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We discuss the Iwasawa-decomposition of a general matrix in SL(n,Qp) and

SL(n,R). For SL(n,Qp) we define an algorithm for computing a complete

Iwasawa-decomposition and give a formula parameterizing the full family of

decompositions. Furthermore, we prove that the p-adic norms of the coordi-

nates on the Cartan torus are unique across all decompositions and give a closed

formula for them which is proven using induction. For the case SL(n,R), the

decomposition is unique and we give formulae for the complete decomposition

which are also proven inductively. Lastly we outline a method for deriving the

norms of the coordinates on the Cartan torus in the framework of representa-

tion theory. This yields a simple formula valid globally which expresses these

norms in terms of the vector norms of generalized Plücker coordinates.
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1 Introduction

Let G(F ) be a connected semisimple Lie group over a field F with Lie algebra g(F ). The

Iwasawa decomposition states that G(F ) may be written1

G(F ) = N(F )A(F )K(F ). (1.1)

where N(F ) is a nilpotent subgroup generated by the positive Chevalley generators in g(F ),

A(F ) is an abelian subgroup generated by a maximal abelian subalgebra of g(F ) and K(F ) is

a maximal compact subgroup of G(F ). The group elements of N(F ), A(F ) and K(F ) in the

decomposition of some group element in g ∈ G(F ) are called the nilpotent-, semisimple- and

compact parts of g respectively.

This paper discusses the field of real numbers and the field of p-adic numbers. We recall

some terminology regarding p-adic numbers and their norm.

Definition 1 (p-adic numbers). Let p be a prime number. The p-adic norm of a rational

number m′

n′ pa, where the primes denote that the integers m and n carry no factors of p, is

defined as ∣
∣
∣
∣

m′

n′
pa
∣
∣
∣
∣
p

= p−a. (1.2)

The p-adic numbers Qp are the completion of the rational numbers with respect to the

p-adic norm.

The p-adic integers Zp are the unit ball in Qp,

Zp ≡ {x ∈ Qp : |x|p ≤ 1} . (1.3)

The p-adic units Z×

p are the unit circle in Qp,

Z×

p ≡ {x ∈ Qp : |x|p = 1} . (1.4)

1In the literature, one additionally encounters the equivalent decomposition G = KAN . Which one is used is

a matter of convention, and statements and proofs within this paper easily carry over.
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Remark. The p-adic norm satisfies the ultrametric property

|x+ y|p ≤ max{|x|p, |y|p} where x and y ∈ Qp. (1.5)

This property renders the p-adic numbers non-archimedean.

Remark. The p-adic integers form a ring and sit compactly inside the p-adic numbers.

In the case F = R, the maximal compact subgroup is the exponentiation of the subalgebra

of g(F ) consisting of the fixed point elements of the Chevalley involution.

By contrast, in the non-archimedean case F = Qp, the notion of a maximal compact subgroup

is defined by virtue of the fact that Zp forms a compact ring inside Qp. For matrix groups

(which are linear algebraic subgroups of GL(n,Qp)), the maximal compact subgroup is defined

by restricting G(Qp) to the subgroup of integers points

K(Zp) = G(Qp) ∩GL(n,Zp) ≡ G(Zp). (1.6)

K(Zp) defined in this way then sits compactly inside G(Qp).

The Iwasawa-decomposition is relevant for maximal parabolic Eisenstein-series, which are

automorphic forms and constructed by averaging a character of a Lie group over a discrete sub-

group. Since a character is only sensitive to the abelian part of a group, it is useful to possess

a formula which rewrites a group element in Iwasawa form, or at least that can extract the

semisimple part A given an arbitrary group element. Furthermore when dealing with automor-

phic forms, it is oftentimes advantageous to operate over the ring of adeles AQ which calls for

the formula in question to be applicable both for groups over real numbers and groups over

p-adic numbers. For a review of working with Eisenstein series over the adeles, see [1].

This paper treats G(F ) = SL(n, F ) in the fundamental representation for F = R and F = Qp

separately. In the SL(n, F )-case, the group element N becomes a unit upper triangular matrix

and A becomes a diagonal matrix of unit determinant. We have the following definition for their

matrix elements:

Definition 2 (Axions, dilatons and Cartan torus). For a matrix in SL(n, F ) written in Iwasawa

form, the matrix elements above the diagonal in N are called axions. The matrix A is called

the Cartan torus and when parameterized as

A =












y1
y2
y1

. . .
yn−1

yn−2
1

yn−1












, (1.7)

the y’s are called dilatons.

Remark. It can be desirable to define y0 ≡ yn ≡ 1 and write y1
y0

and yn
yn−1

for the first and last

elements respectively.
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Remark. The vocabulary comes from String Theory, where the moduli are referred to as axions

and dilatons.

¡++¿ In the p-adic case, the Iwasawa-decomposition is not unique but the norms of the

dilatons are unique, which we prove below. It is these norms that are important for Eisenstein

series and a formula to compute them given an arbitrary p-adic matrix is derived. This formula

is the main result of this paper.

In the real case, the Iwasawa-decomposition of a given group element is unique and a formula

is given for the complete decomposition.

Throughout this paper, we use the convention that two integers separated by ellipses or a

dash are to be interpreted as an integer spaced interval. For example, given two integers a and

b, writing
a, . . . , b is shorthand for a, a+ 1, a + 2, . . . , b− 2, b− 1, b and

ǫia—ib is shorthand for ǫiaia+1ia+2...ib−2ib−1ib .

If a > b, the interval is defined to be empty. Furthermore, we denote matrix elements Mij of a

matrix M by a pair of indices, denoting the row and column respectively.

My personal motivation to pursue the results presented here comes from the study of auto-

morphic forms that appear in toroidal compactifications of type IIB String Theory [2, 3, 4, 5],

where in the case of compactification on a 3-torus, one finds Eisenstein series on the group

SL(5,R). The work [1] provides an introduction for mathematicians to this area of physics.

2 Decomposing SL(n,Qp)

We begin with a more precise statement of Iwasawa-decomposition for matrices in SL(n,Qp).

Theorem 1 (Iwasawa-decomposition for SL(n,Qp)). A matrix M ∈ SL(n,Qp) may be written

M = NAK (2.1)

where N ∈ SL(n,Qp) is unit upper triangular, A ∈ SL(n,Qp) is diagonal and K ∈ SL(n,Zp).

Remark. By counting degrees of freedom, we find n2 − 1 on the left hand side and n(n−1)
2 +

n− 1 + n2 − 1 on the right hand side. The decomposition is hence not unique and we expect a(
n(n+1)

2 − 1
)

-family of decompositions.

2.1 Preliminaries

We proceed by giving some definitions that will be relevant in the pursuit of a formula for p-adic

Iwasawa-decomposition.

Definition 3 (Minor). Given an m× n matrix M , a minor of order k

M ( r1 ... rk
c1 ... ck ) (2.2)

is the determinant of the submatrix of M obtained by only picking the k rows {ri} and k columns

{ci}.
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If the rows and columns agree, i.e. ri = ci for all i ∈ {1, . . . , k}, then the minor is called a

principal minor.

If the rows selected are the first k rows in order,

M
(

1 ... k
c1 ... ck

)
, (2.3)

the minor is called a leading minor while if they are the last k rows in order,

M
(
m−k+1 ... m

c1 ... ck

)
, (2.4)

we will call it an anti-leading minor.

Hence, the minors

M
(
1 ... k
1 ... k

)
and M

(
m−k+1 ... m
n−k+1 ... n

)
(2.5)

are called the leading principal minor and the anti-leading principal minor of order k

respectively.

The empty minor is defined as

M ( ) ≡ 1. (2.6)

Remark. Aminor is totally antisymmetric under permutations of the rows as well as the columns.

Hence it vanishes if some r’s coincide or some c’s coincide.

Remark. A minor can be expanded along a row or column according the formula

M ( r1 ... rk
c1 ... ck ) =

k∑

a=1

(−1)a+1M ( r1ca )M
( r2 ... ra ra+1 ... rk
c1 ... ca−1 ca+1 ... ck

)
=

=

k∑

a=1

(−1)a+1M ( rac1 )M
( r1 ... ra−1 ra+1 ... rk
c2 ... ca ca+1 ... ck

)

(2.7)

called Laplace expansion.

Next we recall the LU-decomposition of a matrix and an accompanying lemma.

Lemma 1. Given a non-singular square matrix M of size n, there is a permutation matrix P

such that the leading principal minors of MP are all non-zero.

A proof of this can be found in [6] and below we prove a more powerful version of this lemma

adapted for anti-leading minors.

Given a non-singular square matrix M , one can then always find a permutation matrix P

such that LU-decomposition of MP is possible.

Theorem 2 (LU-decomposition). Let F be a field. A matrix M ∈ SL(n, F ) can be written as

M = MPP−1 = LDUP−1 =

=









1

l21 1
...

...
. . .

ln1 ln2 . . . 1

















y1
y2
y1

. . .
1

yn−1

















1 u12 . . . un1
1 . . . u2n

. . .
...

1









P−1
(2.8)
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where D has unit determinant and its elements are given by

yp = (MP )
(

1 ... p
1 ... p

)

, (2.9)

L is unit lower triangular with matrix elements

lip = (MP )
(

1 ... p−1 i
1 ... p−1 p

)/

(MP )
(

1 ... p
1 ... p

)

= (MP )
(

1 ... p−1 i
1 ... p−1 p

)/

yp i ≥ p, (2.10)

U is unit upper triangular with matrix elements

upi = (MP )
(

1 ... p−1 p
1 ... p−1 i

)/

(MP )
(

1 ... p
1 ... p

)

= (MP )
(

1 ... p−1 p
1 ... p−1 i

)/

yp p ≤ i (2.11)

and P is almost2a permutation matrix.

A proof of the formulae above can be found in [7].

2.2 New results

For the purposes of Iwasawa-decomposition, we will make use of a UL-decomposition rather than

the conventional LU-decomposition. In this case, leading principal minors get replaced by anti-

leading principal minors.3 We begin by proving a more powerful version of lemma 1 which lets

us construct a UL-decomposition with the added property that one may choose the rightmost

column in the matrix to be decomposed freely, as long as its bottom element is nonzero. This

stronger UL-decomposition will turn out to be useful in computing the Iwasawa-decomposition

of an arbitrary matrix in SL(n,Qp).

Lemma 2. Given a non-singular square matrix M of size n, there is a permutation matrix Πa

such that the anti-leading principal minors of MΠa are all non-zero where Πa moves column a

to the rightmost position and we require the bottom element of column a to be non-zero.

Proof. The permutation of columns is realized by multiplication of a permutation matrix from

the right. The proof works by induction and the cases n = 1 and n = 2 are obvious. Assume

that the statement holds true for matrices of size up to and including n − 1 and consider a

matrix of size n. Start by permuting the columns of M so that column a is not in the leftmost

position and consider the (n− 1)× n matrix obtained by deleting the top row of the permuted

matrix. This matrix contains n − 1 linearly independent rows and hence also contains n − 1

linearly independent columns where column a can be assumed to be one of them, since it is not

a zero-column. Permute these columns to the rightmost n−1 positions and apply the induction

hypothesis to the bottom right (n− 1)× (n− 1) block of the permuted matrix, which is allowed

since this block is guaranteed to be a non-singular matrix. This establishes that the first n− 1

2In the case that P is an odd permutation, we may replace it with for example

(

−1
1

. . .
1

)

P to give it a

positive determinant and thereby preserve the determinant condition on both sides.
3Switching between UL and LU introduces no complications for proofs, which work analogously for the two.

Which one is needed depends on which of the conventions KAN or NAK is used.
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anti-leading principal minors of MΠ are non-zero and the rightmost column of MΠ is column a

of M , where Π denotes the resulting permutation matrix. The last anti-leading principal minor

is simply det(MΠ) which is non-zero since MΠ is non-singular. Peano’s axiom of induction now

establishes the lemma.

Theorem 3 (Strong UL-decomposition). Let F be a field. A matrix M ∈ SL(n, F ) with Mna 6= 0

can be written as

M = MΠaΠ
−1
a = V∆ΛΠ−1

a =

=









1 v12 . . . vn1
1 . . . v2n

. . .
...

1

















η1
η2
η1

. . .
1

ηn−1

















1

λ21 1
...

...
. . .

λn1 λn2 . . . 1









Π−1
a

(2.12)

where ∆ has unit determinant and its elements are given by

ηp =
(

(MΠa)
(

p+1 ... n
p+1 ... n

))
−1

, (2.13)

V is unit upper triangular with matrix elements

vpi = (MΠa)
(
p i+1 ... n
i i+1 ... n

)/
(MΠa)

(
i ... n
i ... n

)
= (MΠa)

(
p i+1 ... n
i i+1 ... n

)
ηi−1 p ≤ i, (2.14)

Λ is unit lower triangular with matrix elements

λip = (MΠa)
(
i i+1 ... n
p i+1 ... n

)/
(MΠa)

(
i ... n
i ... n

)
= (MΠa)

(
i i+1 ... n
p i+1 ... n

)
ηi−1 i ≥ p (2.15)

and Πa is a permutation matrix which moves column a to the rightmost position, subject to the

caveat explained in footnote 2.

Proof. Denote

W =






1

. .
.

1




 = W−1. (2.16)

Note that conjugating a matrix by W “rotates” it by 180◦. Write the matrix WMΠaW
−1 using

the LU-decomposition (here we get P = 1 thanks to the action of Πa)

WMΠaW
−1 = LDU. (2.17)

Solve for M and write it as

M = W−1LW
︸ ︷︷ ︸

V

W−1DW
︸ ︷︷ ︸

∆

W−1UW
︸ ︷︷ ︸

Λ

Π−1
a . (2.18)

The formula for the matrix elements of V , ∆ and Λ follow from theorem 2. Alternatively,

the formulae may be proven from first principles using the same technique as for the UL-

decomposition in [7].

6



Remark. All minors in the formulae above contain column a of the original matrix M .

Next, we show how the family of Iwasawa-decompositions of a given matrix may be enumer-

ated given any Iwasawa-decomposition of the matrix. A corollary of this is that the norms of

the dilatons are unique across all Iwasawa-decompositions.

Theorem 4. Given an Iwasawa decomposition NAK of M , all other Iwasawa-decompositions

N ′A′K ′ can be found by writing N ′ = NAXA−1, A′ = AY and K ′ = (XY )−1K and letting X

range over all unit upper triangular matrices in SL(n,Zp) and Y over all diagonal matrices in

SL(n,Z×

p ).

Proof. Given two Iwasawa-decompositions of M

M = N1A1K1 = N2A2K2, (2.19)

define the matrix

Z = (N1A1)
−1N2A2 = K1K

−1
2 . (2.20)

Note that Z ∈ SL(n,Zp) is upper triangular and |detZ|p = |1|p = 1 is the product of its

diagonal elements. This implies that the diagonal elements must all be p-adic units, since if

some had a norm less than one, others must have a norm greater than one which would violate

Z ∈ SL(n,Zp). We can therefore decompose Z = XY with X and Y as above. The matrix Z

takes the first decomposition into the second by writing

N1A1K1 = N1A1ZZ−1K1 = N1A1 (N1A1)
−1 N2A2K2K

−1
1 K1 = N2A2K2. (2.21)

We have at the same time

N1A1K1 = N1A1XY (XY )−1K1 = N1A1XA−1
1

︸ ︷︷ ︸

N2

A1Y
︸︷︷︸

A2

(XY )−1K1
︸ ︷︷ ︸

K2

. (2.22)

From the form of X and Y , it is clear that N2 and Y2 have the appropriate form for Iwasawa-

decomposition. The same is true for K2 since (XY )−1 ∈ SL(n,Zp).

This proves that any two Iwasawa-decompositions are related in the way claimed by the

theorem and by varying X and Y , one generates all other Iwasawa-decompositions.

Remark. X and Y parameterize the
(
n(n+1)

2 − 1
)

-family of decompositions mentioned in the

remark after theorem 1.

Corollary 1. For a matrix M ∈ SL(n,Qp), the norms of the dilatons are unique across all

Iwasawa-decompositions of M .

Proof. By theorem 4, the semisimple part of any Iwasawa decomposition of M is of the form AY

where A is the semisimple part of some Iwasawa-decomposition and Y ∈ SL(n,Z×

p ) is diagonal,

hence the norms of the diagonal elements are unchanged. Regarding the dilatons in (1.7), we

get that the norm of y1 in unchanged, and hence also that of y2 etcetera.

Next we prove two lemmas regarding minors which will be useful later.
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Lemma 3. An m× n matrix M obeys

M ( r1 ... rk
c1 ... ck )M

( r2 ... rk
d2 ... dk

)
=

k∑

a=1

(−1)a+1M
( r1 r2 ... rk
ca d2 ... dk

)
M
( r2 ... ra ra+1 ... rk
c1 ... ca−1 ca+1 ... ck

)
(2.23)

where ri ∈ {1, . . . ,m} and ci ∈ {1, . . . , n} and di ∈ {1, . . . , n} and k ∈ N.

Proof. For readability, we will drop r and write ri just as i. To prove the identity, we expand

both sides using Laplace expansion. Start by expanding the first factor of the left hand side as

LHS = M
(

1 ... k
c1 ... ck

)
M
(

2 ... k
d2 ... dk

)
=

=
k∑

a=1

(−1)a+1M
(

1
ca

)
M
(

2 ... a a+1 ... k
c1 ... ca−1 ca+1 ... ck

)
M
(

2 ... k
d2 ... dk

)
.

(2.24)

Expand the first factor in the sum of the right hand side as

RHS =
k∑

a=1

(−1)a+1M
(

1 2 ... k
ca d2 ... dk

)
M
(

2 ... a a+1 ... k
c1 ... ca−1 ca+1 ... ck

)
=

=
k∑

a=1

(−1)a+1

(

M
(

1
ca

)
M
(

2 ... k
d2 ... dk

)

︸ ︷︷ ︸

I

+
k∑

b=2

(−1)b+1M
(

b
ca

)
M
(

1 ... b−1 b+1 ... k
d2 ... db db+1 ... dk

)

︸ ︷︷ ︸

II

)

M
(

2 ... a a+1 ... k
c1 ... ca−1 ca+1 ... ck

)
.

(2.25)

The term labelled I corresponds to the left hand side. The term labelled II vanishes according

to

0 = M
(

b 2 ... k
c1 c2 ... ck

)
=

k∑

a=1

(−1)a+1M
(

b
ca

)
M
(

2 ... a a+1 ... k
c1 ... ca−1 ca+1 ... ck

)
(2.26)

for b ∈ {2, . . . , k}, due to antisymmetry of minors.

Remark. The lemma holds true as stated but the assertion is trivial unless k ≤ min{m,n} and

all r’s, all c’s as well as all d’s are different.

Remark. A special case of the lemma is the identity

M
( r1 ... rk rk+1
c1 ... ck rk+1

)
M
( r2 ... rk+1
r2 ... rk+1

)
=

k∑

a=1

(−1)a+1M
( r1 r2 ... rk+1
ca r2 ... rk+1

)
M
( r2 ... ra ra+1 ... rk rk+1
c1 ... ca−1 ca+1 ... ck rk+1

)

(2.27)

which will be used in the proof of lemma 4.

Lemma 4. An m × n matrix M obeys the following identity involving the determinant of a

k × k-matrix of minors of M
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M
( r1 r2 ... rk+1
c1 r2 ... rk+1

)
M
( r1 r2 ... rk+1
c2 r2 ... rk+1

)
. . . M

( r1 r2 ... rk+1
ck r2 ... rk+1

)

M
( r2 r3 ... rk+1
c1 r3 ... rk+1

)
M
( r2 r3 ... rk+1
c2 r3 ... rk+1

)
. . . M

( r2 r3 ... rk+1
ck r3 ... rk+1

)

...
...

. . .
...

M
( rk rk+1
c1 rk+1

)
M
( rk rk+1
c2 rk+1

)
. . . M

( rk rk+1
ck rk+1

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

= M
( r1 r2 ... rk rk+1
c1 c2 ... ck rk+1

)
M
( r2 ... rk+1
r2 ... rk+1

)
. . .M

( rk rk+1
rk rk+1

)

(2.28)
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where ri ∈ {1, . . . ,m} and ci ∈ {1, . . . , n} and k ∈ N.

Proof. The proof works by induction. The base case k = 1 trivial. Assume that the formula

holds for k ≤ q− 1 for some q− 1 ∈ N. Expanding the determinant for k = q along the first row

and using the induction hypothesis on the remaining (q − 1)× (q − 1)-determinants gives

LHS =

q
∑

a=1

(−1)a+1M
( r1 r2 ... rq+1
ca r2 ... rq+1

)
M
( r2 ... ra ra+1 ... rq rq+1
c1 ... ca−1 ca+1 ... cq rq+1

)
M
( r3 ... rq+1
r3 ... rq+1

)
. . .M

( rq rq+1
rq rq+1

)
=

= M
( r1 ... rq rq+1
c1 ... cq rq+1

)
M
( r2 ... rq+1
r2 ... rq+1

)
M
( r3 ... rq+1
r3 ... rq+1

)
. . .M

( rq rq+1
rq rq+1

)

(2.29)

where we have used (2.27). Peano’s axiom of induction now establishes the lemma.

We now have what we need to prove a formula for the norms of the dilatons.

Theorem 5 (Norms of the dilatons of an SL(n,Qp)-matrix). The norms of the dilatons in the

Iwasawa-decomposition of a matrix M ∈ SL(n,Qp) are given by

|yn−k|p =

(

max
σ∈Θn

k

{∣
∣
∣M
(

n−k+1 ... n
σ(1) ... σ(k)

)∣
∣
∣
p

})
−1

where k ∈ {1, . . . , n − 1} (2.30)

and Θn
k detones the set of all ordered subsets of {1, . . . , n} of order k.4

Alternatively in terms of the generalized Plücker coordinates ρk,

|yn−k|p =

(

max
x∈ρk

{

|x|p

})−1

where k ∈ {1, . . . , n− 1}. (2.31)

Proof. The proof works by induction. Suppose that the formula holds up to and including

SL(n − 1,Qp) and consider SL(n,Qp).

Restrict to the case |Mna|p ≥ |Mni|p for i ∈ {1, . . . , n}, i.e. the element with the largest

p-adic norm sits in column a. If there is no unique such element, any one of the largest elements

on the bottom row of M may play the role of Mna. Note that Mna 6= 0 since otherwise the

bottom row would be a zero-row, rendering M singular. Performing a strong UL-decomposition

on M where we move column a to the rightmost place gives

M = V∆ΛΠ−1
a = V∆











1

M̃ ( 2 3 ... n
1 3 ... n ) η1 1

...
...

. . .

M̃
(
n−1 n
1 n

)
ηn−2 M̃

(
n−1 n
2 n

)
ηn−2 . . . 1

M̃ ( n1 ) ηn−1 M̃ ( n2 ) ηn−1 . . . M̃ ( n
n−1 ) ηn−1 1











Π−1
a

(2.32)

where we have denoted M̃ = MΠa. Note that Π−1
a ∈ SL(n,Zp). Note furthermore that the

bottom row in the matrix Λ is simply a permutation of the bottom row of M divided by

η̃−1
n−1 = M̃ ( nn ) = Mna. Because Mna is assumed to have the largest p-adic norm, we get that

4In words: The norm of the dilaton yn−k is the inverse of the norm of the largest anti-leading principal minor

of order k. The formula produces the desired result y0 = yn = 1 for k = n and k = 0 respectively.
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every element in the bottom row of Λ is a p-adic integer. Thanks to the unit lower triangular

form, the bottom row easily factorizes out on the right and we are left with

M = V∆











1

M̃ ( 2 3 ... n
1 3 ... n ) η1 1

...
...

. . .

M̃
(
n−1 n
1 n

)
ηn−2 M̃

(
n−1 n
2 n

)
ηn−2 . . . 1

0 0 . . . 0 1











RΠ−1
a (2.33)

where R ∈ SL(n,Zp) contains the bottom row of Λ. The block diagonal form implies that there

will be no further contributions to the dilaton yn−1 and its norm is now fixed at

|yn−1|p = |ηn−1|p =

∣
∣
∣
∣

1

M̃ ( nn )

∣
∣
∣
∣
p

= |M ( na )|
−1
p =

(

max
σ∈Θn

1

{∣
∣M

( n
σ(1)

)∣
∣
p

})−1

, (2.34)

again using the fact that the element Mna has the largest p-adic norm. This expression is of

the form (2.30). Putting n = 2 here proves the base case SL(2,Qp). Next we treat the dilatons

y1, . . . , yn−2.

Note that we can write








1

M̃ ( 2 3 ... n
1 3 ... n ) η1 1

...
...

. . .

M̃
(
n−1 n
1 n

)
ηn−2 M̃

(
n−1 n
2 n

)
ηn−2 . . . 1









=

=









M̃ ( 1 2 ... n
1 2 ... n ) η0 M̃ ( 1 2 ... n

2 2 ... n ) η0 . . . M̃
(

1 2 ... n
n−1 2 ... n

)
η0

M̃ ( 2 3 ... n
1 3 ... n ) η1 M̃ ( 2 3 ... n

2 3 ... n ) η1 . . . M̃
(

2 3 ... n
n−1 3 ... n

)
η1

...
...

. . .
...

M̃
(
n−1 n
1 n

)
ηn−2 M̃

(
n−1 n
2 n

)
ηn−2 . . . M̃

(
n−1 n
n−1 n

)
ηn−2









.

(2.35)

We apply the induction hypothesis to this (n−1)×(n−1)-diagonal block of (2.33) and compute

its contribution to the norm of the dilaton yn−(k+1)
5 for k ∈ {1, . . . n − 1}. The formula (2.30)

implies that we need to compute minors like
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M̃
(

n−k n−k+1 ... n
σ̃(1) n−k+1 ... n

)

ηn−k−1 M̃
(

n−k n−k+1 ... n
σ̃(2) n−k+1 ... n

)

ηn−k−1 ... M̃
(

n−k n−k+1 ... n
σ̃(k) n−k+1 ... n

)

ηn−k−1

M̃
(

n−k−1 n−k−2 ... n
σ̃(1) n−k−2 ... n

)

ηn−k−2 M̃
(

n−k−1 n−k−2 ... n
σ̃(2) n−k−2 ... n

)

ηn−k−2 ... M̃
(

n−k−1 n−k−2 ... n
σ̃(k) n−k−2 ... n

)

ηn−k−2

...
...

. . .
...

M̃
(

n−1 n
σ̃(1) n

)

ηn−2 M̃
(

n−1 n
σ̃(2) n

)

ηn−2 ... M̃
(

n−1 n
σ̃(k) n

)

ηn−2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.36)

where σ̃ ∈ Θn−1
k . Using lemma 4, this evaluates to

M̃
(

n−k ... n−1 n
σ̃(1) ... σ̃(k) n

)

M̃
(
n−k+1 ... n
n−k+1 ... n

)
. . . M̃

(
n−1 n
n−1 n

)
ηn−k−1 . . . ηn−2 =

= M̃
(

n−k ... n−1 n
σ̃(1) ... σ̃(k) n

)

M̃
(
n−k ... n
n−k ... n

) . (2.37)

5We choose to consider yn−(k+1) = yn−1−k so that we get nice expressions in what follows. Later we send k

to k − 1 to compare with (2.30).
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The dilaton yn−(k+1) already has a contribution ηn−(k+1) =
(

M̃
(
n−k ... n
n−k ... n

))−1
from the matrix

∆. Multiplying these contributions together and considering all subsets σ̃ ∈ Θn−1
k gives the final

answer for the norm of the dilaton yn−(k+1) in the case |Mna|p ≥ |Mni|p as

∣
∣yn−(k+1)

∣
∣
p
=

(

max
σ̃∈Θn−1

k

{∣
∣
∣M̃

(
n−k ... n−1 n
σ̃(1) ... σ̃(k) n

)∣
∣
∣
p

})−1

. (2.38)

Note that the exact form of the permutation matrix Πa becomes irrelevant, since the expression

above anyway considers all order k subsets of the columns 1 through n−1 in M̃ . Note furthermore

that any minus signs present in Πa as discussed in footnote 2 make no difference since the minors

sit inside a norm.

We can think of the order k-subsets σ̃ ∈ Θn−1
k as order k + 1 subsets σ ∈ Θn

k+1 restricted

such that σ(k + 1) = n. Writing the equation above in terms of M and replacing k by k − 1

gives

|yn−k|p =

(

max
σ∈Θ′n

k

{∣
∣
∣M
(

n−k+1 ... n
σ(1) ... σ(k)

)∣
∣
∣
p

})
−1

(2.39)

where the prime on Θ′n
k indicates that all subsets must contain a. To finalize the proof, we must

show that (2.30) reduces to (2.39) in the case |Mna|p ≥ |Mni|p. This is equivalent to showing

that for every anti-leading minor which doesn’t include column a, one can find an anti-leading

minor which does include column a and whose p-adic norm is at least as large as the original

minor. To see that this is true, pick an anti-leading minor of order k which doesn’t contain

column a and consider its norm6

∣
∣
∣M
(

n−k+1 ... n
σa(1) ... σa(k)

)∣
∣
∣
p
=

∣
∣
∣
∣
∣

k∑

i=1

(−1)iM
( n
σa(i)

)
M
(

n−k+1 ... n−k+i−1 n−k+i ... n−1
σa(1) ... σa(i−1) σa(i+1) ... σa(k)

)
∣
∣
∣
∣
∣
p

(2.40)

where σa ∈ Θn
k and a /∈ σa. Define (−1)kui as the minor under consideration but with σa(i)

replaced by a. This minor is then already present in (2.39). Laplace expansion gives

(−1)kui ≡ M
(

n−k+1 ... n−k+i−1 n−k+i n−k+i+1 ... n
σa(1) ... σa(i−1) a σa(i+1) ... σa(k)

)

=

=

i−1∑

j=1

(−1)k+jM
( n
σa(j)

)
M
(

n−k+1 ... n−k+j−1 n−k+j ... n−k+i−2 n−k+i−1 n−k+i ... n−1
σa(1) ... σa(j−1) σa(j+1) ... σa(i−1) a σa(i+1) ... σa(k)

)

+(−1)k+iM ( na )M
(

n−k+1 ... n−k+i−1 n−k+i ... n−1
σa(1) ... σa(i−1) σa(i+1) ... σa(k)

)

+

k∑

j=i+1

(−1)k+jM
( n
σa(j)

)
M
(

n−k+1 ... n−k+i−1 n−k+i n−k+i+1 ... n−k+j−1 n−k+j ... n−1
σa(1) ... σa(i−1) a σa(i+1) ... σa(j−1) σa(j+1) ... σa(k)

)

.

(2.41)

We now show that the norm of the minor under consideration (2.40) can be expressed in terms

of the norm of a sum of u’s as

∣
∣
∣M
(

n−k+1 ... n
σa(1) ... σa(k)

)∣
∣
∣
p
=

∣
∣
∣
∣
∣

1

M ( na )

k∑

i=1

M
( n
σa(i)

)
ui

∣
∣
∣
∣
∣
p

. (2.42)

6By operating inside of a norm, we don’t need to keep track of the overall sign.
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By making recourse with (2.40), it is easy to see that the terms in the right hand side of (2.40)

come from the second line in the right hand side of (2.41). To see that the remaining terms

cancel, consider the term inside the sum in the right hand side of (2.42) with i = I and j = J

where J < I (coming from the first line of the right hand side of (2.41))

M
( n
σa(I)

)
(−1)JM

( n
σa(J)

)
M
(

n−k+1 ... n−k+J−1 n−k+J ... n−k+I−2 n−k+I−1 n−k+I ... n−1
σa(1) ... σa(J−1) σa(J+1) ... σa(I−1) a σa(I+1) ... σa(k)

)

.

(2.43)

This cancels with the term i = J and j = I (coming from the third line of the right hand side

of (2.41)) as is seen by writing

M
( n
σa(J)

)
(−1)IM

( n
σa(I)

)

M
(

n−k+1 ... n−k+J−1 n−k+J n−k+J+1 ... n−k+I−1 n−k+I ... n−1
σa(1) ... σa(J−1) a σa(J+1) ... σa(I−1) σa(I+1) ... σa(k)

)

=

= M
( n
σa(J)

)
(−1)−J+1M

( n
σa(I)

)

M
(

n−k+1 ... n−k+J−1 n−k+J ... n−k+I−2 n−k+I−1 n−k+I ... n−1
σa(1) ... σa(J−1) σa(J+1) ... σa(I−1) a σa(I+1) ... σa(k)

)

.

(2.44)

This establishes (2.42). The ultrametric property of the p-adic norm now gives that the norm

of the minor under consideration (2.42) is dominated by the norm of the largest u
∣
∣
∣
∣
∣

k∑

i=1

M
( n
σa(i)

)

M ( na )
ui

∣
∣
∣
∣
∣
p

≤ max

{∣
∣
∣
∣

Mn,σa(1)

Mna
u1

∣
∣
∣
∣
p

, . . . ,

∣
∣
∣
∣

Mn,σa(k)

Mna
uk

∣
∣
∣
∣
p

}

≤ max
{

|u1|p , . . . , |uk|p

}

(2.45)

where we have used |Mna|p ≥ |Mni|p. Since the u’s are all present in (2.39), we can safely include

the minor under consideration as its would never be picked over the u’s. This argument holds

for all anti-leading minors of order k and we may threfore include them all in the right hand

side of (2.39), successfully reproducing (2.30). Peano’s axiom of induction now establishes the

theorem.

Remark. The proof shows that in the case |Mna|p ≥ |Mni|p, the expression (2.30) reduces to

(2.39).

Remark. The method of using strong UL-decomposition to reduce the problem of Iwasawa-

decomposition of an n×n-matrix to that of an (n−1)×(n−1)-matrix can be iterated and defines

an algorithm for a complete Iwasawa-decomposition M = NAK of any matrix M ∈ SL(n,Qp).

All other Iwasawa-decompositions can then be found by using theorem 4. Using this method

to derive a general formula for the matrix elements of N and A (and hence K) given M seems

feasible. Such a formula is expected to express also the axions in terms of a conditional clause

like max. It this endeavour, it would probably be convenient to use theorem 4 to impose some

standard normalization on the axions and dilatons, for instance one may normalize the dilatons

to be just pure powers of p.

3 Decomposing SL(n,R)

Throughout this section we take the liberty of using a wide array of indices, all of which range

from 1 to n. We employ the summation convention for repeated indices provided that one stands
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upstairs and the other downstairs.

We begin with a more precise statement of Iwasawa-decomposition for matrices in SL(n,R).

Theorem 6 (Iwasawa-decomposition for SL(n,R)). A matrix M ∈ SL(n,R) may be written

uniquely as

M = NAK (3.1)

where N ∈ SL(n,R) is unit upper triangular, A ∈ SL(n,R) is diagonal with positive entries and

K ∈ SO(n). Furthermore, denoting the row-vectors in M by Vi, i ∈ {1, . . . , n}, and parameter-

izing N and A as

Nij =







1, i = j

xij, i < j

0, i > j

and Aij =
yi
yi−1

δij with y0 ≡ yn ≡ 1, (3.2)

we have that the axions and dilatons are given by

xµν = y2ν−1ǫ (Vµ, Vν+1, . . . , Vn;Vν , Vν+1, . . . , Vn) , µ < ν, and (3.3)

y−2
µ = ǫ (Vµ+1, . . . , Vn;Vµ+1, . . . , Vn) (3.4)

where ǫ denotes the totally antisymmetric product

ǫ (A1, . . . , Am;B1, . . . , Bm) = δi1—im
a1—am

(A1)
a1 . . . (Vm)am (B1)i1 . . . (Bm)im (3.5)

where the A’s and B’s are n-vectors and

δi1—im
a1—am

= m!δi1[a1 . . . δim
am] =

1

(n−m)!
ǫa1—amαm+1—αnǫ

i1—imαm+1—αn (3.6)

denotes the generalized Kronecker delta.

The procedure of writing a real matrix M in Iwasawa-form is tantamount to Gram-Schmidt

orthogonalization of the n row-vectors in M for which there are recursive formulae. The or-

thogonal matrix K consists of n orthonormal row-vectors and the unit upper triangular matrix

N together with the normalization in A then specifies the appropriate linear combinations of

these row-vectors to build the row-vectors in M . Oftentimes in the literature, people denote the

product of A and N as R and speak about the QR-decomposition7.

A very quick way to arrive at the non-recursive formulae (3.3) and (3.4) given above is by

means of the UL-decomposition as done in [7]. The argument goes like this: Write MMT =

NA2NT . The right hand side is then a UL-decomposition of MMT and the matrix elements

of A2 and N must then be given by (2.13) and (2.14) respectively. As a complement to this

method, we give a proof for the formulae above which doesn’t rely on the UL-decomposition.

7This is in the case M = KAN , where K = Q and AN = R.
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Proof. We have the equality

MMT = NA2NT. (3.7)

To illustrate the idea behind the proof, we write out the right hand side explicitly for the case

n = 4









y21 +
x2
12y

2
2

y21
+

x2
14

y23
+

x2
13y

2
3

y22

x12y
2
2

y21
+ x14x24

y23
+

x13x23y
2
3

y22

x14x34

y23
+

x13y
2
3

y22

x14

y23
x12y

2
2

y21
+ x14x24

y23
+

x13x23y
2
3

y22

y22
y21

+
x2
24

y23
+

x2
23y

2
3

y22

x24x34

y23
+

x23y
2
3

y22

x24

y23
x14x34

y23
+

x13y
2
3

y22

x24x34

y23
+

x23y
2
3

y22

x2
34

y23
+

y23
y22

x34

y23
x14

y23

x24

y23

x34

y23

1
y23










(3.8)

Starting from the (4, 4) entry and working “backwards”, i.e. proceeding as (4, 4) → (3, 4) →

(3, 3) → (2, 4) → . . . , we notice that each equation is solvable in terms of variables that have

previously been determined. The (µ, µ)-equation allows for determination of yµ−1 and the (µ, ν)

(µ < ν) allows for determination of xµν all in terms of known variables. We now carry this out

for the general case.

Matrix elements of the left- and right hand sides of eq. (3.7) evaluate to

(
MMT

)

µν
= Vµ · Vν = (Vµ)A (Vν)

I δAI = ǫ (Vµ;Vν) (3.9)

and (assuming µ < ν)

(
NA2NT

)

µν
=

n∑

r=1

n∑

s=1

Nµr

(
A2
)

rs

(
NT
)

sν
=

n∑

r=1

n∑

s=1

Nµr
y2r
y2r−1

δrsNνs =

=

n∑

r=1

Nµr
y2r
y2r−1

Nνr =

n∑

r=ν

Nµr
y2r
y2r−1

Nνr

= xµν
y2ν
y2ν−1

+
n∑

r=ν+1

xµr
y2r
y2r−1

xνr

(3.10)

respectively. Solving for xµν gives

xµν =
y2ν−1

y2ν

(

ǫ (Vµ;Vν)−

n∑

r=ν+1

y2r
y2r−1

xµrxνr

)

. (3.11)

We assume that all yρ for ρ ≥ µ, and xρσ for ρ > µ, and xµσ for σ > ν have been found, and

are of the form in eqs. (3.3) and (3.4). The sum telescopes through the identity

ǫ (Vµ, Vr+1, . . . , Vn;Vν , Vr+1, . . . , Vn)

ǫ (Vr+1, . . . , Vn;Vr+1, . . . , Vn)
−

y2r
y2r−1

xµrxνr =
ǫ (Vµ, Vr, . . . , Vn;Vν , Vr, . . . , Vn)

ǫ (Vr, . . . , Vn;Vr, . . . , Vn)
(3.12)

which is proven in appendix A. Applying (3.12) to (3.11) term by term starting with r = n

allows one to step down through the sum and obtain

xµν =
y2ν−1

y2ν

ǫ (Vµ, Vν+1, . . . , Vn;Vν , Vν+1, . . . , Vn)

ǫ (Vν+1, . . . , Vn;Vν+1, . . . , Vn)
= y2ν−1ǫ (Vµ, Vν+1, . . . , Vn;Vν , Vν+1, . . . , Vn)

(3.13)
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which is exactly (3.3).

The dilaton yµ−1 is found through the (µ, µ)-equation

(
NA2NT

)

µµ
=

n∑

r=1

n∑

s=1

Nµr

(
A2
)

rs

(
NT
)

sµ
=

n∑

r=1

n∑

s=1

Nµr
y2r
y2r−1

δrsNµs =

=
n∑

r=1

Nµr
y2r
y2r−1

Nµr =
n∑

r=µ

Nµr
y2r
y2r−1

Nµr

=
y2µ
y2µ−1

+
n∑

r=µ+1

x2µr
y2r
y2r−1

.

(3.14)

Solving for y−2
µ−1 gives

y−2
µ−1 =

1

y2µ



ǫ (Vµ;Vµ)−
n∑

r=µ+1

x2µr
y2r
y2r−1



 . (3.15)

We assume again that all “lower” variables are given of the form of eqs. (3.3) and (3.4). The

sum then telescopes through eq. (3.12) with ν = µ in precisely the same way as above. The

result is

y−2
µ−1 =

1

y2µ

ǫ (Vµ, Vµ+1, . . . , Vn;Vµ, Vµ+1, . . . , Vn)

ǫ (Vµ+1, . . . , Vn;Vµ+1, . . . , Vn)
=

= ǫ (Vµ, Vµ+1, . . . , Vn;Vµ, Vµ+1, . . . , Vn)

(3.16)

which is exactly eq. (3.4).

Remark. The matrix K is given by solving equation (3.1) for K.

4 Representation theoretic viewpoint

Here we outline a quicker derivation for the norms of the dilatons relying on representation

theory. I would like to thank Stephen D. Miller and Solomon Friedberg for helpful comments.

Throughout this section we assert that k ∈ {1, . . . , n−1} and use the notation Q∞ ≡ R. We

start with a definition.

Definition 4 (Generalized Plücker coordinates). For a matrix M ∈ SL(n, F ) over a field F ,

the kth generalized Plücker coordinate pk(g) ∈ F (nk) is the vector consisting of all anti-leading

minors of order k of M .

See [8, 9, 10, 11] for general definitions and some interesting properties.

Let ωk denote the fundamental weights of SL(n) and (ρk, Vk) denote the associated fun-

damental representation ρk with highest weight ωk and representation space Vk. These are

algebraic representation and hence make sense both for the real and p-adic cases. Furthermore,

let vk ∈ Vk denote the highest weight vector. One then has [9]

ρk
(
g−1
)
vk = pn−k(g). (4.1)
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Let || · ||p for p ≤ ∞ and arbitrary N ∈ N denote the vector norm on QN
p which is invariant

under the maximal compact subgroup of SL(N,Qp). More explicitly, in the p-adic case p < ∞

we have

||kv||p = ||v||p ≡
n

max
i=1

|vi|p, p < ∞ (4.2)

for a matrix k ∈ SL(n,Zp) and v ∈ Qn
p and in the real case p = ∞

||kv||∞ = ||v||∞ ≡

√
√
√
√

n∑

i=1

v2i (4.3)

for a matrix k ∈ SO(n) and v ∈ Rn. Furthermore for a group element g ∈ SL(n,Qp) with p ≤ ∞

written in Iwasawa-form g = nak, one may show that

||ρk(g
−1)vk||p = ||ρk(k

−1)ρk(a
−1) ρk(n

−1)vk
︸ ︷︷ ︸

vk

||p = ||ρk(a
−1)vk||p = |yk|

−1
p , p ≤ ∞. (4.4)

We therefore have

|yk|p = ||pn−k(g)||
−1
p , p ≤ ∞ (4.5)

which is precisely (2.30) for the p-adic case p < ∞. That this formula agrees with (3.4) in the

real case p = ∞ is an indirect proof of the following lemma.

Lemma 5. Given a matrix M ∈ GL(n, F ) over a field F , denote the row n-vectors in M by Vi

for i ∈ {1, . . . , n}. One then has the identity

ǫ (Vk+1, . . . , Vn;Vk+1, . . . , Vn) =
∑

σ∈Θn−k
n

(

M
(

k+1 ... n
σ(1) ... σ(n−k)

))2
(4.6)

Proof. Indirect by the results above, or by direct calculation using induction and similar tech-

niques as in appendix A.
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A Proving (3.12)

After putting in explicit expressions for the axions and dilatons, proving eq. (3.12) is equivalent

to proving

X ≡ ǫ (Vµ, Vr, . . . , Vn;Vν , Vr, . . . , Vn) ǫ (Vr+1, . . . , Vn;Vr+1, . . . , Vn) =

= ǫ (Vµ, Vr+1, . . . , Vn;Vν , Vr+1, . . . , Vn) ǫ (Vr, . . . , Vn;Vr, . . . , Vn)

−ǫ (Vµ, Vr+1, . . . , Vn;Vr, . . . , Vn) ǫ (Vν , Vr+1, . . . , Vn;Vr, . . . , Vn) ≡ Y − Z

(A.1)
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To this end, one may use Laplace expansion for the generalized Kronecker delta

δIA
i1
a1

—
—

im
am = δIAδ

i1
a1

—
—

im
am −

m∑

k=1

δikA δi1a1
—
—

ik−1
ak−1

I
ak

ik+1
ak+1

—
—

im
am = δIAδ

i1
a1

—
—

im
am −

m∑

k=1

δIakδ
i1
a1

—
—

ik−1
ak−1

ik
A

ik+1
ak+1

—
—

im
am .

(A.2)

In what follows, we will not write out the V ’s. The expressions are assumed to be fully con-

tracted with vectors corresponding to the indices. For example, an index ar+1 is assumed to

be contracted with (Vr+1)
ar+1 and in particular the index A is contracted with (Vµ)

A and I is

contracted with (Vν)I . We get

X = δIA
ir
ar

—
—

in
anδ

jr+1

br+1

—
—

jn
bn

=

=

(

δIAδ
ir
ar

—
—

in
an −

n∑

k=r

δikA δirar
—
—

ik−1
ak−1

I
ak

ik+1
ak+1

—
—

in
an

)

δ
jr+1

br+1

—
—

jn
bn

=

= δirar
—
—

in
an

(

δIA
jr+1

br+1

—
—

jn
bn

+
n∑

k=r+1

δjkA δ
jr+1

br+1

—
—

jk−1

bk−1

I
bk

jk+1

bk+1

—
—

jn
bn

)

−

n∑

k=r

δirar
—
—

ik−1
ak−1

I
ak

ik+1
ak+1

—
—

in
an

(

δikA
jr+1

br+1

—
—

jn
bn

+

n∑

l=r+1

δjlAδ
jr+1

br+1

—
—

jl−1

bl−1

ik
bl

jl+1

bl+1

—
—

jn
bn

)

=

= Y − Z + δirar
—
—

in
an

n∑

k=r+1

δjkA δ
jr+1

br+1

—
—

jk−1

bk−1

I
bk

jk+1

bk+1

—
—

jn
bn

− δIar
ir+1
ar+1

—
—

in
an

n∑

l=r+1

δjlAδ
jr+1

br+1

—
—

jl−1

bl−1

ir
bl

jl+1

bl+1

—
—

jn
bn

−

n∑

k=r+1

δirar
—
—

ik−1
ak−1

I
ak

ik+1
ak+1

—
—

in
anδ

jk
A δ

jr+1

br+1

—
—

jk−1

bk−1

ik
bk

jk+1

bk+1

—
—

jn
bn

=

= Y − Z +
n∑

k=r+1

δjkA

(

δirar
—
—

in
an

δIbk
jr+1

br+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jn
bn

−δ
jr+1

br+1

—
—

jk−1

bk−1

ir
bk

jk+1

bk+1

—
—

jn
bn

δIar
ir+1
ar+1

—
—

in
an

−δ
ir+1

br+1

—
—

in
bn

δIak
jr
ar

—
—

jk−1
ak−1

jk+1
ak+1

—
—

jn
an

)

≡

≡ Y − Z +

n∑

k=r+1

δjkA (R1 −R2 −R3) .

(A.3)
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The job is now to show that the remainder vanishes. We expand R1

R1 = δirar
—
—

in
anδ

I
bk

jr+1

br+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jn
bn

=

=

(

δirarδ
ir+1
ar+1

—
—

in
an

−
n∑

l=r+1

δilarδ
ir+1
ar+1

—
—

il−1
al−1

ir
al

il+1
al+1

—
—

in
an

)

δIbk
jr+1

br+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jn
bn

=

= δir+1
ar+1

—
—

in
an

(

δirar
I
bk

jr+1

br+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jn
bn

︸ ︷︷ ︸

R3

+ δirbkδ
I
ar

jr+1

br+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jn
bn

︸ ︷︷ ︸

I

+

+
k−1∑

m=r+1

δirbmδIar
jr+1

br+1

—
—

jm−1

bm−1

jm
ar

jm+1

bm+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jn
bn

︸ ︷︷ ︸

II

+
k−1∑

m=r+1

δirbmδIar
jr+1

br+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jm−1

bm−1

jm
ar

jj+1

bm+1

—
—

jn
bn

︸ ︷︷ ︸

III

)

−

n∑

l=r+1

δir+1
ar+1

—
—

il−1
al−1

ir
al

il+1
al+1

—
—

in
an

(

δilar
I
bk

jr+1

br+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jn
bn

︸ ︷︷ ︸

R2

+ δilbkδar
I
br+1

jr+1
—

—
bk−1

jk−1

bk+1

jk+1
—

—jn
bn

︸ ︷︷ ︸

I

+

+

k−1∑

m=r+1

δilbmδIbk
jr+1

br+1

—
—

jm−1

bm−1

jm
ar

jm+1

bm+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jn
bn

︸ ︷︷ ︸

II

+

n∑

m=k+1

δilbmδIbk
jr+1

br+1

—
—

jk−1

bk−1

jk+1

bk+1

—
—

jm−1

bm−1

jm
ar

jm+1

bm+1

—
—

jn
bn

︸ ︷︷ ︸

III

)

.

(A.4)

The terms marked I, II and III cancel out by writing

δirbkδ
ir+1
ar+1

—
—

in
an = δirbk

ir+1
ar+1

—
—

in
an +

n∑

l=r+1

δilbkδ
ir+1
ar+1

—
—

il−1
al−1

ir
al

il+1
al+1

—
—

in
an =

n∑

l=r+1

δilbkδ
ir+1
ar+1

—
—

il−1
al−1

ir
al

il+1
al+1

—
—

in
an (A.5)

and similarly for terms II and III with δirbmδ
ir+1
ar+1

—
—

in
an .
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