that at t = 1.215 s. In contrast, during
the burst—-free H-mode, where the energy outflow into the divertor is per-
manently suppressed, the radiation power losses grow unimpeded over nearly
the whole plasma cross-section until the radiation collapse converts the
discharge back iato the L-mode. The burst activity and the radiation
enhancement thus act mutually exclusively as additional important energy
loss mechanisms within the outer plasma half-radius and, depending on the
class of H-mode, both quantitatively substitute each other. The main plasma
radiation becomes the dominant energy loss channel in the burst-free H-mode.
Therefore, the energy flow into the divertor (see e.g. RADppy signal in
Fig. 1) keeps low and does not restore the previous L-mode level as one
would expect for transport-dominated losses after the plasma equilibrium
(with improved confinement) is re-established.

It is important to note that the chord-intensity profile of the burst-domi-
nated H-mode which ends up quasi-stationary stays always, even during its
transient central peaking, distinctly below the base profile from which the
fatal radiation increase of the burst-free H-mode starts at t=].215s (Fig.2).

3. Radiation and impurity accumulation at the plasma centre

Correlation of the bolometric radiation profiles (Fig. 3) with those from
VUV spectroscopy, soft X-ray tomography, temperature and density neasure-
ments makes evident that the radiation emission at the plasma centre is
completely dominated by line radiation of highly ionized iron /3/ and that
the central peaking of the radiation profiles reflects an impurity accu-
mulation taking place irrespective of the type of H-mode. Figure 4 demon-—
strates that the presence or absence of bursts hardly influences the
evolution in time of the local radiation power density at the plasma centre
(Ppap(0)), particularly the time-constant of the exponential rise after the
L-to-H-mode conversion. The absolute magnitude of Pgap(0), however, is at
any instant, including the preceding L-phase, about three times higher in
the burst-free H-discharges as compared with the burst-dominated ome, due to
the initial iron contamination. The iron concentration at the plasma centre,
displayed in Fig. 5, is derived from Ppap(0) by applying the temperature-—
dependent radiative power loss function for iron Ppe(Tg) /6/, that includes
charge-exchange recombination with beam neutrals (ng/ng = 1072).
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4, Internal triggering of the burst-free H-mode

Shot # 12218 (Figs. 6 and 7) shows that the burst—dominated H-mode with
moderate radiation losses may turn into the burst-deficient H-mode with
disastrous consequences. The mode conversion occurs when the accumulation of
intrinsic metal impurities during the burst-dominated H-phase raises the
bolometric centre-chord intensity up to the threshold value of the burst-
deficient H-mode. The first and the last step in the profile evolution
depicted in Fig. 7 resemble strikingly their burst-dominated and burst-free
counter-parts in Fig. 2, respectively, because the burst frequency in the
burst-deficient H-mode seems to be too low to slow down the impurity accumu-
lation. Our interpretation that a sufficient degree of plasma contamination
with medium-heavy metals is needed to establish the long-lasting burst-free
H-mode agrees with the experimental observation that the burst-free H-mode
can be triggered externally by the laser blow-off injection of metals such
as chromium and copper /7/.
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Fig.3: Time evolution of the radial profile of radiation power density during the
burst-dominated (left) and the burst-free (right) H-mode discharge (note the dif-

ferent radiationscales).
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Fig. 4: Dynamic behaviour of the
radiation power densities at the
plasma centre.

Fig. 6 (right): Time development of var-
ious plasma parameters during shot
#12218 converting from a burst-domi-
nated into a burst-deficient H-mode.
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Fig. 7 (above): The evolution of the
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Fig. 5: Variationin time of the cal-
culated iron concentrations at the
plasma centre.




