BEAN-SHAPED ADVANCED STELLARATORS WITH MODULAR COIL SYSTEMS

F. Herrnegger and F. Rau

Max-Planck-Institut für Plasmaphysik

IPP-EURATOM Association

D-8046 Garching bei München

Abstract

Bean-shaped Advanced Stellarator configurations with a nearly plane magnetic axis, small shear, an aspect ratio of A=10-12, and m=5 field periods around the torus are investigated. These configurations are given by Dommaschk potentials. Associated modular coil systems with a coil aspect ratio of about 5.5 and 18 to 6 coils per field period are derived. For such vacuum field configurations with a magnetic well, values of $\langle j_{\parallel}/j_{\perp}\rangle=0.8$ to 2.2 are obtained at $\varepsilon=0.48$ to 0.31. By comparison, the corresponding values of W VII-AS are $\langle j_{\parallel}/j_{\perp}\rangle=2.2$ to 1.9 at $\varepsilon=0.39$.

1. Introduction

Advanced Stellarator configurations ¹⁾ with an average magnetic well are characterized by a reduced drift of particles away from a magnetic surface, reduced secondary currents, and thus by a reduced Shafranov shift of the magnetic surfaces compared with a classical stellarator. Configurations like the Advanced Stellarator Wendelstein W VII - AS ²⁾ are shown by numerical computation to allow an average value for the equilibrium β of up to approximately $\langle \beta \rangle \approx 5\%^3$, whereas calculations of the stability- β yield considerably lower values. On the other hand, spatial axis configurations like Helias ⁴⁾ afford prospects of stability- β values of up to 5%.

In the present paper, Bean-shaped Advanced Stellarators with a nearly plane magnetic axis and associated modular coil systems are introduced where the magnetic field is represented by Dommaschk ⁵⁾ potentials. Modular coil systems are derived from these potentials. Typical parameter values are m=5 field periods, aspect ratio of the last closed magnetic surface $A=R_T/a=mL_P/2\pi a\simeq 10$ to 12 (a is the average minor radius of the last closed magnetic surface and R_T the major torus radius), a magnetic well of the vacuum field $(V'-V'_0)/V'_0$ down to -2.5%, twist (rotational transform) at the magnetic axis around $v_0=0.4$, and small shear.

2. Configuration Studies

We consider three different examples of Bean-shaped Advanced Stellarator configurations (see Fig.1), which are characterized by a certain indentation of the vertically elongated magnetic surfaces at the beginning of a field period (FP). The dependence of the twist t(r) and the specific volume $V' = \oint d\ell/B$ (normalized to its value on the magnetic axis) on the average minor radius r of the magnetic surfaces is shown in Figs.2 and 3. Configurations with labels FZH are given in Dommaschk potentials, those with FFR are from a system of 9 twisted coils per FP. For comparison, the standard case of W VII-AS is entered, too. All configurations have a magnetic well (V'' < 0).

As a figure of merit in comparing the different configurations we use the average ratio $\langle j_{\parallel}/j_{\perp} \rangle$ and the quantity $J^{*} = \langle (B_{0}^{2}/B^{2})[1+(j_{\parallel}/j_{\perp})^{2}] \rangle$, where B_{0} is the reference magnetic field at R_{T} and $\langle \ldots \rangle$ denotes the average on a magnetic surface. J^{*} is a measure of the Pfirsch-Schlüter currents and also appears in the stability criterion of resistive interchange modes. The ratio $\langle j_{\parallel}/j_{\perp} \rangle$ is obtained from the poloidal variation of $\int dl/B$ taken along a field line over one field period. The quantities j_{\parallel} and j_{\perp} are the absolute values of the secondary and the diamagnetic current densities, respectively, which scales

as 2/t for a standard stellarator like W VII-A and are reduced by a factor of about 2 in the Advanced Stellarator device W VII-AS.

Fig.1 Cross-sections of the magnetic surfaces at 0, $L_P/4$, $L_P/2$ of a field period ($R_T = 200$ cm).

The configuration FZH310 (see Figs.1 - 3) is characterized by a twist number at the magnetic axis $t_0=0.38$, a small field modulation $\delta=(B_{max}-B_{min})/(B_{max}+B_{min})\sim 10\%$ and a deep magnetic well of $\Delta V'/V'_0=-2.5\%$; the reduction of the secondary currents is comparable to the W VII-AS configuration in the boundary region and is

moderately improved near the magnetic axis: $\langle j_{\parallel}/j_{\perp}\rangle_{ax}\simeq 1.70$. The configuration FZH298B has $\epsilon_0=0.425$, a field modulation at the axis $\delta\sim 25\%$, and a small parallel current density of $\langle j_{\parallel}/j_{\perp}\rangle_{ax}\simeq 0.82$. The configuration FZH253M is characterized by $\epsilon_0=0.43$, a moderate field ripple on axis $\delta\sim 12\%$ and $\langle j_{\parallel}/j_{\perp}\rangle_{ax}\simeq 1.37$.

3. Modular Coil Systems

Modular systems of non-planar coils are derived for such configurations with a coil aspect ratio of around $A_c = 5.5$ and a number of coils per FP of 18, 9, or 6. For a typical number of 9 or more coils per FP the original configurations are reproduced with sufficient accuracy, whereas with 6 coils per FP a slight magnetic hill of the vacuum field is developed.

In the following example, a coil system representing the configuration FZH253M is given. As a first step, a toroidal surface with elliptical cross-section and an aspect ratio $A_c=5.5$ is defined, where the elongation of the ellipses varies between 1.6 (at the beginning of a FP) to 1.2 (middle of a FP). The geometric centre of the cross-sections moves radially inward and outward by an amount of $\Delta R/R_T=0.07$. On this surface 18 surface current lines $^{5)}$ are computed. The discretization of this surface current distribution for a modular system of 18, 9, or 6 coils per FP is made straightforward by choosing the corresponding current lines as coil centres. At a major radius of $R_T=500$ cm we use radial and lateral coil dimensions of 36.4 cm and 20 cm for the system with 9 coils per FP. At a gross current density of $j_{eff}=30 \mathrm{MA/m}^2$ the total coil current of 2.2 MA introduces a magnetic induction of $B_{ax}=3.7$ T at the magnetic axis.

Fig. 4 Angular map of surface current lines (top graph). View of coils from top (middle graph) and from inside (bottom; φ , θ are toroidal and poloidal angles).

Fig.5 Cross-sections of the magnetic surfaces and shape of the adjacent coils at 0, L_P/4, L_P/2 of a field period.

The top plot of Fig.4 shows the shape of the 18 surface current lines of one field period in an angular plot (φ, θ) are the toroidal and poloidal angles); the second and third plots show the top and inside views of the modular system of the non-planar coils. There are 5 different coil shapes in the set of 9 coils per FP. The triangular cross-section of the magnetic surfaces is at $\varphi = 36^{\circ}$. The toroidal excursion of the coils is kept moderate by choosing an adequate aspect ratio of the surface where the surface current distribution is calculated. Configurations with other twist numbers $t_0 = 0.37 \dots 0.46$ at the magnetic axis are obtained for different values of the coil aspect ratio $A_c = 5.6....5.3$ which gives an extended parameter range compared to the original configuration FZH253M. Figure 5 shows the cross-sections of the magnetic surfaces and the shapes of the adjacent coils at toroidal positions 0, $L_P/4$, $L_P/2$ for $t_0 = 0.37$ (configuration FFR497). In comparison with W VII-AS, the coil aspect ratio is increased.

4. Summary and Conclusions

As shown in Fig.6, the Bean-shaped Advanced Stellarators (aspect ratio A=10-12) provide improved values of $\langle j_\parallel/j_\perp \rangle_{versus~\epsilon}$ compared to W VII-AS. For comparison, the corresponding curve for W VII-A and the relationship 2/t are also given. Configurations with best values $\langle j_\parallel/j_\perp \rangle_{ax} = 0.82$ and $J^*_{ax} = 1.72$ are found for $A \simeq 12.4$ with a marginal magnetic well.

The BETA/BBG ⁶⁾ code is used to compute the finite-β magnetohydrostatic equilibria. An example is shown in Fig.7 for FZH747, a data set similar to FZH298B. Preliminary finite- β computations have shown the expected reduction of the Shafranov shift accompanied by a small change of the twist profile.

The influence of the bean shape of the magnetic surfaces on the stability remains to be

4 J. Nührenberg, R. Zille, Phys.Lett. 114A (1986) 129.

5 W. Dommaschk, Z.Naturforsch. 37a (1982) 867.

6 F. Bauer, O. Betancourt, P. Garabedian, Magnetohydrodynamic Equilibrium and Stability (Springer Verlag, New York 1984).