
Braz J Phys (2016) 46:565–595
DOI 10.1007/s13538-016-0438-z

CONDENSED MATTER

Tetrahedral Order in Liquid Crystals

Harald Pleiner1 ·Helmut R. Brand2

Received: 8 June 2016 / Published online: 15 August 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We review the impact of tetrahedral order on
the macroscopic dynamics of bent-core liquid crystals. We
discuss tetrahedral order comparing with other types of ori-
entational order, like nematic, polar nematic, polar smectic,
and active polar order. In particular, we present hydrody-
namic equations for phases, where only tetrahedral order
exists or tetrahedral order is combined with nematic order.
Among the latter, we discriminate between three cases,
where the nematic director (a) orients along a fourfold, (b)
along a threefold symmetry axis of the tetrahedral structure,
or (c) is homogeneously uncorrelated with the tetrahe-
dron. For the optically isotropic Td phase, which only has
tetrahedral order, we focus on the coupling of flow with,
e.g., temperature gradients and on the specific orientation
behavior in external electric fields. For the transition to the
nematic phase, electric fields lead to a temperature shift
that is linear in the field strength. Electric fields induce
nematic order, again linear in the field strength. If strong
enough, electric fields can change the tetrahedral structure
and symmetry leading to a polar phase. We briefly deal
with the T phase that arises when tetrahedral order occurs
in a system of chiral molecules. To case (a), defined above,
belong (i) the non-polar, achiral, optically uniaxial D2d
phase with ambidextrous helicity (due to a linear gradient
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free energy contribution) and with orientational frustration
in external fields, (ii) the non-polar tetragonal S4 phase,
(iii) the non-polar, orthorhombic D2 phase that is struc-
turally chiral featuring ambidextrous chirality, (iv) the polar
orthorhombic C2v phase, and (v) the polar, structurally
chiral, monoclinic C2 phase. Case (b) results in a trigo-
nal C3v phase that behaves like a biaxial polar nematic
phase. An example for case (c) is a splay bend phase,
where the ground state is inhomogeneous due to a linear
gradient free energy contribution. Finally, we discuss some
experiments that show typical effects related to the exis-
tence of tetrahedral order. A summary and perspective is
given.

Keywords Bent-core liquid crystals · Hydrodynamics ·
Phase behavior · Symmetries · Macroscopic properties ·
Electric octupolar order

1 Introduction

The quantitative macroscopic description of liquid crystals
(LC) in terms of partial differential dynamic equations, free
energy functionals, Ginzburg-Landau energies and the like,
has been developed over the last 50 years [1–4]. For a long
time, it has been sufficient to consider nematic-like phases
with preferred (non-polar) directions or smectic (and colum-
nar) phases with one-dimensional layer (or two-dimensional
lattice) structures. With the advent of bent-core (or banana)
LC [5, 6], this has changed considerably. It turned out that,
first, polar (vector) order plays an important role, in partic-
ular in smectic-like structures, and second, tetrahedral order
is an additional type of order, necessary to describe the
phases found in these new materials. We will only briefly
discuss the role of polar order, but concentrate on the various
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aspects of tetrahedral order. To do that, we first recall the tra-
ditional types of orientational order, give some motivations
why these are insufficient in the case of bent-core materials,
and then discuss tetrahedral order and and its interplay with
other types of orientational order. In the subsequent Sections
2–4, we give detailed accounts of the hydrodynamics of
the various phases where tetrahedral order is involved. The
experimental situation is discussed in Section 5, followed
by a Summary and Perspective, Section 6.

Liquid crystals generally are anisotropic fluids. This is
due to the existence of one (or more) preferred directions in
the fluid, either due to rotational order (e.g., nematic LCs),
or translational order (e.g., smectic and columnar LCs), or
both (e.g., smectic C LCs). As a result, at least some of their
(macroscopic) material properties, like, e.g., heat conduc-
tion, viscosity, or sound velocity, depend on the orientation.
Thereby, the rotational and/or translational symmetry of
isotropic liquids is spontaneously broken by the occurrence
of ordered structures at an equilibrium phase transition. The
latter can be obtained by changing some control parameters,
like temperature, pressure, or concentration (in a mixture)
leading to the distinction of thermotropic, barotropic, and
lyotropic LCs, respectively.

1.1 Nematic Order

Well-known are (uniaxial thermotropic) nematic LC, con-
sisting of rod-like or plate-like molecules that are disordered
in the isotropic state. When cooling down into the nematic
phase, they spontaneously align their preferred molecular
axes in the mean forming a macroscopic preferred direction,
the director n, with n2 = 1 rendering the phase anisotropic.
In nematic LC, one cannot discriminate between the direc-
tor and its opposite direction (no “head” or “tail”), even
if the molecular axes do have this distinction. Thus, n is
not a true vector. The common procedure to circumvent
this shortcoming is to use use n as a true vector with the
additional requirement that all macroscopic equations are
invariant under the exchange of n with −n.

The (uniaxial) nematic order is described by the
quadrupolar, traceless symmetric order parameter tensor,
correctly reflecting the n to −n invariance,

Qij = 1

2
S(ninj − 1

3
δij ) (1)

Due to its quadrupolar structure, no vector can be extracted
from it. Here, S, the strength of the order, is the second
moment of the microscopic orientations of all molecules
with respect to the preferred direction n. There is S = 0
in the isotropic phase, and the extremum values S = 1
and S = −1/2 for perfect order in the rod-like and plate-
like case, respectively. A realistic value for many rod-like
nematic LC is S ≈ 0.8 within the nematic phase, which

decreases approaching the nematic to isotropic phase tran-
sition, with a jump of �S ≈ 0.4 at the transition. It can be
measured, e.g., through the dielectric anisotropy [2].

The order is spontaneous and the orientation of n is arbi-
trary, as long as there are no orienting external fields or
boundaries. Therefore, the two rotations of the director, δn

(with n · δn = 0), are the slow additional hydrodynamic
variables (“symmetry variables”) due to the nematic order
[1]. Deviations of the order parameter S from its equilibrium
value relax in a finite time (except near phase transitions)
and are often neglected.

In case the molecules order themselves with respect to
two different molecular directions, a biaxial order results
with the order parameter tensor

Qij = 1

2
S(ninj − 1

3
δij ) + η(mimj − li lj ) (2)

where η is a measure for biaxiality. The directions m and
l are directors with a m to −m and l to −l invariance.
Depending on the symmetries of the phase considered, there
can be additional relations between the directors, e.g., for
orthorhombic phases the three directors have to be mutually
orthogonal. The symmetry variables are the three rotations
of the rigid tripod {n, m, l}, e.g., described by m·δn+n·δm,
m · δl + l · δm, and l · δn+n · δl. For finite rotations, that is
in a nonlinear description, these variables do not commute
[7, 8].

1.2 Polar Order

A different type of orientational order is polar order. In polar
nematic LC, the preferred direction is a true vector, with
“head” and “tail” distinguishable. The order parameter is the
polarization vector [9]

Pi = Ppi (3)

with P , the value of the spontaneous polarization that char-
acterizes the strength of the polar order, and p the unit
vector that denotes the (arbitrary) orientation of the polar
direction. For rod-like systems, thermotropic polar nematic
LC are rare in nature. One reason might be that a finite sam-
ple of homogeneous (p = const.) polar nematic LC exhibit
opposite surface charges in the planes perpendicular to p,
which give rise to destabilizing electrostatic forces. Second,
the homogeneous state is not the energetic ground state,
since the existence of P allows for spontaneous structures
with a constant splay texture [10]. However, the latter cannot
be space filling and is necessarily connected to defects.1

The hydrodynamic variables are the two rotations of the
polarization direction, δp (with p · δp = 0). The abso-
lute value of the polarization P is linearly susceptible to an

1In chiral nematics, the existence of a pseudoscalar allows for the
existence of spontaneous twist, which can fill space without defects.
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external electric field and is therefore often kept as (slowly
relaxing) variable in a macroscopic description including,
e.g., pyroelectricity.

For bent-core molecules, the situation is rather different.
Typically, they have a non-polar (long) axis, nmol and per-
pendicularly a (short) polar axis pmol , cf. Fig. 1. They can
align in layered structures to form various smectic phases
with polar properties (Fig. 2). There are two untilted phases,
CP with the nematic axis n along the layer normal and the
polar axis p within the layer [5], and CP′ , vice versa. Both
are of C2v symmetry. One can tilt the CP structure in two
ways. Rotation about the polar axis results in the CB2 phase
of C2 symmetry and rotating about the p × n direction gives
the CB1 phase of C1h symmetry. If both ways of tilting are
combined, the CG phase arises, where no symmetry ele-
ment is left (C1) [11]. The CB2 and CG phases are chiral
due to their structure, even when the molecules are achiral.
This allows for the occurrence of energetically equivalent
left- and right-handed helices [12, 13] (called ambidextrous
chirality). If layers of different polarization direction and/or
different tilt direction are stacked, various overall structures
with different properties can be obtained, e.g., ferro-, ferri-,
or antiferroelectric, and helical or non-helical [14, 15].
There is also the possibility of polar columnar phases [16].
If bent-core molecules align both their axes in a biaxial
nematic way, the result is a polar biaxial nematic phase (NI)
of C2V symmetry [15, 17].

A different type of polar order can occur in active sys-
tems,2 like schools of fish, bird flocks, insect swarms,
growing bacteria, and biological motors. If the active part
of those systems moves relative to a passive background,
the relative velocity denotes a preferred polar direction [19].
This type of order is dynamic, since it is provided by the
motion of the active part and vanishes, when the motion
stops. It does not occur spontaneously by an equilibrium
phase transition from a disordered to an ordered state, but is
due to the (internal) driving typically via chemical reactions
(food consumption, metabolism). The active state is a non-
equilibrium one, constantly dissipating the supplied energy.
If the driving stops, the system falls back into a passive, dis-
ordered state [20]. The order parameter in this case is the
relative velocity

Fi = Ffi (4)

where the amount of the velocity, F , is a measure of the
strength of the order. Its non-zero value even in a stationary
state, is due to the driving and indicates the non-equilibrium
nature of the system. The unit velocity, f , is a polar vec-
tor and characterizes the direction of the polar order. This
direction is not prescribed by the driving and is therefore
arbitrary. Its two rotations are the symmetry variables. In

2There is also the possibility of an axial, non-polar active order [18].

Fig. 1 Model bent-core molecule with nematic (n) and polar (p)
directions

that respect, f is similar to the polar nematic case, p. How-
ever, a velocity changes sign under time reversal, while
a polarization does not. Therefore, the hydrodynamics of
active polar systems is quite different from that of (pas-
sive) polar nematic LC. In particular, the former systems
exhibit new non-trivial couplings among various hydrody-
namic variables, linear advection properties, active stresses,
second sound, and asymmetries between forward and back-
ward traveling sound excitations, which is a clear indication
of non-equilibrium [19, 21].

1.3 Tetrahedral Order

During the development of more sophisticated bent-core
materials, it became apparent that an important ingredient in
the macroscopic description was still missing. Compounds
were found that showed a phase transition between two

Fig. 2 Orientations in polar smectic LC: (upper left) untilted CP

phase, (upper right) p-tilted CB1 phase, (lower left) n-tilted CB2 phase
and (lower right) twice tilted CG phase; stars and rings mean a vector
points out of, or into, the drawing plane, respectively



568 Braz J Phys (2016) 46:565–595

different (optically) isotropic phases. Being one of them
the true isotropic phase without any order, the other must
have a type of order that is not detectable in a micro-
scope, meaning the dielectric tensor has to be isotropic. That
immediately rules out polar or nematic order. Obviously,
tetrahedral order [22–24] does qualify, since it is described
by a third rank tensor Tijk , that cannot influence lower rank
material tensors, like the rank-2 dielectric tensor. In analogy
to the nematic order that has the quadrupolar structure of a
second moment of an orientational distribution, tetrahedral
order can be called octupolar, since it is related to the third
moment.

The tetrahedral (octupolar) order parameter

Tijk = N

4∑

β=1

n
β
i n

β
j n

β
k (5)

is a fully symmetric rank-3 tensor expressed by an ampli-
tude N and by the four tetrahedral unit vectors, nβ , with
β ∈ {1, 2, 3, 4} defining a tetrahedron, cf. Fig. 3. For actual
calculations, one can use, e.g., the representation of Tijk

[22, 25]

Tijk = N√
3

⎛

⎝
1 1 −1 −1
1 −1 1 −1

−1 1 1 −1

⎞

⎠ (6)

that is used in the left-hand sides of Figs. 3 and 4. The
tetrahedral structure has four threefold symmetry axes, the
tetrahedral vectors n

β
i , and three twofold (proper) and four-

fold improper (4̄), symmetry axis, the Cartesian directions
x,y,z in (6). The latter means that a 90◦ rotation about such
an axis has to be followed by a spatial inversion, in order to
arrive at the initial structure, cf. Fig. 4. Inversion is an oper-
ation, where a structure is either reflected through a point
in space, or mirrored by three mutually orthogonal planes.
If the resulting structure is different from the original one,
inversion symmetry is broken. The existence of improper
rotation axes is a sign of broken inversion symmetry.

Fig. 3 The four tetrahedral vectors pointing to the edge of a tetrahe-
dron and (right) the mirror image—from [26]

Another useful representation of the tetrahedral structure
is

Tijk = N

3

⎛

⎝
0 −√

2 −√
2 2

√
2

0 −√
6

√
6 0

3 −1 −1 −1

⎞

⎠ (7)

where one tetrahedral vector is along the z-axis, and one of
the remaining three has a lateral projection along the x-axis,
only. Note that both structures, (6) and (7), have an inverted
counter part (all signs within the braces changed, shown
on the right-hand sides of Figs. 3 and 4); those are differ-
ent from the original ones, but can be used equivalently to
describe the structures.

A phase that has only tetrahedral order is of Td symmetry,
a subgroup of cubic symmetry. It breaks inversion symme-
try, since Tijk changes sign under inversion due to the odd
number of (tetrahedral) vectors involved. It is non-polar, i.e.,
one cannot extract a vector from Tijk , because of Tikk ≡ 0.
It does not imply any nematic order, since TiklTjkl ∼ δij is
isotropic. Because of the two mirror planes, defined by two
non-adjacent tetrahedral vectors (e.g., 1/4 or 2/3 in Fig. 4),
chirality is also excluded. Only if the molecules themselves
are chiral, a phase of (chiral) T symmetry arises, which will
be dealt with below, separately.

A trivial example for broken inversion symmetry is polar
order, since p becomes −p after inversion, which is differ-
ent from the original structure. On the other hand, nematic
order Qij is invariant under inversion. Inversion symmetry
is also broken in chiral systems, where a pseudoscalar exists,
typically called q0, that changes sign under inversion and
reflects the two possibilities of left- and right-handed struc-
tures. However, the broken inversion symmetry in tetrahe-
dral order is quite different, since it does not show polarity,
nor chirality.

Among the peculiar features, which we will discuss in
detail in Section 2, is the possibility that an applied external
electric field leads to (i) a temperature shift of the (opti-
cally isotropic) tetrahedral to nematic phase transition and

Fig. 4 A projection of the tetrahedral structure and its mirror image
of Fig. 3 onto the x/y plane; stars and rings mean a vector points out
of, or into, the drawing plane, respectively. The two structures differ
by a 90◦ rotation about the z-axis—note that the actual numbering of
the tetrahedral vectors is irrelevant, since they are all equivalent
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(ii) induces nematic order in the Td phase. Both, the transi-
tion shift and the induced order are proportional to the field
strength [27], rather than to the square of the field strength,
as it is common when only ordinary isotropic phases are
involved. The experimental detection of such linear-field
strength transition shifts [28] accompanied by flow phenom-
ena in some bent-core materials is another indication that
tetrahedral order plays an important role for these systems.
Another consequence of the broken inversion symmetry in
tetrahedral phases is the reversible coupling of flow to (vec-
torial) generalized forces, like electric fields or gradients
of temperature or concentration. This piezo-like dynamic
coupling constitutes ambi-polarity: although polar fluxes
are induced, the inverted Tijk structure gives fluxes in the
opposite direction and the overall phase is non-polar.

An external electric field (but not a magnetic one) not
only orients the tetrahedral structure such that one of the
tetrahedral vectors, n1

i , is parallel or antiparallel to the field
[29], it also imposes a torque on the other three [30]. If
the tetrahedral structure is soft enough and the field E high
enough, a deformed structure is obtained, where the angle
between n1

i and the others is reduced, asymptotically (E →
∞) to 90◦ giving a pyramidal structure, cf. Section 2.3.
In addition, there is an overall rotation about n1

i (or Ei),
whose rotation sense is reversed for the inverted tetrahedral
structure or if the electric field is reversed.

If the molecules are chiral, the chiral tetrahedral phase T
can be obtained [22, 31]. Its T symmetry3 lacks any mir-
ror plane and the tetrahedral 4̄ axes of the Td phase are
reduced to (proper) twofold axes. There is a pseudoscalar q0

of molecular origin. Similar to the case of cholesteric LC,
a helical structure of a given handedness reduces the free
energy, but only if the helical axis is one of the tetrahedral
vectors (the threefold symmetry axes). There are appropri-
ate static as well as dissipative Lehmann-type couplings [32]
among rotations of the tetrahedral structure and, e.g., the
thermal degree of freedom. In contrast to the Td phase, there
is flow alignment in the chiral T phase, in particular, for sim-
ple shear flow (with the vorticity direction along one of the
tetrahedral vectors) the tetrahedral structure is rotated about
this direction by an angle that depends on q0, but not on the
shear rate, [31] and Section 2.4.

1.4 Combined Tetrahedral and Nematic Order

In a system where both nematic (Qij ) and tetrahedral order
(Tijk) exist simultaneously, the overall symmetry of the
possible phases depends on the relative orientation of the
two structures. This problem is investigated using a Landau

3We keep the standard notation for this type of symmetry, confident
that confusion with the temperature T does not occur.

description setting up a free energy in terms of the two-order
parameter tensors

EL = E
Q
L + ET

L + E
(mix)
L (8)

where E
Q
L and ET

L are the well-known Landau energy
expressions for a (pure) nematic [2] and a (pure) tetrahedral
phase [25, 29], respectively. They contain terms quadratic,
cubic, and quartic in the order parameter in the first case,
but only quadratic and quartic ones in the second case, due
to the broken inversion symmetry of Tijk . Since the orienta-
tional symmetry is broken spontaneously in a nematic phase
as well as in a tetrahedral phase, E

Q
L and ET

L cannot depend
on the relative orientation of the two structures. Thus, the
minimum of the mixed Landau energy

E
(mix)
L = d1QilQjmTilkTjmk

+d2

2
(QimQjlTilkTjmk + QijQlmTilkTjmk) (9)

gives the ground state of the combined system. It is of fourth
order in the order parameters and might therefore be small,
in particular close to the phase transition. We will therefore
consider two cases, first the strong coupling limit, where
E

(mix)
L is large and leads to a rigid relative orientation of

the two structures (“correlated order”) in Section 3, and the
weak coupling limit, where E

(mix)
L is neglected (“uncorre-

lated order”) in Section 4, where other energies become
important.

For the case of correlated order, there are two well-
defined distinct geometries (restricting ourselves for the
moment to uniaxial nematic order): Either the nematic
director is along one of the twofold (or 4̄) symmetry axes
of the tetrahedral structure, or it is along one of the three-
fold axes, the tetrahedral vectors. To show that these two
possibilities indeed lead to energetic minima, one can take,
without loss of generality, the director along the z-axis, with
the tetrahedral structure given in (6) and (7), for the first and
second case, respectively. Indeed, the first case is the ground
state, if d1 + d2 > 0, while d1 + d2 < 0 gives the second
one.

In the first case (the director along a 4̄ axis), a tetragonal
biaxial structure is obtained that lacks inversion symmetry.
It is of D2d symmetry and its hydrodynamics is discussed
in detail in Section 3.1. The hallmark of this phase is the
existence of ambidextrous helicity [31]. Although this phase
is not chiral, the formation of a non-homogeneous ground
state in the form of a helix is possible. The combined tetrag-
onal biaxial structure rotates about one of the 4̄ axes that are
perpendicular to the director, when going along this helical
axis. The physical origin is the broken inversion symmetry
that allows for a linear gradient energy, εl = ξTijkni∇j nk ,
involving linearly ∇xny + ∇yny (with the helical axis along
the z-direction). One can discriminate left- and right-handed
helices because the inverted tetragonal biaxial structure is
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different from the original one, in particular, what can be
called right-handed for the original structure is left-handed
for the inverted one and vice versa. Obviously, the energetic
gain due to the helix does not depend on the handedness
and is therefore coined “ambidextrous.” In that respect, it
is similar to the ambidextrous chirality in the smectic CB2

and CG phases, which are however (structurally) chiral, in
contrast to the D2d phase, where we call this phenomenon
ambidextrous helicity, cf. Section 3.1.2.

Another peculiar feature of this phase is the orientational
frustration in an external electric field. A nematic director is
oriented in an electric field due to the dielectric anisotropy
either along the field or perpendicular to it. The orientation
energy is proportional to the square of the field strength. In
the Td phase the electric orientation effect is cubic in the
field strength and orients one of the tetrahedral vectors par-
allel or antiparallel to the field direction [29]. In the D2d
phase, where the director and the tetrahedral vectors are at
an oblique angle φD with cos φD = ±1/

√
3, the nematic

and tetrahedral orientation cannot be achieved simultane-
ously. As a result, depending on the values of the coupling
constants, one can obtain, e.g., for small fields the nematic-
type of orientation that deviates, however, for higher fields
toward the tetrahedral orientation, cf. Section 3.1.3. Similar
frustration effects occur for the orientation by boundaries,
but not for magnetic fields, since the latter do not orient the
tetrahedral structure.

We also discuss relative rotations in the D2d phase, where
the director and the tetrahedral structure deviate from their
equilibrium orientation. If the relaxation of this variable
is slow enough, it can influence the dynamics of the D2d
phase, cf. Section 3.1.5.

If the uniaxial nematic direction n along one of the 4̄
axes of the tetrahedral structure is accompanied by (orthog-
onal) biaxial nematic directions m and l, phases of even
lower symmetry occur. Depending on whether the nematic
structure is tetragonal or orthorhombic, and on how m and
l are oriented with respect to the tetrahedral vectors, non-
polar phases of S4 (S4) and D2 (D2) symmetry occur, cf.
Section 3.2, as well as polar ones with C2v (C2v) and C2

(C2) symmetry, cf. Section 3.3. Phase transitions among
various tetrahedral phases are described in [25].

In the tetragonal S4 phase, the nematic directors m and l

are equivalent, but oriented obliquely within the plane per-
pendicular to n, Section 3.2.1. The 4̄ symmetry axis (along
n) is the only symmetry element left. Its hydrodynamics is
rather similar to that of the D2d phase.

The D2 phase is orthorhombic with all nematic direc-
tions along one of the 4̄ tetrahedral directions, Section 3.2.2.
Thereby, the three preferred directions are reduced to
twofold symmetry axes, which are the only symmetry ele-
ments left. For the hydrodynamic description, the most
important additional feature of the D2 phase (compared

to D2d) is its chirality, since it only contains proper rota-
tion axes and no mirror planes anymore. Chirality is due
to the structure (and not due to the chirality of molecules)
described by the pseudoscalar q0 = ninjmkmplq lrεikqTjpr

with the orthorhombic nematic directors n, m, l. This
gives rise to ambidextrous chirality, since the inverted struc-
ture (with the opposite chirality) is energetically equivalent
and comes in addition to the ambidextrous helicity that is
already present in the D2d phase. To make things even
more complicated, both effects favor helices about all three
twofold axes generating strong frustration due to the steric
incompatibility of helices about different axes (similar to the
case of biaxial cholesteric LC [33]).

If one orients, the orthorhombic directors m and l within
the tetrahedral planes n1/n4 and n2/n3 (instead of along
the 4̄ axes as in the D2 phase), one gets the C2v phase,
Section 3.3.2, which is polar, but achiral, since the planes
n1/n4 and n2/n3 are mirror planes. The polar axis is the
(former) 4̄ axis along n, since a flip of that axis can no longer
be compensated by a π/4 rotation, since m and l are not
equivalent. If m and l are oriented obliquely within the plane
perpendicular to n, the polar C2 phase occurs, Section 3.3.3.
It is chiral, since the mirror planes are removed. It could
also be obtained by replacing the tetragonal biaxial nematic
structure of a S4 phase by an orthorhombic one. The hydro-
dynamics of these polar phases will be discussed together
with that of the C3v phase, introduced next.

In the second case of correlated nematic and tetrahe-
dral structure (with the director along one of the tetrahedral
axes, instead of a 4̄ axis), the resulting trigonal biaxial struc-
ture is polar. The preferred polar direction, pi ∼ TijkQjk ,
is given by the tetrahedral vector along the director. The
hydrodynamics of this C3v phase is rather similar to that of
the (uniaxial) polar nematic phase [9], but has one additional
hydrodynamic degree of freedom, the rotation about the
polar axis, and a reduced symmetry, C3v (compared to C∞v

in polar nematics). This gives rise to a more complicated
structure of all rank-3 (and higher) material tensors. A brief
discussion of the hydrodynamics is given in Section 3.3.1.

In the case E
(mix)
L = 0, there is no energy that locks

a homogeneous nematic and a homogeneous tetrahedral
structure (“homogeneously uncorrelated”). Therefore, we
amend the Landau energy (8) by Ginzburg-type gradient
terms

EGL = γ (∇kQij )
2 + δ(∇kTij l)

2 + D Tijk∇kQij . (10)

The linear gradient term exists because of the broken inver-
sion symmetry of Tijk and is not related to chirality. It allows
for inhomogeneous phases having a lower energy than the
homogeneous ones. In Section 4, we discuss as an example,
splay-bend textures of the nematic director accompanied
by those of the tetrahedral structure [34]. In the nematic
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splay-bend texture, the orientation of the director periodi-
cally oscillates along an axis in the plane. Taking this axis
as one of the 4̄ axes (and a second one to define the splay-
bend plane), the tetrahedral splay-bend structure (with the
same periodicity) is rotated independently about the sec-
ond 4̄ axes by a constant angle φ. The total energy of the
combined system is negative due to linear gradient term,
despite the energy density not being constant in space. The
state with a constant energy density is energetically slightly
less favorable. This also holds for a generalization of the
nematic splay-bend texture with a constant tilt into the third
dimension.

In closing this section, we briefly address the work per-
formed in the area of microscopic and molecular modeling.
Macroscopic and molecular symmetries of unconventional
nematic phases have been studied in detail in ref. [35]. The
analysis presented in [35] also includes a polar order param-
eter as well as third rank tensors of tetrahedral/octupolar
type along with a discussion of possible isotropic–nematic
phase transitions. Microscopic models leading to phase
diagrams for liquid crystalline phases formed by bent-
core molecules using a generalized Lebwohl-Lasher lattice
model with quadrupolar and octupolar anisotropic interac-
tions were studied in [36–38]. The techniques used include
mean field theory and Monte Carlo simulations. Among
the liquid crystalline phases found are the tetrahedral phase
(Td in our notation), a tetrahedral nematic phase (D2d)
with D2d symmetry, as well as a chiral tetrahedral nematic
phase (D2) with D2 symmetry. In addition, the classical
phases expected for rod-like molecules, namely the uniax-
ial nematic phase and the orthorhombic biaxial one (with
D2h symmetry) were found. In ref. [37], an estimate for
the pitch in the chiral tetrahedral nematic phase has been
presented and the possibility to find ambidextrous chiral-
ity for the nonchiral nematic phase formed by bent-core
molecules was elucidated. In ref. [38], the spontaneous for-
mation of macroscopic domains of opposite optical activity
has been investigated in the context of bent-core systems
and ferrocenomesogens for two spatial dimensions.

2 Tetrahedral Hydrodynamics

2.1 Hydrodynamics of the Td Phase Without External
Fields

Hydrodynamics is a powerful systematic tool to describe
the dynamics of macroscopic systems. It is applicable to sit-
uations where most of the many degrees of freedom have
locally relaxed to their equilibrium values, and only a few
ones are slow enough to be dealt with explicitly by par-
tial differential equations. The latter class comprises the
conserved quantities that cannot relax locally, but can only

be transported, like mass, momentum, and energy. In an
Eulerian description, their local densities, ρ(r, t), gi(r, t),
and ε(r, t), respectively, are space-time fields obeying the
conservation laws

∂

∂t
ρ + ∇igi = 0 (11)

∂

∂t
gi + ∇j σij = 0 (12)

∂

∂t
ε + ∇ij

ε
i = 0 (13)

where the nabla operator denotes partial spatial derivation
∇ = ∂/∂r . The mass current gi in (11) is the momentum
density, while the stress tensor σij and the heat current jε

i

are still to be determined. Angular momentum conservation
does not give rise to an additional dynamic equation, but
to some restrictions for the stress tensor. For an extended
discussion cf. [1, 4].

For isotropic liquids, the conserved quantities are the
only hydrodynamic variables and (11)–(13) are the basis
for the universal set of Navier-Stokes equations. For fluids
with internal structures, like LC, the symmetry or Goldstone
variables have to be taken into account, additionally. In the
Td phase, the tetrahedral structure breaks three-dimensional
rotational symmetry spontaneously, i.e., the orientation of
the structure is arbitrary. Any rigid rotation of the struc-
ture leads to a different state, which however, has the same
internal energy as any of the others. Therefore, there is no
restoring force and an ω = 0 excitation (Goldstone mode)
results. For an inhomogeneous distortion with a charac-
teristic, macroscopic wavelength k, the dynamics ω(k) is
slow and vanishes in the hydrodynamic limit ω(k) → 0
for k → 0. The same behavior is found for the conserved
variables as is obvious from (11)–(13).

From the general changes of the order parameter from its
equilibrium value, δTijk = Tijk − T

eq
ijk , the projection

δ�i ≡ 1

4α
εipqTpkl δTqkl (14)

with the conventional normalization 27α = 32 N2,
describes the rotations of the tetrahedral structure accord-
ing to the broken rotational symmetry. Note that δ�i is
even under spatial inversion. Since δ�i is not conserved, its
dynamic equation has the form of a balance equation

∂

∂t
�i + Yi = 0 (15)

with a yet undetermined quasi-current Yi .
Since (finite) rotations in three dimension do not com-

mute, δ�i is not a vector, nor are its components rotation
angles (except in linear approximation). Indeed,

(δ1δ2 − δ2δ1)�i = 1

2α
εipq(δ1Tpjk)(δ2Tqjk)

= 2εipq(δ1�p)(δ2�q) (16)
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two subsequent changes cannot be interchanged. This is
similar to, e.g., rotations in biaxial nematics [7, 8] or of the
preferred direction in superfluid 3He-A [40]. Equation (14)
can be inverted to give δTqkl = 2 εipqTpkl δ�i . It is easy
to check that this special δTijk fulfills the requirements for
the absence of polar order, δTijj = 0, and of nematic order,
δTiklTjkl + TiklδTjkl = 0.

All the relations above are given in terms of Cartesian
coordinates, which, however, only serve as a proxy for rota-
tionally invariant descriptions using vectors and tensors and
their appropriate products. Therefore, we can use for actual
calculations any representation of Tijk that is suitable. Most
of the time, we use the orientations given in (6) and (7).

In addition to the hydrodynamic variables discussed
above, there are systems or situations, where a few meso-
scopic, fast-relaxing degrees of freedom become slow
enough to be relevant for a macroscopic description. Exam-
ples are elastic strains in viscoelastic fluids or the scalar
nematic order parameter S in nematic LC close to phase
transitions and in the vicinity of defect cores. In the Td

phase, the strength of tetrahedral order, N , is of that char-
acter. Most of the time, we will assume that N has already
relaxed to its equilibrium value N0, which one can then take
as unity. When deviations δN = N −N0 are relevant for the
macroscopic dynamics, the balance equation

∂

∂t
N + X = 0 (17)

with the quasi-current X will be used. In contrast to the sym-
metry variables, however, even homogeneous changes δN

cost energy and lead to a finite restoring force. As a con-
sequence, appropriate excitations are non-hydrodynamic
ω(k → 0) = ω0 with a finite gap ω0 �= 0. Some aspects
of the order dynamics will be discussed at the end of this
section.

In order to set up the complete dynamics of the Td

phase, we apply thermodynamics locally to the relevant
variables. The first law of thermodynamics (Gibbs relation),
describing energy conservation including heat,

dε = μdρ + vidgi + h�′
i d�i + ��

ij d∇j�i + T dσ (18)

relates changes of all variables to changes of the entropy
density dσ . The prefactors are the conjugate quantities,
chemical potential μ, velocity vi , molecular tetrahedral
fields h�′

i , ��
ij , and temperature T . Like in nematic LC, we

have added gradients of the symmetry variable, since with-
out external fields h�′

i has to vanish. The two contributions
can be combined to h�

i d�i with

h�
i = h�′

i − ∇j�
�
ij − 2εikl�

�
kj∇j�l (19)

The last (nonlinear) contributions is due to (16).

Setting up a phenomenological expression for the energy
density,

ε = ε0 + 1

2ρ
g2 + 1

2
K�

ijkl(∇j�i)(∇l�k) (20)

the conjugate quantities follow by partial derivation, μ =
∂ε/∂ρ, vi = ∂ε/∂gi , h�′

i = ∂ε/∂�i , ��
ij = ∂ε/∂∇j�i , and

T = ∂ε/∂σ . The first contribution to (20) is the free energy
density of an isotropic liquid expressed by well-known sus-
ceptibilities, like compressibility, specific heat, and thermal
expansion. The second one is the kinetic energy and the last
one is the gradient energy for inhomogeneous rotations. It
contains three (Frank-like) susceptibilities

K�
ijkl = K�

1 (δij δkl + δilδjk) + K�
2 δikδjl

+K�
3 TjlpTikp . (21)

completing the statics of the Td phase.
The Gibbs relation allows to interchange the entropy

density with the energy density as a dynamic variable

∂

∂t
σ + ∇ij

σ
i = R/T (22)

making (13) redundant. The source term, the entropy pro-
duction, is written in terms of the dissipation function R.
With the help of the dynamic (11)–(13), (15), and (22), the
Gibbs relation (18) can be written as

R = −σij∇j vi − jσ
i ∇iT + Yi h�

i + gi∇iμ ≥ 0 (23)

suppressing an irrelevant surface term (divj ).
According to the second law of thermodynamics, entropy

is conserved, i.e., R = 0, only for reversible processes,
while irreversible ones are dissipative with R > 0. It is pos-
sible to write any current or quasi-current as a sum of a
reversible (superscript R) and a dissipative (superscript D)
part, σij = σR

ij +σD
ij , jσ

i = j
σ,R
i +j

σ,D
i , and Yi = YR

i +YD
i ,

while gi , the momentum density is reversible and has no
irreversible part. The reversible (dissipative) parts have the
same (opposite) time reversal behavior as the time derivative
of the appropriate variable. All variables (and conjugates)
have a definite time reversal behavior, e.g., σ , ρ, T , μ, ∇j�i ,
��

ij , and ε are invariant, while gi and vi change sign imply-

ing that also σR
ij , j

σ,D
i , and YD

i are invariant and σD
ij , j

σ,R
i ,

and YR
i change sign.

The framework of linear irreversible thermodynamics is
used to derive the irreversible parts of the currents and
quasi-currents. It has a solid microscopic basis in linear
response theory guaranteeing compatibility with general
physical principles. Descriptions based on linear irreversible
thermodynamics have successfully applied even to sys-
tems driven far from equilibrium. It is based on a linear
relationship between the irreversible currents and the ther-
modynamic forces that drive the system out of equilibrium.
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In equilibrium, T (eq), μ(eq), and v
(eq)
i are constant (the lat-

ter is typically put to zero due to Galilean invariance), while
h

�(eq)
i is zero. Thus, ∇iT , ∇iμ, ∇j vi , and h�

i are candidates
for thermodynamic forces. However, ∇iμ must not enter the
dissipation function, since gi is reversible, and only sym-
metrized gradients Aij = (1/2)(∇j vi + ∇ivj ) are allowed,
since solid body rotations must not change the entropy of
the system.4

Taking into account spatial inversion behavior addition-
ally, we find the symmetry-allowed contributions

R = κ

2
(∇T )2 + 1

2γ �
(h�)2 + 1

2
νijklAijAkl (24)

with the (dissipative) transport parameters, heat conduction
T κ , and tetrahedral rotational viscosity γ � , and with the vis-
cosity tensor νijkl . The first two terms are isotropic, while
the rank-4 material tensor has a form different from the
isotropic case [41]

νijkl = η1(δjlδik + δilδjk − 2

3
δij δkl) + ζ δij δlk

+η2TijpTklp (25)

with an additional deformational viscosity, η2, due to the
tetrahedral order. It leads to additional stresses in symmet-
ric shear flows, but not in elongational ones. Positivity of R

requires some positivity conditions on the transport param-
eters, in particular γ � > 0, η1 > 0, ζ − (2/3)η1 > 0 and
η1 + η2 > 0.

The dissipative currents follow from (24) by partial
derivation

j
σ,D
i = −κ∇iT (26)

YD
i = 1

γ �
h�

i (27)

σD
ij = νijklAkl (28)

The reversible part of the dynamics has two origins.
Either there are phenomenological reversible contributions
to the currents, or the contributions are due to sym-
metry and/or other general requirements. The first kind
comes with phenomenological reversible material coeffi-
cients, similar to the case of dissipative ones. However, in
the reversible case, there is no potential from which such
contributions could be derived, since R = 0. Instead, one
looks for couplings between reversible currents and forces
that are allowed by time reversal symmetry and inversion
symmetry and choose the phenomenological parameters
such that R = 0. In isotropic liquids, no such phenomeno-
logical reversible couplings exist. On the other hand, in
nematic LC, the reversible couplings between director rota-
tions and simple shear flow (flow alignment and back flow)

4A solid body rotation is equivalent to a change of the point, from
which a system is viewed.

are a well-known example. Its phenomenological parameter,
generally called λ, determines the director alignment angle
under shear flow. In the Td phase, there is no flow align-
ment effect, since there is no preferred direction that could
be aligned, but there is a (reversible) coupling between flow
and the thermal degree of freedom

σ
ph
ij = −�2Tijk∇kT (29)

j
σ,ph
i = �2TijkAjk (30)

In particular, a temperature gradient generates (symmet-
ric) shear stresses, the geometry of which depends on the
orientation of the temperature gradient with respect to the
tetrahedral orientation. Assuming the temperature gradient
(taken as z-axis) is along one of the 4̄ axis, the stresses
induced by (30) are σxy = σyx according to the structure (6).
Due to the viscous stress–strain rate coupling, there is a sta-
tionary planar flow pattern perpendicular to the temperature
gradient shown in Fig. 5.

Vice versa, a shear flow, say, in the x/y plane that defines
the perpendicular directions (z or −z) produces via (29) a
heat flux in a definite polar direction (z for �2 < 0 or
−z for �2 > 0). Of course, this does nor imply that the
Td phase is polar. If the tetrahedral structure is inverted,
Tijk changes sign and the induced currents will point in the
opposite direction, what could be viewed as induced ambi-
polarity. If both variants are present in different parts of the
same sample, this ambi-polarity shows up directly.

The reversible transport parameter �2 is without a rigor-
ous upper bound in magnitude and can have either sign. It
is easy to check that these contributions cancel each other in
the entropy production, (23), since σ

ph
ij Aij = −j

σ,ph
i ∇iT .

The non-phenomenological contributions to the
reversible currents are mainly due to transport. In the Eule-
rian description of hydrodynamics, a variable can change
its value at a given point by advection, i.e., by transport-
ing (with velocity vi) material with a different value of

Fig. 5 Planar symmetric shear flow induced by a temperature gradient
perpendicular to the shear plane - from [24]
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that variable to this point, e.g., (∂/∂t)(adv)ρ = −∇i (ρvi).
For vectorial quantities, also convection (with vorticity
ω = (1/2)curl v) is possible. In particular, in a linearized
description, where δ�i is a vector of rotation angles, one
gets (∂/∂t)(trans)�i = −vj∇j�i + ωi .

All these transport contributions have to add up to zero
in the entropy production. This is obtained by counter terms
in the stress tensor, involving the isotropic pressure p and
a nonlinear stress σnl

ij , which exists in similar form also in
nematic LC, where it is called Ericksen stress. For an expo-
sition of the method and its application to tetrahedral phases
cf. [4, 26]. The final, nonlinear result for the total reversible
currents is

j
σ,R
i = σvi + j

σ,ph
i (31)

YR
i = vj∇j�i − 1

2
ωi + 1

2α
εipqεmjlTpjkTqlk ωm (32)

σR
ij = vigj + δijp + σnl

ij + σ
ph
ij (33)

with 4σnl
ij = 2��

kj∇i�k +2��
ki∇j�k −3εijk∇l�

�
kl . In (29)–

(33), as well as in the following, the superscript ph refers
to the reversible parts of the currents that carry phenomeno-
logical coefficients the value of which cannot be simply
determined by invariance arguments.

The last term in (32) demonstrates that in the nonlinear
domain, δ�i does not behave like an ordinary vector under
finite rotations. There is no phenomenological reversible
coupling to symmetrized shear flow, with the effect that the
tetrahedral structure cannot be oriented in simple shear flow.
In the dynamic momentum (12), the pressure term appears
as ∇ip, which is given by the Gibbs-Duhem equation

∇ip = σ∇iT + ρ∇iμ + gj∇ivj − h�
j ∇i�j (34)

where h�
i is defined in (19). Note that the stress tensor

is either symmetric or the divergence of an antisymmetric
tensor, which is the requirement of angular momentum con-
servation [1]. This form is obtained by applying a condition
on the conjugate quantities that follows from the rotational
invariance of the energy density ε.

Very often LC are mixtures of several different compo-
nents. For a binary mixture, whose components are individ-
ually conserved, there are two mass conservation laws for ρ1

and ρ2. They can be replaced by the total mass conservation
(11) and a dynamic equation for the concentration c = ρ1/ρ

∂

∂t
c + vi∇ic + 1

ρ
jc
i = 0 (35)

whose conjugate quantity, the osmotic pressure, � = ρμc,
is related to the difference of the chemical potentials μc =
μ1 − μ2. It follows from an appropriately extended ε0 in

(20). The concentration variable is rather similar to the
temperature variable, and jc

i has the same structure as jσ
i .

In particular, the dissipative part contains diffusion and
thermodiffusion,

j
c,D
i = −D∇iμc − DT ∇iT (36)

where the latter also occurs in (26) as −DT ∇iμc. There
is also the tetrahedral-specific reversible coupling to flow,
j

c,ph
i = �3TijkAjk , with the counter term −�3Tijk∇kμc in

the stress tensor, (29).

2.2 Orienting, Flow- and Order-Inducing External
Fields

In nematic LC, it is well known that an external static elec-
tric fields orients the director due to the dielectric anisotropy
effect. In equilibrium, the director is either along the field
or perpendicular to it. Therefore, rotations away from the
field direction in the former case, or out of the perpendicu-
lar plane in the latter case, are no longer Goldstone modes,
but lead to a relaxation toward the equilibrium orientation.
Since this is typically a weak coupling, it is customary to
keep director rotations as variables to describe the macro-
scopic dynamics, and taking the symmetry unchanged as
D∞h. In the same spirit, we will treat the tetrahedral phase
in external fields in this section.

The electrostatic degree of freedom is described by the
electric field Ei and the displacement field Di . In the Gibbs
relation (18), this adds the electric energy change dεE =
EidDi . To make contact with the familiar description in
nematic LC, we switch to the Legendre transformed energy
ε̃E ≡ εE − EiDi giving rise to dε̃E = −DidEi . The
variable Di is thereby given by the thermodynamic conju-
gate (and generalized force) Ei via Di = −(∂ε̃E/∂Ei). The
tetrahedral symmetry allows for a cubic electric field energy
[22]

ε̃E = −ε1TijkEiEjEk (37)

that orients the tetrahedral structure such that one of the
tetrahedral vectors, say n1

i , is parallel or antiparallel to
the field Ei depending on the sign of the susceptibility
ε1. Switching from the tetrahedral structure to its inverse
(Tijk → −Tijk or N → −N), the role of sign(ε1) is
reversed.

In principle, other vectorial external fields, like tempera-
ture or concentration gradients, can have a similar orienting
effect via an energy like εT ∼ Tijk(∇iT )(∇j T )(∇kT ).
Boundaries with a polar surface normal act in the same
way orienting one tetrahedral vector perpendicular to the
surface. A magnetic field Hi cannot orient the tetrahedral
structure due to the odd time reversal behavior of magnetic
fields, but there is an additional orienting effect, when both
electric and magnetic fields are present, since the energy
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ε̃EH = −(ε2/3)Tijk(EiHjHk + EjHiHk + EkHiHj ) is
possible [24]. The electric field energies lead to quadratic
contributions to the displacement field that come in addition
to the linear, isotropic one

Di = χEi + ε1TijkEjEk + ε2TijkHjHk. (38)

For the relaxation of the tetrahedral structure in an exter-
nal field, the orienting energy (37) provides the driving
force. Since it defines the equilibrium orientation, it is zero
for linear deviations, since EiEjEkδTijk = 0 (with δTijk =
2 εmpiT

eq
pjk δ�m), while for quadratic ones one gets

˜εE
2 = ε1EiEjEk δ(2)Tijk = 32

9
|ε1N |E3

0(δ�⊥)2 (39)

with δ(2)Tijk ≡ 2 εmpi δTpjk δ�m. It describes the energy
related to rotations of the tetrahedral structure perpendicular
to an external field of strength E0. As a result, there is a non-
vanishing restoring force, even in the homogeneous case,
h�

i = h�′
i = ∂ε̃E/∂δ�i and transverse rotations relax with

the inverse relaxation time

λrel = 16
|ε1N |
γ �

E3
0 (40)

according to the dissipative dynamics, (27). The relaxation
is cubic in the field strength, in contrast to the nematic case,
where it is quadratic.

There is also the analog of flexoelectricity

ε̃
f lex

2 = e1EjEk∇iTijk = 16

9
e1NE2

0 (curl�)z (41)

involving ∇x�y − ∇y�x when the field is in z-direction.
Here, the effect is quadratic in the field amplitude, while in
nematic LC it is linear.

The existence of Tijk also allows for piezoelectricity

ε̃
piezo

2 = d1TijkEiujk (42)

in solid systems, where a strain tensor uij describes elastic-
ity.

The dynamics is also affected by an external field, in
particular if there are electric charges, ρe, as is often the
case for LC. They are related to the displacement field by
∇iDi = ρe and the dynamic balance equation for Di is the
charge conservation law

∂

∂t
ρe + ∇ij

e
i = 0 (43)

The reversible part of the electric current [24]

j
e,R
i = vi∇iρe + �1TijkAjk (44)

contains a phenomenological coupling to flow, similar to
the thermal and solutal currents in (30) and after (35). It is

balanced to give zero entropy production by a contribution
to the stress tensor

σ
e,ph
ij = −�1TijkEk (45)

in analogy to (29). If the electric fields (along the z-axis)
orients the tetrahedral structure in the way described above,
the stresses induced by (45) are σxx = σyy = −(1/2)σzz

giving rise (via viscous coupling) to three-dimensional elon-
gational flow, called uniaxial (biaxial) for �1 > 0 (�1 < 0),
cf. Fig. 6. Note that a reversal of the field direction also
changes the velocity directions and interchanges uniaxial
with biaxial elongational flow.

The dissipative part of the electric current [24]

j
e,D
i = σEEi + DE∇iμc + κE∇iT (46)

describes the coupled diffusions among the electric, ther-
mal, and concentration degrees of freedom (e.g., Ohm’s
law, Peltier effect, etc.) with appropriate counter terms in
the heat and concentration current, (26) and (36). Here,
the material parameters relating currents with forces are
rank-2 material tensors that, however, are isotropic, since
tetrahedral order cannot occur in such tensors. The dissi-
pative transport parameters have to fulfill certain positivity
relations (e.g., σE > 0 or κσE > [κE]2) to guarantee
R > 0.

In an isotropic liquid, an external electric field can induce
nematic order (Kerr effect [2]), which also leads to a shift
of the thermodynamic isotropic to nematic phase transi-
tion. The effect is based on the dielectric anisotropy of the
molecules and is quadratic in the field amplitude. In the
Td phase, tetrahedral order provides an additional mech-
anism for inducing nematic order, as well as for shifting
the nematic phase transition. However, both the strength of

x

z

Fig. 6 Uniaxial three-dimensional elongational flow in z-direction
for �1 > 0; for �1 < 0, the flow directions are reversed (biaxial
elongational flow in the x/y plane)—from [42]
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induced nematic order and the transition shift are linear in
the field strength. This is due to the interaction energy [27]

ε̃EQT = � EiQjkTijk (47)

which is linear in the field amplitude. This energy exists,
since with (7) EkTijk has the structure of uniaxial nematic
order (δizδjz − (1/3)δij ) ∼ Qij . The coefficient � is a true
scalar quantity that can have either sign.

Assuming in the Td phase small unstable nematic fluctu-
ations with energy [39]

εQ = (A/2)QijQij (48)

with A > 0, an electric field can stabilize them due to the
coupling (47). Minimizing ε̃EQT + εQ, the stable induced
nematic order is linear in the field strength

Qind
ij = �

A
EkTijk (49)

and of prolate or oblate geometry depending on the sign of
�, Fig. 7.

The onset of the nematic phase transition is also shifted
due to the interaction energy, (47). The Landau expansion
for the onset of nematic order reads

ε̃ = 4

9
�E0NS − εa

6
E2

0S + α

2
S2 + β

3
S3 + γ

4
S4 (50)

containing the linear (tetrahedral) and the quadratic
(isotropic) electric contributions in addition to the field-free
expansion of the nematic order parameter S; N0 is the con-
stant tetrahedral order parameter. We note that the prefactors
of S2, S3, and S4 in (50) are different from the prefactors
one obtains when starting with Qij instead of S.

Without the external field, the first-order transition takes
place at α = αc ≡ (2β2/9γ ), where a finite Sc =
−(2β)/(3γ ) occurs. With the standard form α = a(T −T ∗),
where T ∗ is the fictitious second-order phase transition tem-
perature, the transition temperature is Tc = T ∗ + αc/a.

Assuming the changes due to the field to be small, the
transition temperature and the order parameter jump are
shifted

Tc(E0) = Tc + 3
γ

β

LE

a
(51)

Sc(E0) = Sc + 9

2

γ

β
LE (52)

with LE = (4/3)�NE0 − (1/6)εaE
2
0 demonstrating the

linear field shift in the tetrahedral phase, in addition to the
quadratic, isotropic one.

2.3 Strong, Structure-Changing External Fields

In this section, we will deal with strong external electric
fields that are able to distort the tetrahedral structure of the
Td phase. This might be possible, when the tetrahedral order
is weak, in particular close to the phase transition or in the
vicinity of defects.

An external electric field not only provides the orienta-
tion of the (rigid) tetrahedral structure as described in the
preceding section, it also invokes a torque on the individual
tetrahedral vectors. Taking for definiteness E = E0n

1, with
E0 ≥ 0, ε1 > 0, and N > 0 the electric free energy (37)

ε̃E = −ε1N

4∑

β=1

(E · nβ)3 (53)

leads to the non-vanishing torques

n2 × ∂ε̃E

∂n2
∼ (0, 1, 1) (54)

n3 × ∂ε̃E

∂n3
∼ (−1, 0, −1) (55)

n4 × ∂ε̃E

∂n4
∼ (1, −1, 0). (56)

Fig. 7 Electric field induced
nematic order, prolate (oblate)
for � > 0 (< 0)—from [27]
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where we have used the orientation (6) for the tetrahedral
vectors. These torques are perpendicular to n1 and tend to
rotate n2,3,4. Assuming such a rotation with a (yet undeter-
mined) finite amplitude b, the rotated unit vectors are given
by

n2E = 1√
3

1√
1 + 2b2

(1, −1 + √
3b, 1 + √

3b) (57)

n3E = 1√
3

1√
1 + 2b2

(−1 − √
3b, 1, 1 − √

3b) (58)

n4E = 1√
3

1√
1 + 2b2

(−1 + √
3b, −1 − √

3b, −1). (59)

while n1E = 1√
3
(1, 1, −1) = n1 is undistorted.

These individual rotations distort the tetrahedral structure
as is manifest in the relative angles, whose cosines are given
by

n1E·nβ̄E = −1

3

1√
1 + 2b2

(60)

for β̄ = 2, 3, 4 and by

n2E·n3E = n2E·n4E = n3E·n4E = −1

3

1 + 3b2

1 + 2b2
(61)

Equation (60) describes the rotation toward the field direc-
tion, where the tetrahedral angles φ(b = 0) ≡ φT ≈ 109.5◦
(or cos φT = −1/3) approach φ = 90◦ in the asymptotic
limit b → ∞ (Fig. 8). In parallel, the angles among the vec-
tors nβ̄E change from φ = φT in the tetrahedral case, b = 0,
toward φ = 120◦ for b → ∞, resulting in a regular pyra-
midal structure. For finite b, the distorted structure is of C3v

symmetry with only one threefold symmetry axis left, n1E ,
and three equivalent vertical symmetry planes containing
this preferred axis and any of nβ̄E .

Fig. 8 The angle φ between n1 and nβ̄E as a function of the defor-
mation amplitude b. In the asymptotic limit b → ∞, the latter are
perpendicular to the field direction n1 - from [30]

In addition, there is an overall rotation of all nβ̄E about
the field direction. This is obvious from

n2E·n2 = n3E·n3 = n4E·n4 = 1√
1 + 2b2

(62)

demonstrating that for b → ∞ all three nβ̄E have been
rotated by 90◦, Fig. 9. The rotation sense depends on the
sign of b, but is irrelevant. What looks like a clockwise
rotation when viewed from above, is a counter-clockwise
one when viewed from below. The rotation sense is also
changed, when the tetrahedral structure is replaced by its
inverse. The equivalence of b with −b is also manifest in
the energetics discussed below, where only b2 occurs.

If the system follows the torques provided by the external
field, its electric free energy is certainly lowered. Indeed, the
free energy of the distortion, �ε̃E ≡ ε̃E(nβE) − ε̃E(nβ), is
found using (53) to be

�ε̃E = − 1

18
ε1E

3
0

(
1 − (1 + 2b2)−3/2

)
≤ 0. (63)

It vanishes by definition for b = 0 and is a monotonically
decreasing function with increasing b2.

Fig. 9 a The deformed tetrahedron viewed along the field direction
for b ∈ [0, ∞} (200 values shown as box). Not only grow the angles
among the nβ̄E from φT to 120◦ and shrink the angles between n1E

and any nβ̄E from φT to 90◦, there is also an overall rotation of the
structure about n1E of 90◦ maximum. b The transition from the tetra-
hedron to the pyramid and the accompanied rotation seen from the
side—from [30]
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On the other hand, the thermodynamic ground state is
that of the undistorted tetrahedral structure. Therefore, any
deviation from the tetrahedral angle φT increases the energy,
which can be written phenomenologically in a kind of
harmonic approximation as

εdef = B1

2

∑

γ,β>γ

(
nγE ·nβE +1

3

)2
(64)

= B1

6

[(
1 − 1√

1 + 2b2

)2 +
( b2

1 + 2b2

)2
]

≥ 0. (65)

It is zero for b = 0 and positive for finite b, increasing
monotonically with increasing b2.

The equilibrium value of b2 = b2
0 is given by the min-

imum of the sum of the two energies related to tetrahedral
distortions due to external electric fields, εtot

def = �ε̃E +
εdef . Minimization leads to the condition

√
1 + 2b2

0

(
2 + 4b2

0 − A
) = 2 + 2b2

0 (66)

with A = ε1E
3
0/B1. Generally, in the physically relevant

limit when the external field only slightly distorts, the Td

phase, A is small. In that case,5 b2
0 = A/4, and the total

distortion energy εtot
def = −(3/16)A2 is negative. In Fig. 10,

it is shown that εtot
def is negative for all values of b2

0. This
means there is no threshold for the deformations due to an
external field and even a very small field leads to a non-zero
deformation. However, the deformation amplitude b0 will
be very small and hardly measurable, in particular for large
B1 . Of course, in the rigid limit, B1 → ∞, there is b2

0 → 0
and εtot

def → 0. This scenario is rather robust, e.g., the small
amplitude behavior is the same, when εdef is replaced by the
more complicated deformation energy T E

ijkT
E
ijk − TijkTijk ,

where T E
ijk = N

∑4
β=1 n

βE
i n

βE
j n

βE
k .

Finally, we remark that the deformations induced by the
electric torques also change the volume of the structure
given by the four vertices nβE

VE

V0
= 1

16

4 + 9b2
0

(1 + 2b2
0)

3/2

(
1 + 3

√
1 + 2b2

0

)
(67)

with V0 = 8/(9
√

3) the volume of the undistorted tetra-
hedron. In the limit b → ∞, the volume of the pyramid
is V∞ = √

3/4, which is by 15,625 % smaller than with-
out distortion. Assuming that the volume of the structure is
related to the volume of the molecules involved, it means
that the electric torques lead to an increase of the density of
the system.

For a tetrahedral phase that is deformed by a strong
external field rotations of aligned tetrahedral vector n1 are

5This relation also applies to the opposite limit, when A is large.

Fig. 10 The total deformation energy εtot
def scaled by ε1E

3
0 and by

V0/VE , cf. (67), as a function of b0 (with a vertical offset of −4/9)—
from [30]

clamped, e.g., they relax on a time scale faster than the other
hydrodynamic variables. Thus, compared to an isotropic
fluid, the only additional degree of freedom is the rota-
tion of the (deformed) tetrahedron about the field. On the
other hand, such a phase is polar and uniaxial, and the
material properties become anisotropic due to the exter-
nal field. In Section 3.3.1, we will give a more detailed
account of the full hydrodynamics of a thermodynamic
phase with C3v symmetry, where the preferred direction
exists spontaneously and its rotations are hydrodynamic
excitations.

2.4 The Chiral T Phase

The Td phase considered so far (made up of achiral
molecules) is achiral. However, using chiral molecules, one
can get its chiral analog, the T phase [22]. This is similar
to conventional nematic LC that become cholesteric (chiral
nematic), when the molecules are replaced by chiral ones or
chiral molecules are added. Bent-core molecules can be chi-
ralized in different ways. To get the T phase, the simplest
way is to assume that the two tails of such molecules are
symmetrically chiralized, Fig. 11 (left). If such a molecules
is mirrored at a plane or inverted, the chirality is changed,
Fig. 11 (right), and the two forms cannot be brought into
coincidence by mere rotations.

To get a chiral phase, one has to employ a specific model,
where two bent-core molecules of the same chirality are
combined in a steric arrangement resembling the tetrahedral
vectors 1–4 and 2–3 in Fig. 12, What has been a 4̄ axis in
the Td phase is here reduced to a (proper) twofold symmetry
axis, and the planes spanned by vectors 1/4 and 2/3 are no
longer mirror planes, Fig. 13, with the result that only three
twofold and four threefold symmetry axes exist. The former
are the x, y, z directions, while the latter are the tetrahedral
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Fig. 11 Model of a symmetrically chiralized bent-core molecule (left)
with its mirror image (right); filled (orange) circles mean, e.g., positive
chirality, while the (orange) stars indicate negative chirality - from
[31]

axes 1–4, which are equivalent since they have the same chi-
rality. Such an arrangement of bent-core molecules ensures
the compensation of the molecular polarity and results in the
T phase being non-polar.

The hydrodynamics of the achiral Td phase has been
given above in Section 2.1. We therefore concentrate on the
differences between the hydrodynamics of the T compared
to the Td phase. In both phases, the same set of hydro-
dynamic equations is used. Differences occur in the static
and dynamic couplings due to the chirality of the T phase,
which is manifest by the existence of a pseudoscalar q0. The
rotational elastic gradient free energy (cf. (20)

εg = 1

2
K�

ijkl(∇j�i)(∇l�k) + q0K
lin
1 ∇i�i (68)

contains a chiral term ∼ q0K
lin
1 linear in the gradients

of the rotations δ�i . Generally, a linear gradient term
favors a spatially inhomogeneous structure. In the present
case, a helical rotation of Tijk about any of the threefold
axes (the tetragonal vectors) reduces the free energy by

Fig. 13 Projection of the tetrahedral structure of Fig. 12 onto the x/y

plane. The z-axis is reduced to a twofold axis, since a π/4 rotation
with an additional inversion preserves the structure, but changes the
chirality. For the same reason, the planes spanned by vectors 1/4 or 2/3
are no mirror planes—from [31]

�ε = − 1
2 (q0K

lin
1 )2/(2K�

1 + K�
2 ). What looks like a lin-

ear splay term is physically a linear twist contribution, quite
similar to the familiar case of cholesteric LC. The optimum
helical pitch, qh = 3

2q0K
lin
1 /(2K�

1 + K�
2 ), is generally dif-

ferent from the chiral pseudoscalar of the phase, q0, since
there is no a priori reason that Klin

1 is related to K�
1,2.

An analogous statement holds for ordinary cholesteric LC
[43]. Helical rotations about the twofold axes do not lower
the free energy, since the linear gradient term is zero in
that case and the quadratic term, ∼ K�

3 , increases the free
energy.

The similarity to the cholesteric phase also holds for
chiral Lehmann-type contributions, both static (in the free
energy), εc = q0(ξ

ρδρ + ξσ δσ + ξcδc)∇i�i , and dynamic
(in the dissipation function), R = q0h

�
k (�EEk +�T ∇kT +

�c∇kc). They relate in the dissipative currents the scalar
degrees of freedom (temperature, concentration, density,
etc.) with the rotations of the tetrahedron.

Fig. 12 Model of two bent-core
molecules (1–4 and 2–3) with
the same chirality, arranged to
fit into the tetrahedral geometry
(left) with its mirror image
(right); not only is the
tetrahedral geometry inverted
but also the molecular chirality
has changed—from [31]
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The reversible part of the current of tetrahedral rotations,
YR

i , (32), contains additionally a chiral coupling to the rate
of strain tensor

YR
i = q0λTijkAjk (69)

σij = q0λTijkh
�
k (70)

with the appropriate counter term in the stress tensor.
Now that there are couplings to both rotational and sym-

metric shear flows, a stationary alignment of Tijk in simple
shear is possible that is independent of the flow rate. This
scenario is very much like the flow alignment in nematics,
although there it is an achiral reversible effect. In particu-
lar, if one of the threefold tetrahedral axis is in the vorticity
direction, the tetrahedron is rotated about this direction by
an angle θ , Fig. 14,

1

cos 2θ
= 16

27
q0λ (71)

that only depends on the material parameters q0λ. Only 3-
axes, but no 2-axes, can be aligned. In the Td phase, there
is no flow alignment, since there is no q0. The remainder of
the dynamics of the T phase is as in the achiral Td phase.

3 Phases with Correlated Tetrahedral and Nematic
Order

3.1 The Non-Polar Tetrahedral Uniaxial Nematic D2d
Phase

3.1.1 Statics

When both tetrahedral and nematic order are present, we
have shown in Section 1.4 that a possible ground state is
the D2d phase. The nematic director n is fixed to be along
one of the 4̄ axes of the tetrahedron (the z-axis in Fig. 15).
The angle between the director and the tetrahedral axes is
half the tetrahedral angle φD = φT /2 or φD = π − φT /2
with n · nβ = ±1/

√
3. The tetrahedral threefold axes (β =

1, 2, 3, 4 in Fig. 15) are not symmetry axes any longer,
but the z-axis is still a 4̄ symmetry axis, while the x- and
y-axes are reduced to be twofold.. The planes defined by
vectors 1/4 and 2/3 are symmetry planes prohibiting chi-
rality of the D2d phase. This phase is non-polar, because
of the n to −n equivalence and the absence of a polar
vector TijkQjk = 0 = Tijknjnk . It can be viewed as a
uniaxial nematic LC with a transverse structure that resem-
bles orthorhombic biaxial nematics, but without inversion
symmetry.

Since the director and the tetrahedron are rigidly coupled,
the number of hydrodynamic variables is the same as in the
Td phase. However, instead of using the three tetrahedral
rotations δ�, (14), we will split them up into (two) rotations

Fig. 14 Projection of the tetrahedral structure onto the x/y plane with
one of the tetrahedral axes (n1) along the z-axis (corners 2,3,4 lie
below the x/y plane). This is also the vorticity direction of the simple
shear ∇yvx = S. The structure is rotated in the shear plane by an angle
θ that is independent of the shear rate S—from [31]

of the director δn = (n × δ�) and one rotation about the
director

δ� ≡ n·δ� = (1/4α) niεipqTpjk δTqjk. (72)

By construction δ� is even under parity and time reversal
and odd in n, but is not a true scalar (concerning its behav-
ior under rotations—see below). There is no direct way of
detecting this degree of freedom optically. Only through
its (static) coupling to the director rotations (see below), it
might be accessible to experiments.

The hydrodynamic description in terms of δn and δ�

facilitates the comparison with ordinary nematic LC and

Fig. 15 The director n along the 4̄ symmetry axis in the D2d phase.
Vectors 1,2,3,4 denote the four tetrahedral vectors nβ with β =
1, 2, 3, 4—from [31]
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is closer to experiments, where the director and its rota-
tions are accessible by optical means. We will assume the
nematic as well as the tetrahedral order parameter strength,
S and N , respectively, to have relaxed on a very short time
scale to their constant equilibrium values, S0 and N0, which
we will take as unity. We also restrict ourselves to a lin-
ear hydrodynamic description, in particular we disregard the
consequences of the nonlinear non-commutativity relation
(16). A recipe how to deal with them and some results can
be found in Section 4 of [26]. There, we also discuss other
general aspects of nonlinear hydrodynamics, including the
dependence of material parameters on state variables and
material tensors on orientations of the structure, as well as
the occurrence of non-harmonic thermodynamic potentials,
transport derivatives, and nonlinear pressure and stresses.

In this setting, the Gibbs relation (18) takes the form

dε = μdρ + vidgi + h′
idni + �ijd∇j ni

+h�′d� + ��
i d∇j� + T dσ (73)

with the conjugates h� = h�′−∇i�
�
i and hi = h′

i −∇j�ij

omitting the nonlinearities shown in (19).
The gradient free energy reads

εg = 1

2
Kikjl(∇ink)(∇j nl) + K7δ

⊥
ikεlij (∇l�)(∇j nk)

+(K5ninj + K6δ
⊥
ij )(∇i�)(∇j�) (74)

with the transverse Kronecker δ⊥
ij = δij − ninj projecting

onto the plane perpendicular to ni . There are four Frank-
type orientational elastic coefficients related to distortions
of the director

Kijkl = K3ninj δ
⊥
kl + (K1 − 2K2)δ

⊥
ikδ

⊥
j l

+K2(δ
⊥
il δ

⊥
jk + δ⊥

ij δ⊥
kl) + K4npnqTijpTklq (75)

which is one more than in the uniaxial nematic case: The
K4 term is related to (∇xnx)(∇yny), and vanishes in the
transversely isotropic case. In addition, there are two coef-
ficients related to distortions of � (K5,6) and a mixed one
(K7). The latter links inhomogeneous � rotations, ∇z�, to
director twist, ∇xny − ∇ynx . Assuming that the tetrahedral
structure is clamped at solid surfaces with n homeotropic,
a circular Couette cell with a fixed plate at the bottom and
a rotating one at the top will create a finite ∇z�. By the
K7, coupling twist of the director is induced in the x-y
plane.

The total number of seven Frank coefficients corre-
sponds to the number of such coefficients in orthorhombic
biaxial nematic LC. In particular, The K4 term can be writ-
ten as K4(milj + limj )(mkll + lkml) using the transverse

directors m and l of a orthorhombic biaxial nematic LC [7].
This demonstrates that the lack of inversion symmetry does
not influence the Frank-like (quadratic) gradient energy. On
the other hand, however, a linear gradient energy is possible
in the D2d phase

εl = ξ Tijk ni∇j nk (76)

which is forbidden in ordinary nematic LC due to the
inversion symmetry. It is related neither to linear splay,
∇xnx + ∇yny (present in polar nematics), nor to linear
twist, ∇xny−∇ynx (present in chiral nematics), but involves
the combination ∇xny + ∇ynx . As it is well known from
cholesteric liquid crystals [2] and polar nematics [9, 10, 45],
the appearance of linear gradient terms in the deformation
energy of a director field allows for the possibility of an
inhomogeneous ground state.

Before we start the discussion of the implications of the
linear gradient energy, we mention related cross-couplings
between director deformations of the ξ -type (76) and all the
scalar hydrodynamic variables

εc = Tijkni∇j nk(ξ
ρδρ + ξσ δσ ) (77)

unknown for usual nematics. Analogous terms for possible
additional scalar variables, like concentration variations δc

in mixtures, or variations of the order parameters δN or δS,
can be written down straightforwardly. These terms resem-
ble the structure of static Lehmann terms in cholesteric
liquid crystals [44], although here they do not involve a
(Lehmann) rotation of the director, but transverse bend
deformations.

The statics is completed by adding up all the energy con-
tributions ε = ε0 + εg + εl + εc + ε̃E , where ε0 is the part
of isotropic liquids and ε̃E describes the influence of exter-
nal fields (see below). The conjugate quantities then follow
from ε as partial derivatives according to (73).

3.1.2 Ambidextrous Helicity

The linear gradient energy contribution (76) allows for a
inhomogeneous ground state. Indeed, it is straightforward
to show that a helical state has a lower free energy than the
homogeneous state. In this helical state, the director and the
tetrahedral structure rotate together about one of the twofold
axes. 6 These are the x- and y-axes in the geometry of (6),
where the director is along the z-axis. Choosing the x-axis

6The picture of counter-propagating nematic and tetrahedral helices
suggested in ref. [27] is based on a misinterpretation of the results and
is not possible.
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as helical axis for definiteness, the director (and the 4̄ axis)
is given by

ni = δizC + δiyS (78)

with C = cos(q0x) and S = sin(q0x), while for the
tetrahedral vectors one finds

±1√
3

⎛

⎝
1 1 −1 −1

C − S −C + S C + S −C − S

−C − S C + S C − S −C + S

⎞

⎠ (79)

where the minus sign refers to the inverted tetrahedral
structure. It is this possibility to discriminate between orig-
inal and inverted structure that allows for different helical
rotation senses.

Indeed, the helical state has a free energy, which is by
�ε = (1/2)(ξ2/K2) smaller than that of the homogeneous
state, independent of the sign of (79). On the contrary, the
helical wave vector, q0 = ∓ ξ/K2, depends on that sign
and the helical rotation sense is reversed for the inverted
structure. The two different possibilities are demonstrated
in Fig. 16, where the inverted structure on the right has
the opposite rotation sense compared to the original struc-
ture on the left. We call this phenomenon “ambidextrous
helicity.” Ambidextrous means no energetic preference for
the two possibilities, in analogy to “ambidextrous chiral-
ity”, e.g., in the CB2 (B2) phase, where the left and right
handed helices are also energetically equivalent [12, 13]. In
the latter case, the term “chirality” is appropriate, since this
phase is structurally chiral, while the D2d phase is achi-
ral and no pseudoscalar can be constructed from n and
Tijk .

The helical wave vector q0 is proportional to ξ , the mate-
rial parameter of the linear gradient term, and changes sign
with it. For materials with ξ < 0 (there is no general
principle that fixes this sign), the situation is as shown in
Fig. 16, while for the case ξ > 0, the roles of “original”

and “inverted” structure are interchanged. However, this is
irrelevant, since what is called “original” or “inverted” is
arbitrary.

The choice of one of the twofold axes (x- or y-direction)
as the helical axis leads to the maximum energy gain, while
for the rotation axis b = ex ± ey no gain at all is found,
since the linear gradient energy is zero in that case.

In a spontaneous formation of the D2d phase, helices
of different rotation sense and about different orthogonal
axes might occur randomly at different places of the sample,
since all the possibilities discussed above are equally likely.
The D2d symmetry would be present only locally in the
domains, and, when averaged, an almost isotropic behavior
can be expected. Even, if in a D2d phase a pure helical state
(with a single helicity and single helix orientation) has been
formed, averaging such a structure over a length scale large
compared to the pitch, the resulting symmetry of the sys-
tem is isomorphic to the situation arising when a cholesteric
phase is averaged over length scales large compared to the
cholesteric pitch.

Therefore, we will use the local description in the follow-
ing. This means, we assume locally D2d symmetry, but with
the ξ -term in the free energy, (76), which reflects the lack
of inversion symmetry. This procedure is frequently used in
cholesterics, which are locally described as nematics with
the additional linear twist energy term (reflecting chirality).
If the D2d phase is in a homogeneous state, the linear gradi-
ent free energy term always leads to the tendency of forming
localized helical domains.

3.1.3 Frustration by an External Electric Field

External electric fields have an orienting effect on LC, in
particular the dielectric anisotropy orients the director of the
nematic phase [2], while the tetrahedral structure is aligned
by a cubic generalization of the dielectric energy, (37), in
the Td phase. In the D2d phase, both effects are present

Fig. 16 Projection of a D2d structure onto the y/z plane on the left,
with the inverted structure on the right. The director n is along the z-
axis, the x-axis sticks out of the drawing plane, and circles and asters
denote tetrahedral vectors that point out or into the drawing plane,

respectively. Rotations about the x-axis with the sequence A → z →
B constitute an opposite helical sense for the right and left structure.
The sequence B → z → A reverses the rotating sense in both cases -
from [26]
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simultaneously and the (Legendre transformed) field-
induced free energy reads

ε̃E = −εa

2
ninjEiEj − ε10TijkEiEjEk (80)

−ε11

3
Tijk(niEjEk + EiEjnk + EinjEk)(n · E)

where, however, the two tetrahedral terms act the same way
and can be combined via ε1 ≡ ε10 + ε11. We note that other
possible terms one might think of such as ∼ Tijknjnk van-
ish, since ni has only a z-component in contrast to Ei . There
is no need to incorporate fourth order terms in ε̃E to guar-
antee convexity, since we study external fields here. As in
the Td phase, the cubic term gives rise to second harmonic
generation in optical applications.

The nematic term is minimized for n parallel or per-
pendicular to the field (for εa ≷ 0), while the tetrahedral
term forces one of the tetrahedral unit vectors to be paral-
lel or antiparallel to E. However, in the D2d phase, these
two cases are incompatible, since the director always makes
an oblique angle (half of the tetrahedral angle, φT /2, or
π − φT /2), with any of the tetrahedral vectors, disproving
the possibility for zero or 90◦. Therefore, the system is frus-
trated and the actual equilibrium orientation minimizes the
sum of both terms, but not each term separately. As a result,
the orientation depends on the relative strength of nematic
vs. tetrahedral coupling (εa/ε1). Since these couplings are
of different powers in the field strength, E0, the optimum
orientation also depends on E0.

At small fields, the first term is dominant and the director
orientation is the usual nematic one. Above a threshold field
strength, Ec, it is energetically favorable to rotate the D2d
structure rigidly such that the director is tilted away from
the dielectrically optimal orientation and, at the same time,
one of the tetrahedral vectors is tilted towards the field by
the same angle. Indeed, minimization of ε̃E with respect to
the tilt angle of the director, θE , leads to

θE = 0 for E ≤ Ec =
√

3

8

εa

ε1
(81)

and
√

3 cos θE = γ +
√

γ 2 + 1 for E ≥ Ec (82)

with γ = (1/8)(εa/ε1E0) and γc = 1/
√

3. Here, we have
assumed positive dielectric coupling, εa > 0, and have
chosen, without lack of generality, ε1 > 0.

There is no jump of the tilt angle at Ec and for very large
fields (γ → 0) θE → φT /2 meaning one of the tetrahedral
vectors approaches asymptotically the field direction.

If ε1/εa is large enough for the threshold field to be
within experimental reach, there is a unique way of iden-
tifying the D2d phase: Below the threshold, the director
is oriented parallel to E. Increasing the field beyond the
threshold, the director turns away to a direction oblique

to the field—something that cannot happen in a conven-
tional uniaxial nematic phase. The presence of a helix
further complicates the behavior. Any homogeneous exter-
nal field is incompatible with the combined helical structure
of director and tetrahedral vectors and tends to distort that
structure.

For the dynamics discussed below, we assume εa to be
positive and the nematic dielectric anisotropy to be the dom-
inant effect such that the system is below the threshold for
reasonable applied fields. In that case, the symmetry of the
D2d phase is preserved and the hydrodynamic description is
valid. In this case, rotations of the structure away from the
electric field direction cost energy

ε̃E
2 = 1

2

(
εa + 32

9
ε1 E0

)
E2

0 (δn)2 (83)

with an effective, field-dependent susceptibility (in the big
parentheses). This provides the restoring force for the relax-
ation of the director.

3.1.4 Dynamic Properties

While the dynamic laws for mass, momentum, and entropy
density are the same as in the Td phase, (11), (12), and (22),
the dynamic equation for the symmetry variable, (∂/∂t)�i +
Yi = 0, is now written in terms of δn and δ�

∂

∂t
ni + Xi = 0 (84)

∂

∂t
� + Y� = 0 (85)

with Xi = εijknjYk and Y� = niYi .
In the D2d phase, the structure of the reversible direc-

tor dynamics is the same as in uniaxial nematics. There are
advection and convection and a phenomenological coupling
to symmetric shear flow [1, 46–48]

XR
i = vj∇j ni + (ω × n)i − λijkAjk (86)

with 2λijk = λ(δ⊥
ij nk + δ⊥

iknj ). This allows for a steady
alignment in simple shear at a tilt angle governed by λ, the
sole reversible transport parameter. The appropriate back
flow term in the stress tensor, σR

ij = −λkjihk guarantees
zero entropy production.

For rotations about the n, there is no phenomenological
reversible coupling, only transport,

Y�R = vi∇i� − niωi . (87)

and, therefore, no flow alignment in the plane perpendicular
to n. Obviously, δ� is not constant under rotations (as a
true scalar is), but behaves like the component of a rotation
angle, e.g., as δ m· (n × m) in biaxial nematics.
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In the Td phase, there are reversible phenomenologi-
cal couplings between flow and the currents of conserved
hydrodynamic variables, (29) and (30), that also exist in the
D2d phase. Here, they are of the uniaxial form and read for
the heat current and the stress tensor

j
σ,ph
i = (�21δ

⊥
li + �22 nlni)TljkAjk (88)

σ
ph
ij = −(�21δ

⊥
lk + �22 nlnk)Tijk∇lT (89)

Appropriate anisotropic generalizations exists for the cou-
plings involving the concentration current (cf. end of
Section 2.1) or the electric current, (44) and (45), and the
stress tensor, with parameters �11, �12, �31, �32 accord-
ingly. The physical implications of those couplings has
already been discussed in Section 2.1.

In the dissipative dynamics, there are couplings between
scalar hydrodynamic variables and director rotations of
the ξ -type, (76), e.g., described by the contribution to the
entropy production

RT,n = �T Tijknjhi∇kT . (90)

Appropriate couplings exist for the electric field Ei or the
concentration current ∇ic replacing the temperature gradi-
ent. There is no such term for the mass current, since the
mass density does not have a dissipative current. Similar
terms would arise, when (gradients of the thermodynamic
conjugates of) the order parameters, S and N , are consid-
ered. These terms are the dissipative analog to the static
couplings in εc, (77). They are not present in ordinary
nematic LC, but they are similar in structure to the dynamic
Lehmann effects in cholesteric LC [44]. There, inversion
symmetry is broken by the helical wave vector q0, while
here it is the tetrahedral tensor Tijk . As a difference, in
the D2d phase transverse bend deformations of the director
are involved, while in the cholesteric case director rotations
occur.

Dissipation of the director is isotropic, 2Rn,n = (1/γ )h2

as in the nematic phase. The same is true for the dissipation
of the transverse rotations

R�,� = 1

2γ �
(h�)2 (91)

with h� = ∂ε/∂� that leads to the dissipative part of the
quasi-current Y�D = (1/γ �)h�. While the Td phase has
one rotational viscosity, γ � , there are two in the D2d phase,
the nematic one, γ , and a second one, γ �, which are gener-
ally different from from each other due to the anisotropy of
the different rotations.

Other dissipative effects are anisotropic as in ordinary
uniaxial nematic LC, e.g., thermal conductivity 2RT,T =
κij (∇iT )(∇j T ) or electric conductivity 2RE,E = σE

ij EiEj

etc.. Only the viscosity is slightly more complicated in

the D2d phase, since for 2Rv,v = νikj l(∇ivk)(∇j vl) the
viscosity tensor

νikj l = (ν1 − 2ν2)δ
⊥
ikδ

⊥
j l + ν2(δ

⊥
ij δ

⊥
kl + δ⊥

il δ
⊥
jk)

+ν3(δ
⊥
ij nknl + δ⊥

il njnk + δ⊥
klninj + δ⊥

jkninl)

+ν4ninjnknl + ν5(δ
⊥
iknjnl + δ⊥

j lnink)

+ν6npnqTpij Tqkl (92)

contains six viscosities as in the case of orthorhombic biax-
ial nematic LC [49]. The last term in (92) vanishes in the
uniaxial nematic case.

3.1.5 Relative Rotations

In the D2d phase, the orientation of the director relative to
the tetrahedral structure is fixed. In particular, the director
rotates always together with the tetrahedral structure, δn =
n× δ�. This means that any difference between δn and n×
δ� vanishes on time and length scales much shorter than
the hydrodynamic ones. Under certain conditions, however,
relative rotations

J = δn − n × δ� (93)

persist and are included as non-hydrodynamic variables in
the macroscopic dynamics.

This is similar to the smectic A phase, where the layer
normal and the director are locked to be parallel. Under
certain conditions, like the vicinity to the nematic phase
transition [50] or strong external shear [51], this coupling
can weaken allowing the two preferred directions to dif-
fer from each other for some time before they have been
relaxed back. Another example of relative rotations arises
for mixtures of a rod-like and a disk-like uniaxial nematic
phase [52]. Such relative rotations play a prominent role in
nematic elastomers [53, 54], where they are responsible for
elastic anomalies [55, 56].

The relative rotations J are even under spatial inversion,
odd under the replacement of n by −n, and are invariant
under rigid rotations. They do not involve rotations of the
tetrahedral structure about the director, n · δ�, since n ·J =
0.

The free energy of relative rotations

εJ = 1

2
D1J

2 (94)

diverges in the rigidly locked case, where the stiffness coef-
ficient D1 → ∞. In (94), we have neglected some bilinear
couplings between relative rotations and gradients of the
director or gradients of �, which are of the linearized form
Jx∇znx − Jy∇zny and Jx∇y� + Jy∇x�. Gradients of
electric fields couple similarly.
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The dynamics is given by the balance equation

∂

∂t
Ji + YJR

i + YJD
i = 0 (95)

The reversible part

YJ R
i = vk∇kJi + λJ

ijkAjk (96)

contains the transport derivative and a phenomenolog-
ical coupling to deformational flow where λJ

ijk =
λJ (εikpnpnj + εijpnpnk) carries one phenomenological
parameter. There is no coupling to rotational flow, since δn

transforms the same way as n×δ� under rigid rotations (cf.
Section 2.1). Lacking the coupling to rotational flow, shear
flow does not lead to a (shear flow) alignment of Ji .

The dissipative dynamics can be derived from the appro-
priate part of the dissipation function, YJ D

i = (∂/∂Li)R
J

where

RJ = 1

2
ζ⊥δ⊥

ij LiLj + ζ n
ijLihj + ζE

ijkLi∇jEk (97)

is expressed by Li = (∂/∂Ji)εJ , the thermodynamic con-
jugate of the relative rotations. The transport parameter
ζ⊥ governs the relaxation of relative rotations with the
relaxation time 1/(ζ⊥D1), which is zero in the rigidly
locked case. The material tensors ζ n

ij = ζnnkεijk and

ζE
ijk = ζE(εikpnpnj + εijpnpnk) provide dissipative cou-

plings between relative rotations and director textures or
inhomogeneous electric fields.

3.2 The Non-Polar, Low Symmetry Tetrahedral Biaxial
Nematic Phases

3.2.1 The Non-Polar Tetragonal S4 Tetrahedral Phase

If one adds two transverse biaxial directors m and l along
the 4̄ tetrahedral directions, the structure is equivalent to a
D2d phase. In case the biaxial directors are rotated in the
transverse plane by a finite angle other than π/4 and π/2, as
in Fig. 17, an S4 symmetric S4 is obtained. It is obvious to
see that due to this rotation, the mirror planes are removed
as well as both twofold rotation axes (x and y axes). Only
the (improper) fourfold symmetry axis (n or z axis) is left.
Due to the existence of an improper rotation axis, there is
no chirality.

The hydrodynamics of this phase is rather similar to the
D2d phase, in particular the hydrodynamic variables are
the same: Rotations of the preferred direction n (the tetra-
gonal axis) and a rotation about this axis. The latter can
again be described by appropriate rotations of the tetrahe-
dral structure, δ� ≡ (27/128)niεipqTpjkδTqjk , where we
have used N = 1 in the normalization relation 27α =
32N2. The only difference is the reduced symmetry of S4
compared to D2d, which is manifest in more complicated
structures of material tensors of fourth order (and higher)

Fig. 17 The projection of the four tetrahedral vectors nα (α =
1, 2, 3, 4) into the x, y plane perpendicular to the director n in the S4
phase. A circle (asterisk) denotes tetrahedral vectors that also have a
component sticking out of (pointing into) the projection plane. The
tetragonal nematic directors m and l are equivalent and rotated by an
angle � �= 0, π/4, thereby removing any mirror planes as well as the
2-fold axes. The z-axis remains to be an improper 4̄ axis. For � = 0,
the structure is equivalent to a D2d phase—from [31]

and, in addition, by a few more non-vanishing elements of
the equilibrium tensor Tijk giving rise to some additional
cross-couplings. The form of the hydrodynamic equations
is the same as in the D2d phase and will not be repeated
here.

As an example for more complicated material tensors, the
gradient free energy related to rotations of n,

Kijkl = K3ninj δ
⊥
kl + (K1 − 2K2)δ

⊥
ikδ

⊥
j l

+K2(δ
⊥
il δ

⊥
jk + δ⊥

ij δ
⊥
kl) + K4npnqTijpTklq

+K8δ
⊥
rkδ

⊥
t l TijpTrtp. (98)

contains five Frank bulk orientational elastic coefficients
in the S4 phase (compared to four in D2d, (75)). The K8

term, which does not exist in the D2d phase, gives rise to
new combinations of director variations, if linearized, of the
form cos 2� sin 2�(∇xnx −∇yny)(∇ynx +∇xny) where �

is the in-plane rotation angle as described in Fig. 17.
On the other hand, the gradient energy involving δ�,

(74), and the linear gradient term giving rise to ambidex-
trous helicity, (76), are as in the D2d phase. The same
applies to the static Lehmann-type energy contributions,
(77). There is still no linear gradient term w.r.t. ∇i�,
because of the invariance under m ⇔ l.

An example of a more complicated material tensor in
the dynamics is the viscosity tensor, relating the stress ten-
sor with the symmetric flow tensor, σij = −νijkl∇lvk .
It contains an additional seventh term (compared to (92)),
ν7Trtp(δ⊥

rkδ
⊥
t l Tijp + δ⊥

riδ
⊥
tj Tklp) in the S4 phase, which has

almost the same structure as the K8 Frank term discussed



586 Braz J Phys (2016) 46:565–595

above. All other material tensors occurring in the static
or dynamic part of the S4 hydrodynamics are of a rank
less than four and have the same structure as in the D2d
phase.

Among the cases, where additional non-vanishing ele-
ments of the equilibrium tensor Tijk are relevant, is the
linear gradient term, (76), (∇xny +∇ynx) cos 2�+(∇xnx −
∇yny) sin 2�. It involves director structures not present in
the D2d phase.

In the reversible hydrodynamics, there are couplings
between shear flow and currents of temperature, concen-
tration and charge, and vice versa, between shear stresses
and gradients of temperature and concentration, and elec-
tric fields, (88) and (89), which in the S4 phase have the
form

jσ,R
x = �21(cos 2�Ayz + sin 2�Axz)

jσ,R
y = �21(cos 2�Axz − sin 2�Ayz)

jσ,R
z = �22(cos 2�Axy + sin 2� [Axx − Ayy]) (99)

and

σxz = −�21(cos 2� ∇yT + sin 2�∇xT )

σyz = −�21(cos 2� ∇xT − sin 2�∇yT )

σxy = −�22 cos 2� ∇zT

σxx = −σyy = −�22 sin 2�∇zT (100)

with appropriate terms for the concentration and electric
degrees of freedom involving �31,32 and �11,12. All terms
∼ sin � are new in the S4 phase and not present in D2d.
They comprise hyperbolical flows and stresses and oblique
currents.

The dissipative Lehmann-type couplings of the D2d
phase, (90), acquire more coupling elements in the S4 phase

jσ,D
x = −ψT (cos 2�hy + sin 2�hx)

jσ,D
y = −ψT (cos 2�hx − sin 2�hy) (101)

and

ṅx = −ψT (cos 2� ∇yT + sin 2�∇xT )

ṅy = −ψT (cos 2� ∇xT − sin 2�∇yT ) (102)

with similar sets of equations involving the concentration
and the electric degrees of freedom.

The orientation of the director (and the tetrahedral struc-
ture) in an external electric field is basically the same as in
the D2d phase, (80), including dielectric anisotropy and the
cubic tetrahedral orientation leading to frustration. Assum-
ing that the dielectric anisotropy effect is the dominant one
orienting the director (and thus the 4̄ axis) along the z direc-
tion, a small oscillating electric transverse field will lead to

a reorienting force on n of the transversely isotropic form
E2

x +E2
y due to the dielectric anisotropy, while for the tetra-

hedral orientation the reorientation force is, in the S4 phase,
of the form cos 2�ExEy + sin 2�(E2

x − E2
y). Thus, this

response to an external field can experimentally reveal the
transverse anisotropy in the S4 phase different from the D2d
case.

3.2.2 The Non-Polar Orthorhombic D2 Tetrahedral Phase

A D2 phase can be viewed as an orthorhombic biaxial
nematic of D2h symmetry (with mutually orthogonal direc-
tors l, m, n) that are rigidly attached to the three (improper)
4̄ axes of the tetrahedral structure, cf. Fig. 18. As a result,
only proper (twofold) symmetry axes are left, but no mir-
ror planes rendering the phase chiral. The latter is expressed
by the pseudoscalar quantity q0 ≡ n·(m × l)nimj lkTijk

Fig. 18 Two projections of the four tetrahedral vectors nα (α =
1, 2, 3, 4) and the orthorhombic directors l, m,n in the D2 phase. Stars
and circles as in Fig. 17. Only three twofold symmetry axes (the x, y, z

axes) are left, but no mirror planes—from [31]
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or equivalently by q ′
0 ≡ n·(l × m)nimj lkTijk = −q0

indicating that both kinds of handedness are present. This
“ambidextrous chirality” [12] is of structural origin, in con-
trast to the molecule-based chirality of the chiral T phase,
Section 2.4.

The hydrodynamics of the D2 phase is that of orthorhom-
bic biaxial nematics [7, 8], amended by effects of the broken
inversion symmetry and chirality due to Tijk . Like in the
D2d and in the biaxial nematic phases, the hydrodynamic
degrees of freedom (Goldstone modes) are the three inde-
pendent rotations of the rigid structure. They can be realized
by the three rotations δn, δm, and δl that preserve their
mutual orientation due to the conditions miδni+niδmi = 0,
liδni + niδli = 0, and miδli + liδmi = 0. The tetrahedral
structure follows those rotations rigidly. Alternatively, one
could use rotations of the preferred axis δn and the rotation
about this axis δ� = (n × m)iδmi as variables. There are
12 bulk Frank-like quadratic rotation elastic coefficients, cf.
[58].

In the following, we will concentrate on the Tijk- and q0-
induced effects. There are six linear gradient terms in the
free energy, not present in ordinary biaxial nematics

εl = Tijk(ξ1ni∇j nk + ξ2mi∇jmk + ξ3li∇j lk)

+q0εijk(k1ni∇j nk + k2 mi∇jmk + k3 li∇j lk) (103)

The first line is the generalization of (76) of the D2d phase
describing ambidextrous helicity (cf. Section 3.1.2), since
the inverted structure is different from the non-inverted one,
but leads to the same energy reduction. The second line con-
tains the linear twist terms of biaxial cholesterics [33]. In
the D2 phase, they describe ambidextrous chirality, since q0

and −q0 are equally likely to occur. It is not possible to indi-
vidually minimize each of the six terms for steric reasons.
In that sense, the D2 phase is frustrated.

If there are linear gradient terms, there are also static
Lehmann-type energy contributions [32, 44], bilinear in lin-
ear director gradients and variations of the scalar variables,
γ ∈ {σ, ρ, c}
εc =

∑

γ

(δγ )
(
Tijkg

γ

ijk + q0εijkG
γ

ijk

)
(104)

with g
γ

ijk = ξ
γ

1 ni∇j nk + ξ
γ

2 mi∇jmk + ξ
γ

3 li∇j lk and G
γ

ijk

as g
γ

ijk , but with the coefficients ξ
γ

1,2,3 replaced by k
γ

1,2,3.
Again, they are either a generalization of the D2d case, (77)
or of the chiral nematic case.

The dissipative Lehmann-type terms also come in two
classes, either due to the lack of inversion symmetry (as in
the D2d phase, (90)) or due to chirality (as in cholesterics),
for ∇kQ ∈ {∇kT , ∇kμc, Ek},
2RL =

∑

Q

(∇kQ)
(
Tijkh

Q
ij + q0εijkH

Q
ij

)
(105)

where h
Q
ij = (ψ

Q
1 mjmp + ψ

Q
2 lj lp)nih

n
p + ψ

Q
3 lj lpmih

m
p

and H
Q
ij as h

Q
ij , but with coefficients ψ

Q
1,2,3 replaced by

different ones �
Q
1,2,3. The molecular fields, hn

i , hm
i , follow

from the Frank gradient energy in the standard way. The
chirality-based static and dynamic Lehmann-type contribu-
tions lead to rotations of the directors due to applied thermo-
dynamic forces [32, 44] and the inverse effects [57], while
the Tijk-based ones do not have such a simple geometric
interpretation.

The phenomenological reversible couplings between,
e.g., the heat current and deformational flow, which is
characteristic for tetrahedral systems

j
σ,ph
i = �σ

ip TpjkAjk (106)

σ
ph
ij = −Tpij�

σ
kp∇kT (107)

contain one and two parameters for the Td and the D2d
phase, respectively, while there are three for the D2 phase,
since

�σ
ij = �σ

1 ninj + �σ
2 mimj + �σ

3 li lj (108)

is of the standard orthorhombic form. The same holds
for the appropriate couplings to the concentration and the
electric current.

Due to the chirality, there is a phenomenological,
reversible contribution to the tetrahedral rotation, (85), that
couples to deformational flow

Y�R = q0λ
�niTijkAjk (109)

σ
ph
ij = q0λ

�nkTijk h� (110)

where h� is the conjugate to �, (73). The stress ten-
sor carries the appropriate counter terms that guarantee
zero entropy production. There is one material parame-
ter, λ�, involved, which is generally different from λ,
the parameter that governs the flow alignment of the pre-
ferred direction n, (86). Together with the (linearized)
response to rotational flow, Y�R = −ωini , (87), there
is now also a stationary alignment of the tetrahedral rota-
tion in planar simple shear flow, in contrast to the D2d
phase. This is similar to the case of the chiral T phase,
(69).

There are four orientational viscosities

2Rγ = ( 1

γ1
mimj + 1

γ2
li lj

)
hn

i h
n
j + + 1

γ3
li lj h

m
i hm

j

+ 1

γ �
(h�)2 (111)
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The orientation by external fields of the combined
nematic and tetrahedral structure in the D2 phase has several
different origins

ε̃E = −1

2
εa
ijEiEj − 1

2
χa

ijHiHj − ε10TijkEiEjEk

−ε11

3
Tijk(niEjEk + EiEjnk + EinjEk)(n · E)

−ε12

3
Tijk(miEjEk + EiEjmk + EimjEk)(m · E)

−ε13

3
Tijk(liEjEk + EiEj lk + EiljEk)(l · E)

+q0 εipqTijk

(
χE

jpEkEq + χH
jpHjHk

)

+q0εpikζ
EH
jp EiHjHk (112)

where all second rank tensors in (112) are of the form
εa
ij = εa

1 ninj + εa
2 mimj . There is the electric and mag-

netic anisotropy, and the tetrahedral orientation, described
by quadratic and cubic field-dependent energies, respec-
tively. Compared to the energy expressions for the Td and
D2d phase, (37) and (80), respectively, there are more coef-
ficients involved due to the biaxiality. In addition, there are
terms quadratic in the field due to the chirality, anisotropy,
and tetrahedral order in the D2 phase. Obviously, there is no
orientation that minimizes those contributions individually,
and orientational frustration has to be expected.

3.3 The Polar, Low Symmetry Tetrahedral Biaxial
Nematic Phases

3.3.1 The Polar Trigonal C3v Tetrahedral Phase

This phase is obtained, when the nematic director is along
one of the tetrahedral vectors, n ‖ n1 (‖ ez in Fig. 19).

Fig. 19 The projection of the three tetrahedral vectors, n2,3,4, into the
x/y plane. They all have a component pointing into that plane (aster-
isk). The tetrahedral vector n1 is sticking out of the plane along the z-
axis, which is the polar, threefold symmetry axis of the C3v phase. The
nematic director n is along the z-axis (red dot). This representation of
the tetrahedral vectors corresponds to (7)

The polarization Pi = TijkQjk = P0pi is along that
direction. We take the absolute value of the polarization
P0 = |TijkQjk| = (4/9)SN as a constant. The hydrody-
namic variables are the rotations of the polarization δpi with
p·δp = 0 as in polar nematic LC [9] and, in addition, rota-
tions of the tetrahedral structure about the polar direction
δ� ≡ p·δ� = (1/4α)piεipqTpjkδTqjk , similar to the D2d
phase. However, here δ� is odd under spatial inversion, in
contrast to the D2d case, (72), and the rotation axis is a
tetrahedral direction and not a 4̄ axis as in the D2d case.

The structure of the hydrodynamics is therefore rather
similar to that in the D2d phase, although there are subtle
differences due to the polarity and the threefold rotational
symmetry (about the polar axis) in the C3v phase. In
particular, the linear gradient term,

εl = ξ ′
pTijkpi∇jpk = ξp∇ipi (113)

describes splay, as in polar nematic LC [9], allowing for
spontaneous splay phases. In the C3v phase, there is no
ambidextrous helicity related to this linear gradient term.
Similarly, the static Lehmann-type energy

εc = (ξσ δσ + ξρδρ + ξcδc)∇ipi (114)

is as in the polar nematic case. The Frank orientational elas-
ticity tensor carries eight coefficients as in the S4 phase,
(98).

The dissipative Lehmann-type terms have the form

2RL = δ⊥
j lpiTijk(�

T ∇kT + �c∇kμc + �EEk)h
p
l (115)

where h
p
l is the conjugate to δpi .

Third rank material tensors, e.g., reversibly relating flow
with gradients of temperature, which contain three material
parameters in the polar nematic case [45] and two in the
D2d phase (cf., e.g., (88)), have five coefficients in the C3v
phase

j
σ,ph
i = [(�21δ

⊥
li + �22 plpi)Tljk

+φ1pipjpk + φ2piδ
⊥
jk + φ3(pj δ

⊥
ik + pkδ

⊥
ij )]Ajk

(116)

σ
ph
ij = −[(�21δ

⊥
lk + �22 plpk)Tijk

+φ1pipjpl + φ2plδ
⊥
ij + φ3(pj δ

⊥
il + piδ

⊥
j l)]∇lT

(117)

with δ⊥
ij = δij − pipj . Appropriate equations are obtained

for concentration and electrical current.
The fourth rank viscosity tensor contains, as in the D2d

phase, six coefficients, cf. (92) with ni replaced by pi . The
seventh term found in the S4 phase, ∼ ν7, is zero due to the
trigonal symmetry of Tijk , (7). On the other hand, second
rank material tensors are of the standard uniaxial form, since
the third rank tensor cannot influence second rank material
properties.
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There is flow alignment of the preferred direction, as
in polar nematic LC and in the D2d phase, cf. (86). The
dynamics of rotations, �, about the preferred direction (not
present in polar nematic LC) is as in the D2d phase, with no
alignment due to shear flow, and no alignment in an elec-
tric field. There is one rotational viscosity with respect to �,
which is different from that for δp.

The orientation of the preferred axis in an external elec-
tric fields is dominated by the polarization, which is along
the field in equilibrium. There is no orientational frustra-
tion by an external field, since with the polarization also
one of the tetrahedral vectors is along the field. Deviations
of the polar direction from the field cost energy, ε̃E

2 =
1
2P0E0(δpi)

2, and lead to a relaxation, which is linear in the
field amplitude E0, in contrast to the D2d phase, (83).

3.3.2 The Polar Orthorhombic C2v Tetrahedral Phase

This phase can be viewed as an orthorhombic biaxial
nematic with the three mutually orthogonal, non-equivalent
directors n,m, l, where in addition inversion symmetry is
broken due to the tetrahedral structure Tijk . A possible spa-
tial representation of the structure is shown in Fig. 20. It is
polar with the polar direction pi ∼ Tijk(mjmk − lj lk) along
the director n. The absolute value of the polarization is taken
as constant.

The hydrodynamic variables are the rotations of the polar
direction, δpi , as in a polar nematic LC, and the rotation,
δ� = piδ�i , of the tetrahedral structure about the polar
direction. Since the latter is a 4̄ axis of the tetrahedral struc-
ture, this variable is somewhat similar to the appropriate
one in the D2d phase and, in particular, there is no flow
alignment of such rotations. Another way of setting up the

Fig. 20 Structure of the orthorhombic C2v phase: The tetrahedral vec-
tors are as in Fig. 18 (upper graph), corresponding to (6). The biaxial
nematic directors m and l are in the n1/n4 and n2/n3 planes, which are
mirror planes. The perpendicular z-axis is polar, since m and l are not
equivalent, and is the only (twofold) symmetry axis left—from [31]

hydrodynamics is the use of the rotations of the directors,
δm and δl that preserve their mutual orientation, as in the D2
phase described in Section 3.2.2. The tetrahedral structure
follows those rotations rigidly.

The system shows four linear gradient terms

εl = Tijk(ξ1pi∇jpk + ξ2mi∇jmk + ξ3li∇j lk) + ξp∇ipi

(118)

The first three terms are linear gradient terms similar to that
of the D2d phase favoring spontaneous ambidextrous heli-
cal rotations of the tetrahedral structure about the different
4̄ axes. The last one is the standard linear splay term of
polar systems. All the spontaneous structures favored by the
individual linear gradient terms are mutually incompatible,
and a rather complicated, inhomogeneous ground state may
occur.

The static Lehmann-type energy has four coefficients for
the thermal, solutal, and electric degree of freedom, each
(γ ∈ {σ, ρ, c})
εc =

∑

γ

(δγ )
(
Tijkg

γ

ijk + ξ
γ
p ∇ipi

)
(119)

with g
γ

ijk = ξ
γ

1 pi∇jpk +ξ
γ

2 mi∇jmk +ξ
γ

3 li∇j lk combining
the tetrahedral and the polar contributions.

A similar combination of polar and tetrahedral effects are
found for the reversible flow/temperature gradient

j
σ,ph
i = (φσ

1 pipjpk + φσ
2 piδ

⊥
jk + φσ

3 [pjδ
⊥
ik + pkδ

⊥
ij ]

+�σ
iq Tqjk)Ajk (120)

σ
ph
ij = −(φσ

1 pipjpk + φσ
2 pkδ

⊥
ji + φσ

3 [pjδ
⊥
ik + piδ

⊥
kj ]

+�σ
kqTqji)∇kT (121)

with �ij given by (108). There are analogous couplings of
flow to concentration gradients and electric fields.

The dissipation of the rotation δpi and of δ� is as in the
D2 phase, (111). The dissipative Lehmann-type terms are
the same as the achiral (q0 = 0) part of those of the D2
phase, (105).

The forth-rank Frank tensor, Kijkl , of the quadratic gra-
dient energy contains 12 coefficients as in orthorhombic
biaxial nematic LC [7, 8]. Quadratic contributions con-
structed out of the linear gradient terms given in (118) are
already contained in this number. The viscosity tensor νijkl

carries nine ordinary viscosities.
In an external electric field, the polar and tetrahedral ori-

entation energies along with the dielectric anisotropies of
the biaxial directors take the form

ε̃E = −P · E − 1

2
εa
ijEiEj − ε10TijkEiEjEk + . . . (122)

with εa
ij = εa

1 pipj + εa
2 mimj . Since there is no ori-

entation that minimizes simultaneously all contributions,
frustrated orientations must be expected. The . . . refer to the
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anisotropic tetrahedral orientation energies ∼ ε11, ε12, ε13

of the D2 phase, (112).

3.3.3 The Polar Monoclinic C2 Tetrahedral Phase

This phase is very similar to the C2v phase, but is in addi-
tion chiral and of the somewhat lower monoclinic symmetry
(Fig. 21). The chirality is manifest in the pseudoscalar quan-
tity q0 = ninjmkmplq lrεikqTjpr that changes sign under
spatial inversion. One can set up the hydrodynamics of the
phase, basically, by adding chiral terms to those of the C2v
phase. Alternatively, this phase is like the D2 phase, but is in
addition polar with pi ∼ Tijk(mjmk − lj lk) the polar direc-
tion. Thus, its hydrodynamics is that of the D2 phase with
the polar terms added.

In particular, there are seven linear energetic gradient
terms, cf. (76) and (118),

εl = ξp∇ipi + Tijk(ξ1pi∇jpk + ξ2mi∇jmk + ξ3li∇j lk)

+q0εijk(k1pi∇jpk + k2 mi∇jmk + k3 li∇j lk) (123)

indicating spontaneous splay, ambidextrous helicity, and
ambidextrous chirality, all together. Of course, there is no
spatial structure that minimizes all those terms individu-
ally resulting in frustrated textures. The lower (monoclinic)
symmetry allows for 20 Frank-like coefficients and 13
ordinary viscosities [49].

The static Lehmann-type energy εc is the combination of
that in the D2 and C3v phase, (104) and (114) containing
seven coefficients for each γ .

The dissipative Lehmann-type terms are given by (105),
where, however, the monoclinic symmetry allows for an

Fig. 21 The structure of the monoclinic C2 phase: Similar to Fig. 20,
but the biaxial nematic directors are rotated away from the 1/4 and 2/3
planes, which are therefore no longer mirror planes. The same structure
is obtained, when in the S4 phase, Fig. 17, the biaxial nematic directors
m and l are made inequivalent—from [31]

additional term in the symmetric tensor h
Q
ij , since every

symmetric 2-rank has the form

aij = a11 pipj + a22 mimj + a33 li lj + a23 pkTijk (124)

bringing the number of coefficients in RL to seven for each
Q in the C2 phase.

The phenomenological, reversible couplings between
deformational flow and gradients of temperature, concen-
tration, and electric field are given by (120) and (121), if for
the second rank tensors �ij the form (124) is used.

The phenomenological, reversible couplings of the tetra-
hedral rotation with deformational flow in the chiral chiral
tetrahedral phases read

Y�R = q0λ
�
ijAij (125)

σ
ph
ij = q0λ

�
ij h� (126)

with λ�
ij having the form (124).

There are four orientational viscosities

2Rγ = ( 1

γ

)
ij
h

p
i h

p
j + 1

γ �
(h�)2 (127)

where
( 1

γ

)
ij

has the transverse structure

a⊥
ij = a22 mimj + a33 li lj + a23 pkTijk (128)

For the energy, ε̃E , responsible for the orientation of the
tetrahedral and director structure in an external field, one
can take the expression of the D2 phase, (112), if the polar
energy −P · E is added and for all transverse tensors, e.g.,
εa
ij , the form (128) is used.

4 Homogeneously Uncorrelated Tetrahedral and
Nematic Order: Splay-Bend Phase

Here, we discuss the case that the coupling of the nematic
the tetrahedral orientation is negligible in the Landau free
energy, (8), and only gradient energies matter. In that case,
the relevant coupling is given by the linear gradient energy
density, DTijk∇kQij , (10). Clearly, such a term favors
inhomogeneous structures. As examples, we construct two
(slightly) different types of splay-bend textures and show
that they are minimum states [34].

We start with a conformation similar to that of a D2d
phase. The tetrahedral vectors n

β

0 are given by (6), where
the three 4̄ improper rotation axes are given by the Cartesian
x, y, z direction. The uniaxial director n0 is along one of
them, the x axis. We can now rotate the nematic and tetrahe-
dral structure independently. For the director, we assume a
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splay-bend texture applying a rotation of angle qx about
another 4̄ axis, the z axis

Rz(qx)n0 = n = (cos qx, sin qx, 0) (129)

with the rotation matrix

Rz(qx) =
⎛

⎝
cos qx sin qx 0

− sin qx cos qx 0
0 0 1

⎞

⎠ (130)

This is the standard two-dimensional periodic splay-bend
texture with wave vector q. Later, we will also consider a
three-dimensional generalization of that.

A similar periodic splay-bend texture for the tetrahedral
vectors is obtained by applying Rz(kx) to all of them, but
in addition followed by a constant rotation by a fixed angle
φ about the y axis

Ry(φ)Rz(kx)n
β

0 = nβ (131)

with

Ry(φ) =
⎛

⎝
cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ

⎞

⎠ (132)

Of course, since all tetrahedral vectors are rotated the same
way, the tetrahedron is undeformed. The director is not
rotated the same way and its orientation relative to the
tetrahedral vectors varies periodically in space. The typical
length scales involved are given by 1/k and 1/q. Since the
splay-bend structure has been obtained by rotations only, the
structure is defect-free.

To investigate the energy gain due to the linear gradi-
ent energy term, one has to integrate over the whole space.
Assuming the system size to be much larger than the length
scales of the splay-bend texture, only in the commensurate
case, k2 = q2 energies are obtained that do not vanish with
the system size. The constant rotation angle φ is chosen,
such that the energy gain from the linear gradient term is
maximum. There are four different angles [34] depending
on D ≷ 0 and k = ±q. However, all four cases are degen-
erate and give the same negative value of the linear gradient
term.

To calculate the energy change of the splay-bend texture
relative to the homogeneous state, one has to evaluate the
total gradient energy of the texture

EGL =
∫

dV
(
DTijk∇kQij + γ (∇kQij )

2 + δ(∇kTij l)
2
)

(133)

which is still a function of q. The latter is determined by
maximizing the energy gain, with the result [34]

Emax
GL = −c1λD2 and qc = c2λ|D| (134)

with 1/λ = (9/2)γ + (128/9)δ. The numerical factors
c1 ≈ 1.09 and c2 ≈ 1.19 are slightly larger than one.
The nematic and tetrahedral order parameters are set to
S = 1 = N . As expected, the linear gradient term leads to
an inhomogeneous structure that is an energetic minimum
despite the sign of the phenomenological parameter D. An
impression of the actual structure that leads to this energy
gain is given in Fig. 22 for D > 0, k = q, and φ ≈ 136◦.

In contrast to the helical structure in chiral nematics
and the (ambidextrous) helices in, e.g., the D2d phase,
Section 3.1.2, which show an energy density constant in
space, for the splay-bend texture discussed above the energy
density is space dependent. However, by a different choice
of the rotation angle φ, there is a homogeneous energy den-
sity also for the splay-bend case. This happens, in particular,
for cos φ = ∓1/3, corresponding to the tetrahedral and the
dihedral angle. However, the energy gain is less than that
for the optimized choice of φ, since the EGL = −λD2 and
qc = λ|D|.

The structure discussed above very likely is not the only
one that leads to an energy minimum, and others might have
an even lower free energy. An example is the slightly differ-
ent splay-bend texture, where the nematic director is tilted
into the third dimension, replacing (129)

n = (β cos qx, β sin qx, α) (135)

with α2 + β2 = 1. This structure has an additional param-
eter that can be used to maximize the energy gain further.
Indeed, for roughly 0.004 < δ/γ < 2.86 and an opti-
mized βc, the two-dimensional pattern is more favorable
while outside this interval 3D structures are energetically
preferred.

There is the possibility that other completely different
inhomogeneous structures can rival the splay-bend textures
considered here. However, for the latter, there is experimen-
tal evidence that biaxial splay-bent structures are related
to myelin textures observed in the original B7 phase of
bent-core liquid crystals [59].

5 Review of the Experimental Situation

It became clear early on in the study of liquid crystalline
phases formed by bent-core molecules [60–63] that their
nematic phases reveal unusual physical properties. The
physical properties of bent-core nematic phases investigated
up to about 2013 have been reviewed in ref. [64]. Here, we
concentrate on those effects that can directly linked to the
existence of tetrahedral order.

In ref. [65] flexoelectric effects in the nematic phase
were investigated, and it was found that the values of the
flexoelectric coefficients are about three orders of magni-
tude higher than for ordinary nematics formed by rod-like
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Fig. 22 The orientation of the tetrahedra in the splay-bend texture
viewed along the z direction (right) and the projection of the tetra-
hedral unit vectors (labeled 1 to 4), and of the director n (with two
arrows), in the (x,y)-plane (left) for different values of qcx—from [34]

molecules. To account for this unusual enhancement, it was
suggested in [65] that some tens of bent-core molecules
form polar clusters. While it is quite intuitive that bent-
core molecules like to form clusters for reason of packing,
no reason was presented why the clusters should be polar.
In [66], the isotropic–nematic phase transition was studied
using magnetic birefringence and dynamic light scattering
using moderate magnetic fields. While the results found
were qualitatively in accord with a classical Landau pic-
ture, it was found that there is a density change at the
isotropic–nematic phase transition which is about an order
of magnitude smaller than for rod-like molecules. In addi-
tion, the relaxation rate of the isotropic phase fluctuations
is slowed down and the viscosity of the orientational fluc-
tuations are an order of magnitude higher. The picture
suggested [66] is that of clusters of bent-core molecules in
the isotropic phase above the nematic phase, a picture which
is also consistent with the onset of tetrahedrally coordinated
complexes. In [67], the immediate vicinity of the nematic–
isotropic transition was investigated under high magnetic
fields, and it was demonstrated that a first-order isotropic to
nematic phase transition could be induced, an observation
unknown from compounds made of rod-like molecules near
the isotropic–nematic phase transition in a magnetic field.
It is found that the measured change in phase transition
temperature to the nematic phase is found to be consider-
ably larger than what is expected using a Landau picture
for the orientational oder parameter Qij , and the authors
suggest that this effect could be associated with the onset
of tetrahedral order [67]. In [68], measurements of heat
capacity, density, magnetic-field induced birefringence, line
width, scattered light intensity, and the viscosity associated
with fluctuations of the quadrupolar order parameter Qij

have been used to study a larger temperature interval in the
vicinity of the nematic–isotropic phase transition in a com-
pound composed of bent-core molecules. Two peaks are
observed in the isotopic phase above the nematic phase in
heat capacity as well as in density measurements signaling
the existence of two optically isotropic phases. The mag-
netic field induced birefringence is found to be no longer
∼ H 2, but develops a curvature not compatible with a sim-
ple Landau picture for Qij . The authors of ref. [68] also
find that the viscosity associated with the quadrupolar ori-
entational order parameter shows an unusual step change
somewhat above the clearing point. The authors suggest a
Landau model comprising a quadrupolar orientational order
parameter Qij as well as a tetrahedral order parameter Tijk .
As a result of the Landau analysis involving two order
parameters, the authors find that they can account for all
their experimental results. This provides the best experi-
mental evidence available to date for the presence of a
tetrahedral phase with a completely isotropic phase at higher
temperature.
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Due to the broken inversion symmetry, electric field
effects are prominent and rather special in tetrahedral
phases. First, for bent-core molecules, phase transitions
isotropic–smectic B2 [69] and isotropic–smectic CP [28,
70] were studied in an external electric field. It was found
that an upward shift of the phase transition temperature by
up to about 10 K could be achieved, which was approxi-
mately linear in the applied electric field [28]. At first sight,
both the magnitude as well as the linearity of the shift in
the applied voltage come as a surprise since for rod-like
molecules large shifts of more than small fractions of a
degree in the isotropic–smectic phase transition temperature
have never been observed. Even more surprising is the lin-
earity in the applied voltage. Clearly, an isotropic phase has
no preferred polar direction, which could be oriented and
could give rise to a linear response in the electric field. In
addition, quadrupolar orientational order can only generate
shifts that are quadratic in the applied electric or magnetic
fields as already pointed out by de Gennes, when study-
ing the isotropic–nematic transition in low molecular weight
liquid crystals [39].

As we have discussed in detail in Section 2.2, in a (opti-
cally isotropic), tetrahedral phase the situation is different.
Here, transition shifts and induced nematic order occur,
which are linear in the field strength, (47), (49), (51), and
(52). This also applies to tetrahedral–smectic transitions,
since smectic order is always accompanied by nematic order
[71]. Recently, isotropic–nematic transitions in bent-core
material have been studied directly. Electric field effects on
this transition are described in ref. [72]. They find a linear
field dependence (their Fig. 4), which is fully compatible
with the assumption that the “isotropic” phase is rather a
tetrahedral one. In addition, isotropic to isotropic transitions
as well as a reentrant isotropic phase has been described
for another family of bent core molecules [73]. Again, the
existence of two optically isotropic phases, and the linear
response to electric fields in one of them, clearly points to
the presence of tetrahedral order.

The electric properties of bent-core nematic phases were
also shown to lead to some unusual spatio-temporal patterns
in electroconvection [74].

The appearance of ambidextrous chiral domains in smec-
tic phases formed of bent-core molecules has been reported
quite early [62, 63]. More recently [75], the issue of chiral-
ity shown by nematic bent-core phases has been examined
in detail experimentally, in planar as well as in homeotropic
cells. It was suggested, using molecular modeling, that the
nematic phase analyzed is of D2 symmetry [75]. We note
that for a nematic phase with this symmetry, the micro-
scopic [36, 37] as well as the macroscopic (Section 3.2.2)
properties have been investigated. Tetrahedral order is cru-
cial for the existence of, and the various chiral effects in D2

symmetric nematic phases.

Several unusual smectic and nematic phases have been
found in ferrocenomesogens [76, 77] and linked to tetra-
hedral order. The latter is traced back to a tetrahedral
association of the molecules. Among the macroscopic phe-
nomena arising are large domains of opposite chirality
(ambidextrous chiral domains) as well as helical superstruc-
tures [76, 77]. Both are compatible with tetrahedral order,
Sections 3.1.2 and 3.2. For heterochiral areas in these com-
pounds, an optically isotropic appearance has been found,
again compatible with tetrahedral order.

6 Summary, Conclusions and Perspective

Since the tetrahedral order parameter is of rank 3, most of
the material relations are isotropic, in particular the dielec-
tric tensor denoting the optical behavior (an exception is the
viscosity tensor). Therefore, it is rather difficult to experi-
mentally discriminate a tetrahedral phase from an isotropic
one. However, there are two principal differences, one with
respect to reversible (deformational) flows and the other
regarding external electric fields. The former describes flow
induced by gradients of temperature, concentration, etc.
(and vice versa), impossible in isotropic liquids. The latter
comprise induced nematic order and transition shifts that are
linear in the field amplitude, while they have to be quadratic
in an isotropic phase. This only refers to electric fields
and not to magnetic ones due to the different parity and
time reversal properties of those fields. In the preceding
section, we have discussed some experiments regarding
the differences between isotropic and tetrahedral phases.
Clearly, it would be highly desirable to perform measure-
ments of the electric birefringence in addition to the mag-
netic birefringence. The specific tetrahedral effects are due
to the spontaneous broken inversion symmetry in these sys-
tems: The inverted structure is different from the original
one, but energetically equivalent.

When combined with nematic order, depending on the
geometric relation between the tetrahedral vectors and the
nematic director(s), several different liquid crystal phases
can arise that are achiral or (structurally) chiral, non-polar
or polar, in any combination. Rather low symmetries can
occur. Among those phases, the D2d phase is of particu-
lar interest, since, there, helical ground states of opposite
helicity, but equal energy, are possible (ambidextrous helic-
ity), despite the fact that the phase is achiral. The reason
is the existence of a linear gradient term in the Frank-type
energy allowed by the tetrahedral order. In a chiral system,
on the other hand, there is a linear nematic twist allowed
due to the existence of a pseudoscalar quantity, whose ori-
gin is either due to the chirality of the molecules or comes
from the structure of the phase. In the latter case, both
types of handedness are energetically equal (ambidextrous
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chirality). As an example, the D2 phase is discussed above.
Another specific feature of many tetrahedral nematic phases
is the orientational frustration in an electric field, where the
nematic dielectric anisotropy and the tetrahedral field orien-
tation are incompatible with the relative orientation of the
tetrahedral vectors and the nematic director(s).

We have shown in the bulk part of this review that tetra-
hedral or octupolar order and its consequences have been
mainly analyzed in soft matter physics, in particular in the
field of liquid crystals. It is worth pointing out, however, that
octupolar order, in particular in two spatial dimensions, has
also been used in the study of moving and deformable active
particles as models for self-propelled micro-organisms [78–
80]. In this case, octupolar order comes into play when
deformations of lower symmetry going beyond quadrupolar
deformations are considered.

From an applied mathematics point of view, it has been
demonstrated recently [81] for two spatial dimensions how
the maxima of the associated probability density are con-
nected to a third rank totally symmetric and traceless tensor.
It turns out that such a representation is equivalent to
the diagonalization of this third rank tensor in two spa-
tial dimensions. A suitable generalization of this analysis to
three dimensions is clearly desirable for the field of liquid
crystals.

In this review, we have restricted ourselves to phases
with tetrahedral order, either alone or together with (uniaxial
and biaxial) nematic order. Often, bent-core molecules form
smectic phases and one can expect that tetrahedral order
also plays a role there. However, many of those phases, e.g.,
those shown in Fig. 2, and those relevant for applications,
are polar. The existence of polarity has a strong influ-
ence on the structure of the macroscopic dynamics of such
phases and an additional tetrahedral order does not lead to
important new effects. On the other hand, for the non-polar
smectic phases made of bent-core material, smectic C, CM ,
and CT [15, 82], the tetrahedral order provides new addi-
tional aspects [83]. The same is true for gels and elastomers
with tetrahedral order. An example is presented already in
this review in (42), where an electric field induces a strain
field (linear in the field strength) in the presence of tetra-
hedral order. Tetrahedral elastic effects may also be able to
explain some of the experimental findings in agglomerating
bent-core systems [84, 85].

The macroscopic theory presented here is based on the
presence or lack of symmetries on the macroscopic level (in
addition to certain general conservation laws and thermo-
dynamic rules). The way molecules arrange on the micro-
scopic level is not considered, since it is not necessary to
do so for macroscopic properties. The only exception is
Fig. 11 in Section 2.4, which is an example of how to dis-
tribute chiral centers on the bent-core molecules in order to
get chirality on the macroscopic level. It is meant to be a

rather simple molecular picture. Often, e.g., in refs. [65, 66],
tetrahedral order is related to the appearance of tetrahedral
clusters or agglomerations of many bent-core molecules.
Such a picture is in complete accordance with our descrip-
tion, where only the existence of tetrahedral order, but not
its molecular realization is important.
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