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Modified dispersion relations, inflation and scale-invariance
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For a certain type of modified dispersion relations, the vacuum quantum state for very short
wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be
the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave
background. We point out that for this scenario to be possible, it is necessary to red-shift these
short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost.
This can be done by inflation with a sufficiently large Hubble rate, without any requirement for

slow roll.

We also show that in the case of slow-roll inflation, modes that start in their vacuum

quantum state will become nearly scale-invariant when they exit the Hubble radius for any power

law modified dispersion relation.

I. INTRODUCTION

According to many inflationary models, at the begin-
ning of inflation the entire observable universe today was
initially the size of the Planck volume, or perhaps even
smaller. Since quantum gravity effects are typically ex-
pected to become important near the Planck scale, this
suggests that quantum gravity effects may have been im-
portant at the onset of inflation. The potential impor-
tance of as yet unknown quantum gravity effects in infla-
tion is known as the trans-Planckian problem of inflation.

One potential quantum gravity effect that could be im-
portant for trans-Planckian cosmological perturbations
is the possible dimensional reduction of space-time to
two dimensions in the ultraviolet @] In a large num-
ber of candidate theories of quantum gravity, some mea-
sure of dimensionality (whether the geometric, spectral,
thermodynamic or Myrheim-Meyer dimension) runs to 2
near the Planck scale, including: high temperature string
theory @ causal dynarmcal triangulations B], asymp-
totically safe grav1ty Horava—Llfshltz gravity ﬂa
space-time non—commutatlw hﬂ , loop quantum grav-
ity and spin foam models ﬂg multl fractional space-
times [12], and causal sets [13,

Interestingly, it appears p0551ble to capture many as-
pects of the running of the spectral dimension to 2 by
introducing modifications to the dispersion relation of
the type [6, [15]

E? =k +0'kS, (1)

for massless particles, where o is a length scale which is
typically assumed to be of the order of or slightly larger
than the Planck length. (The spectral dimension is de-
termined by calculating the scaling of the average return
probability of a diffusion process, see B] for details. See
ﬂﬁ] for complementary results relating () to an addi-
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tional form of dimensional reduction to 2 in the ultravio-
let.) Tmportantly, for a dimensional reduction to 2 spec-
tral dimensions in the ultraviolet, the correction terms
truncate at the k% term ﬂﬁ] In principle, there could
be other modifications in (Il) of lower order in k than
kS —although any potential prefactor to the k3 term is
strongly constrained by observations ﬂﬂ]— but in any
case the term that is of most interest here in the cosmo-
logical context is the o*k® term.

Modified dispersion relations have previously been con-
sidered for a number of phenomenolog 1ca1 studies in
quantum gravity @] and cosmology |2 . Perhaps
most strikingly, for modified dispersion relations that
truncate at the kS term like (), the vacuum quantum
state for the shortest wavelengths of cosmological per-
turbations is known to be scale-invariant @] This im-
mediately suggests the possibility that modified disper-
sion relations could be the source of the observed scale-
invariance in the cosmic microwave background rather
than slow-roll inflation [26, 27].

Despite the appeal of this idea, there are two problems
that must be addressed for this scenario to be possible.
First, since the cosmological perturbations are only scale-
invariant for the wavelengths where the k% term domi-
nates the modified dispersion relation (which is the case
only for wavelengths comparable to o which as mentioned
above is typically expected to be approximately of the or-
der of the Planck length), it is necessary that these modes
be red-shifted to cosmological scales by the expansion of
the universe. Second, as already pointed out in @], these
perturbations must exit their sound horizon and freeze at
a time when the k® term still dominates in the modified
dispersion relation (IJ), otherwise it is known that the
scale-invariance is lost in short-wavelength perturbations
when the k2 term in the dispersion relation becomes im-
portant , 22, ] (although of course cosmological sce-
narios like inflation can restore scale-invariance at a later
time via a different mechanism than modified dispersion
relations); note that another reason to require that the
perturbations freeze is that this is needed to generate
the phase coherence observed in the acoustic peaks of
the CMB scalar power spectrum @]

We begin in Sec. [[Il with a brief self-contained review
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of the calculation given in HE] demonstrating that mod-
ified dispersion relations of the form () give a vacuum
quantum state for the short wavelength cosmological per-
turbations that is already scale-invariant. In Sec. [IIl in-
flation with a large Hubble rate H > o~ ! is given as an
example of a simple cosmological scenario that red-shifts
these perturbations to cosmological scales without losing
scale-invariance. Then, in Sec. [V] we show that (assum-
ing quantum vacuum initial conditions) slow-roll inflation
in fact generates a nearly scale-invariant power spectrum
of cosmological perturbations no matter the modified dis-
persion relation. This is the interesting converse of the
result obtained in HE] that the modified dispersion rela-
tion () gives scale-invariant perturbations at short scales
no matter the cosmological background; here it is slow-
roll inflation that generates scale-invariant perturbations
no matter the modified dispersion relation. We end with
a discussion in Sec. [Vl

II. SCALE-INVARIANCE FROM MODIFIED
DISPERSION RELATIONS

In standard cosmological perturbation theory for gen-
eral relativity coupled to a scalar field ¢, the dynamics
of scalar perturbations are governed by the Mukhanov-
Sasaki equation,

"

ol + kv — %vk =0, (2)

where vy, are Fourier modes of the Mukhanov-Sasaki vari-
able v related to the gauge-invariant co-moving curvature
perturbation R by R = v/z, and z = a¢/H is a function
of the background space-time with a being the scale fac-
tor and H = a/a is the Hubble rate. Here primes denote
derivatives with respect to the conformal time 7 while
dots denote derivatives with respect to the proper time
t; they are related by f’ = af. For an introduction to
cosmological perturbation theory, see, e.g., m, @]
Allowing for modified dispersion relations of the form
(@ gives the modified Mukhanov-Sasaki equation [21]

4.6 "
vg+<k2+aa4 >vk—7vk—0. (3)

(For an explicit example of how modified dispersion rela-
tions appear in the equations of motion for cosmological
perturbations in Horava-Lifshitz gravity, see [33,[34].)

Now, for the case considered here where the relevant
modification to the dispersion relation is the k% term —
which is argued to capture some important aspects of the
possible dimensional reduction of space-time to 2 dimen-
sions in the ultraviolet ﬂa, [15]— the vacuum quantum
state for vy is scale-invariant [26]. This follows from the
result that for the shortest wavelength modes, the above
equation is well approximated by

’U;CI + U?’Uk = 0, (4)

which is a simple harmonic oscillator with the time-
dependent frequency wy = o2k3/a?. If the condition
|w,/w?| < 1 holds (i.e., that a’/a < wy), then the WKB
solution

ﬁe—ifd‘rwk _’_ﬁeifdﬂ_uk (5)
NeT VWk

provides a good approximation to the solution of ().
Imposing that vy initially be in the vacuum quantum
state implies that Ay = \/h/2 and By, = 0 [21].

An immediate consequence of this result is that the
power spectrum of the co-moving curvature perturbation,

Vg =

h a?
Ril* = 3 (6)

An2g2 227

k3

" 22

A% (k)

is independent of k and hence is scale-invariant.
Furthermore, the (a/z)? term can be simplified if the
dynamics of the background is known. Specifically, given
the equation of state w = P/p relating the pressure P =
$%/2 — V(¢) to the energy density p = ¢2/2 + V(¢) of
the scalar field, z can be rewritten (using the Friedmann

equation) as z = ay/3(1 + w)/87G, and then

2Gh
2 (1) _
Ar(k) = 3n(l +w)o?’

(7)
Since w is typically of order 1 (except for the case of
slow-roll inflation where w is close to —1, this possibility
is considered in Sec. [[V]), for the choice o ~ 10*V/Gh,
then not only is the power spectrum of the scalar pertur-
bations scale-invariant, but its amplitude also matches
what has been observed in the cosmic microwave back-
ground [35].

Of course, a slight red tilt has also been observed in
the power spectrum of the CMB. In this scenario, it is
possible to obtain a slight red tilt by considering a dis-
persion relation where the modification to the dispersion
relation is a term of the type k579 with 0 < § < 1, or
by considering the situation where there is a long tran-
sient between the k% term and the k? where the modified
dispersion relation can be approximated by k%9 ﬂﬂ]

A similar calculation can be performed for tensor
modes with similar results ﬂﬂ], although in order to ob-
tain a sufficiently small tensor-to-scalar ratio it is neces-
sary to assume that the length scale o7 in the modifica-
tion to the dispersion relation for tensor modes o3.k5/a*
is much smaller than o. Whether this difference in the
modifications to the dispersion relations of tensor and
scalar modes can be explained naturally by quantum
gravity remains an open question. We will discuss an-
other possibility to obtain a red tilt for the spectrum of
scalar perturbations and a small tensor-to-scalar ratio in
Sec. [Vl

Now the question is whether this effect from modified
dispersion relations could in fact be the ultimate source
of the temperature anisotropies observed in the cosmic
microwave background. For this to be possible, there are



two requirements: (i) first, these modes that are scale-
invariant have a very short wavelength of the order of o
or less and therefore must be red-shifted to cosmological
scales, and (ii) these scale-invariant modes must exit the
horizon before k? becomes comparable to o*k%/a*, oth-
erwise the dominant term in (3] will no longer be the kS
term and scale-invariance will be lost, as has been stud-
ied in some detail in ﬂ2_1|, 22, @] and will be reviewed in
Sec. [Tl below.

One simple cosmological scenario that can easily ad-
dress both of these requirements is inflation with a very
large Hubble rate. While there are other possibilities, for
both of the above requirements to be met any cosmo-
logical scenario must have predict a Hubble rate that re-
mains above or at the inverse length scale o~ for at least
8 e-folds (the number of e-folds of Fourier wavenumbers
observed in the CMB today), and must provide at least
~ 60 additional e-folds of expansion. Inflation with a suf-
ficiently large Hubble rate is probably the simplest cos-
mological scenario that meets these requirements. In ad-
dition, inflation also has the advantage of solving the flat-
ness problem, which modified dispersion relations can-
not address on their own. (Note that the horizon prob-
lem is solved by any cosmological scenario that red-shifts
Planck-length perturbations to cosmological scales.)

III. NEAR-PLANCK-SCALE INFLATION

Inflation occurs when the equation of state of the mat-
ter field is less than w < —1/3. Here we will assume
that the equation of state is constant in time in order to
simplify the calculations, but the results in this section
can be generalized in a straightforward fashion in order
to allow for a dynamical w.

For a constant equation of state w < —1/3, the scale
factor behaves as

a(r) = ap (—7) %5, 8)

where —oo < 7 < 0 for an expanding universe.

Given this form of the scale factor (and using the rela-
tion 2" /z = o’ /a that is valid when the equation of state
is constant), the Mukhanov-Sasaki equation with a mod-
ified dispersion relation (in the case where this modified
dispersion relation has only an additional k® term) given
in (@) has the form

otkS

A5/ (1 75w) =0.(9)

ug+(ﬁ4- )Uk_%ﬁLZEEL

1+ 3w)?7r2 Uk

Since (1 + 3w) < 0 during inflation, at the very early
times 7 — —oo the k% term dominates and at this time
the vacuum quantum of the Fourier modes will be given
by @) (with wy, = 02k®/a?) which is scale-invariant.

At late times, when 7 — 0, it is the z”/z which goes
as 72 which will dominate. Therefore, for inflation, the
modes originate deep inside the Hubble radius where the
modifications to the dispersion relation are important,

and later exit the horizon and freeze. (It was incorrectly
claimed in ﬂﬂ] due to a sign error that in an expand-
ing inflationary background these modes do not exit the
horizon. As is clear from (@), the modes will indeed exit
the horizon in an expanding inflationary background; see
also [28].)

Note that for scale-invariance to be preserved, the
lower order terms in k£ must never become the dominant
term in ([@). To see this, consider the case where the k2
term does become relevant. Using the WKB approxi-
mation again, for Fourier modes that are well inside the
Hubble radius in which case the z”/z term is negligible,
assuming vacuum initial conditions the solution is

Ve = ie*ifdﬂbk, (10)

2w;€

where @7 = k*+0%k5/a*. From this, it is clear that if the
k? term is larger than (or comparable to) the kS term,
the vy perturbation is no longer scale-invariant.

On the other hand, if the Fourier modes exit the Hub-
ble radius while the k5 term is still dominant, then the
scale-invariance is preserved. This can be seen by solving
the Mukhanov-Sasaki equation for super-horizon Fourier
modes, which in this limit simplifies to

"

%—%wzm (11)

(again using the relation z”/z = a”’ /a when the equation
of state w is constant), with the solution

d
v = Cra + Dka/ a—; (12)

In an expanding inflationary universe, the dominant term
will be the Cxa term, as the second term will decay very
rapidly compared to the first term as the space-time ex-
pands. The scale-dependence of vy is contained in the
prefactor Cj, which can be determined by imposing con-
tinuity in vy and v}, at the time of horizon-crossing. Since
the time-dependence of vy inside the horizon (neglect-
ing the unimportant phase) is also given by a, it follows
that C = \/h/202k? (recall that here we are consider-
ing the case where the k% term dominates before horizon-
crossing). The result for the super-horizon modes,

VB
B V20k3/2"

(disregarding the second term which rapidly decays) is
clearly scale-invariant.

So, for the scale-invariance generated by the modified
dispersion relations to be preserved as the space-time ex-
pands, it is necessary that the 2”/z term become the
dominant term in the modified Mukhanov-Sasaki equa-
tion well before the k? term becomes comparable to the
kS term.

This is a constraint on the Hubble rate of the back-
ground space-time: it is only for inflationary models

Vi (13)



where the Hubble rate is sufficiently large that the above
condition will be satisfied. At horizon-crossing, the above
condition is

04k6 S

i k2. (14)

a

The inequality o*k*/a* > 1 implies that the physical
wavelength A\pnys = a/k of the relevant Fourier modes
of the cosmological perturbations must be much smaller
than the length scale o,

Aphys <K 0. (15)
Furthermore, for the scale factor (§) the Hubble rate is
a’ 2

a®> |14 3w|-a(r) - |7] (16)
and the z”/z term can be rewritten as
2" (1 =3w)a(r)? ,,
—=—"—H". 17
. 5 (17)
From this, the inequality z”/z > k? can be rewritten as
2k2 2
H? = 18
U —sw)a  (T-3w),,’ (18)
and since Appys < o, this implies that
H > 2_ 51 (19)
1—3w’

where the Hubble rate is to be evaluated at the horizon-
crossing time when 2" /z = 0%k%/a* (which of course de-
pends on the Fourier wavenumber k).

If o ~ 10*VGh in order to generate the observed am-
plitude of the scalar perturbations, this condition re-
quires that the Hubble rate at the crossing time be much
greater than H > 10_4/@ (up to some prefactor of
order 1 that depends on w).

Note also that if there are additional terms in the mod-
ified dispersion relation, they must also always be smaller
than the first two terms in ([4]) at horizon crossing. These
will provide additional constraints that, depending on the
amplitude of terms, may lead to an even greater lower
bound for the Hubble rate.

The main conclusion of this section is that inflation
can preserve the scale-invariance generated by modified
dispersion relations —and note that slow-roll conditions
are not necessary, any w < —1/3 will do— but that for
this to be possible the Hubble rate at the horizon-crossing
time of all of the modes of observational interest must
have been very large, H > 10~*/+/Gh.

IV. MODIFIED DISPERSION RELATIONS AND
SLOW-ROLL INFLATION

In the two previous sections, we considered a specific
type of modified dispersion relation —motivated by di-
mensional reduction arguments— on the grounds that

the resulting vacuum quantum state is already scale-
invariant. The interesting converse to the case where
scale-invariance appears no matter the background evo-
lution is the case where scale-invariance appears no mat-
ter the modifications to the dispersion relation. As shall
be shown in this section, under slow-roll inflation and
assuming vacuum initial conditions, cosmological pertur-
bations become scale-invariant when they exit the Hubble
radius for any power law dispersion relation.

In slow-roll inflation, the evolution of the background
space-time is characterized by the two slow-roll parame-
ters

H é
€=~ n:2e—m, (20)
which satisfy the conditions 0 < ¢ <« 1 and |n| < 1,
and parametrize departures from exact de Sitter space-
time. Since in slow-roll inflation the Hubble rate is nearly
constant, for a short period of time near some arbitrary
conformal time 7, the scale factor can be approximated

by (see, e.g., HE])

-1+

a(7) H,|1o|~¢’ 1)
where H, is the Hubble rate evaluated at 7,. If 7, is cho-
sen to be close to the horizon-crossing time of the pertur-
bation Fourier modes of interest then this approximate
solution is sufficient to determine the long-wavelength
spectrum of the perturbations, since (given the short-
wavelength solution) the long-wavelength solution for the
perturbations is determined by the background evolution
at horizon-crossing.

Another important relation is, to first order in e and
",

2 (ay/e)" 249 —3n

(22)

z av/€ 72 ’
this can be integrated to the same level of approximation

as for a(7) in ), giving [34]

o(r) = NG |T|_(1+3e—77) 7 (23)
VarG H, |7o|~ B

where €, is the value of the slow-roll parameter € at the
conformal time 7.

To simplify calculations, we will assume that only one
term of the order k"*2 is relevant in the modified dis-
persion relation, in which case the modified Mukhanov-
Sasaki equation has the form

Unkn+2
Vg
a™ T

2+9e¢—3n
— v

v+ 5 e =0, (24)

where n is any positive real number. Note that this cap-
tures any modified dispersion relation where the evolu-
tion has been adiabatic by choosing n as the dominant
term at horizon-crossing. (If the evolution of the back-
ground is not adiabatic, then the WKB approximation



that the above argument is based upon fails, other terms
cannot be ignored, and a more careful analysis will be
necessary along the lines of what is done in [21,22].)

As before, the vacuum short-wavelength solution
(when 2" /2 < 0"k"™ %2 /a™) can be approximated by the
WKB solution,

h .
— 7Zfd7'u)k 25
U= g€ ; (25)

where now wi, = /o"k"*2/a”, and the long-wavelength
solution (when 2 /z > o™k"2/a™) is given by

v = Al | Byl PR (26)

where the prefactors are determined by imposing conti-
nuity in v, and vj, at horizon crossing. In an expand-
ing slow-roll inflationary space-time, the first term will
quickly dominate and therefore it is only necessary to
calculate Ay.

The horizon crossing time 75, for the k** Fourier mode
is when 2 /2 = o"k" 2 /a", giving

21/77, m _pg-ne
|7k = <ﬁ> k2. (27)
k

Then, a short calculation shows that the matching con-
ditions at the horizon crossing time imply that, keeping
only the dependence on k,

3 3ne
Ak ~ k7§736+77+ 2(n+2) ) (28)

From this, it is straightforward to calculate the scalar
power spectrum of the co-moving curvature perturba-
tions after they have exited the horizon (dropping the
slow-roll parameters in the exponents of H, o and 7,),

4—n —3n
22n+2) G H2(Ho)n+2
A () G ITUHO)TE s (a9)
T €
where the scalar spectral index is
3ne
s— 1= —6e+2 ) 30
n etamt (30)

showing that the perturbations have a nearly scale-
invariant spectrum.

Note that the amplitude is determined by a combi-
nation of o, H, and e. For n = 0, the results of stan-
dard single-field slow-roll inflation are recovered, while
for n = 4 the results are exactly those obtained in m]
(and reviewed above in Sec.[[]). For other values of n, all
three terms contribute to the amplitude.

It is important to keep in mind that the Hubble rate
H is bounded below by ([Id). Observations constrain this
model more strongly if n < 4 because in that case the
Hubble rate appears in the numerator of the power spec-
trum. On the other hand, if n > 4 then a large Hubble

rate (compared to o~1) actually suppresses the ampli-
tude of the scalar perturbations.

Also, corrections from modified dispersion relations
contribute a term that gives a slight blue tilt to the spec-
trum if this term is large enough. Therefore, in order to
generate a red tilt as is observed in the CMB, in this sce-
nario it is necessary to assume that n is sufficiently small
or that 7 is negative and sufficiently larger in amplitude
than ¢, depending on the value of n.

Another interesting result is that if n = éllﬁas sug-
gested by dimensional reduction arguments [d, [15]), then
ng — 1 = —4e+ 2n. Since n = 2¢ — é/2He, a red tilt can
obtained for positive é, even when n is exactly 4. There-
fore, it is not necessary to assume a long transient period
between n = 4 at very high energies and n = 0 at low
energies as proposed in ﬂﬁ in order to obtain a red tilt
in the scalar spectral index: instead it is enough to have
an equation of state that is increasing in time.

Finally, this calculation can be repeated for ten-
sor modes hy, with the only difference that the time-
dependent potential is a”’/a rather than z”/z, with the
Mukhanov-Sasaki equation with a modified dispersion re-
lation being

ol knt2 2+ 3¢
M+ = = ——— e = 0, (31)

an

where gy is related to the tensor perturbation via hy =
ux/a. Following the same procedure of matching the
short-wavelength quantum vacuum solution

h
2wy,

= emifaroms, (32)

(where wry, = /olkk"T2/a™) to the long-wavelength so-

lution
pk = Ag|T| 7T+ Bylr] Pt (33)

at the horizon crossing time ([27) (with o again replaced
by or) gives the form of the tensor modes at late times,
from which the power spectrum of the tensor perturba-
tions can be calculated. The result of this calculation is
that the predicted power spectrum for the tensor modes
is

k3
A2 (k) = 647G —— |he|?
(k) = 647G |
4—n
22(n+2) Gh =3n
~16 ————— - H*(Hop)n+2 - k™,  (34)
T

where the tensor spectral index is

3ne

:—2 _—
Nt 6+n—|—2’

(35)

showing that the tensor modes also have a nearly scale-
invariant power spectrum.



The tensor-to-scalar ratio is given by

3
B A% (k) B o\ nt+2
r= A?’;(k) =16¢ (;> : (36)

The simplest choice for op is to set it equal to o. With
this choice, the tensor-to-scalar ratio is the same as for
standard slow-roll inflation:

r=16e. (37)

This shows that, for the case when the background space-
time undergoes slow-roll inflation, it is possible to have
or = o and generate tensor perturbations with a suffi-
ciently small amplitude that is consistent with observa-
tions. (Of course, it is also possible that o # o, in which
case the predicted value of r is given by the more general
result ([B6]). Note that gravitational Cherenkov radiation
would appear if gravitational waves travel slower than the
matter fields; this effect essentially rules out the possibil-
ity that o < o ﬂﬁ, @] Interestingly, the case o7 > o
remains possible, in which case the amplitude of r would
be suppressed [27].)

Note that we have also assumed that the modification
to the power of k, denoted by n, in the modified disper-
sion relations for scalar and tensor perturbations are the
same. It is easy to allow for a different value of n for
tensor modes simply by replacing n by nry in (34).

An important next step is to go beyond linear pertur-
bation theory and study non-Gaussianities to check what
effect modified dispersion relations may have in that set-
ting, and whether the predictions are consistent with the
latest observations. If there are different modifications to
the dispersion relations for the scalar and tensor modes,
this could generate interesting effects in three-point func-
tions combining scalar and tensor modes, although these
particular three-point functions would likely have a very
small amplitude.

V. DISCUSSION

Modified dispersion relations capture some important
features of the spontaneous dimensional reduction in the
ultraviolet that a number of theories of quantum grav-
ity appear to predict. Modified dispersion relations can
play an important role in a cosmological context, and
in fact for a particular type of modified dispersion re-
lation, E? = k% + ¢*kS, the vacuum quantum state of
the shortest wavelength cosmological perturbations is al-
ready scale-invariant. This suggests that modified disper-
sion relations may be the ultimate source of the observed
scale-invariance in the CMB. However, it is clear that
modified dispersion relations alone are not sufficient: it
is necessary to red-shift these short-wavelength perturba-
tions to cosmological scales without ruining their scale-
invariance.

In this paper, we showed that inflation with a suf-
ficiently large Hubble rate gives the appropriate back-
ground evolution that is necessary to red-shift these ul-
traviolet modes to cosmological scales, without losing the
scale-invariance. An important point here is that the in-
flationary phase does not need to be slow-roll.

Inflation with a sufficiently large Hubble rate not only
red-shifts cosmological perturbations, but in addition the
perturbations freeze sufficiently early so that their scale-
invariance is preserved if they exit the Hubble radius at a
time when the k% term in the modified dispersion relation
is the dominant term. This requires the Hubble rate to
be greater than ¢! at the horizon-crossing time.

In fact, the key necessary ingredient for modified dis-
persion relations to be a possible source for the observed
spectrum of perturbations in the CMB is a phase of ex-
pansion of approximately 70 e-folds (or more) before the
onset of the radiation-dominated era, with the additional
condition that the Hubble rate for at least the first 8 e-
folds be larger than o~!. It is therefore also possible
for other cosmological scenarios than inflation to fulfill
these conditions. However, here we focused on the case
of inflation since it seems ideally suited to accomplish the
required tasks.

Furthermore, we also considered a generic power law
modified dispersion relation in the case when the back-
ground FLRW space-time is undergoing slow-roll infla-
tion. Assuming the cosmological perturbations are ini-
tially in their vacuum state, the resulting power spec-
trum after the perturbations exit the Hubble radius is
nearly scale-invariant, no matter the modified dispersion
relation. In addition, a small tensor-to-scalar ratio is
predicted, even if the modifications to the dispersion re-
lations of scalar and tensor modes are identical. (For a
background evolution that is far from slow-roll inflation,
a small tensor-to-scalar ratio can only be obtained if the
modified dispersion relations for the scalar perturbations
and the tensor perturbations are different [27].)

We also found that the slow-roll parameter 7 affects the
scalar spectral index no matter the power in the modified
dispersion relation. This is important because, for the
modified dispersion relation E? ~ 0%k8, the cosmological
perturbations in their vacuum quantum state are exactly
scale-invariant and therefore this result shows that a red
tilt can be generated at large scales by FLRW space-times
where the effective equation of state evolves with time.
To be specific, a red tilt is generated if the effective equa-
tion of state is increasing at the time of horizon-crossing,
while a blue tilt is obtained if the effective equation of
state is decreasing at the time of horizon-crossing.

It is interesting that a lot of the predictions of modified
dispersion relations in a background undergoing slow-roll
inflation —including in the limit that the modifications
to the dispersion relation are important— appear to be
qualitatively very similar to those of standard slow-roll
inflation. The main difference is in the scalar and tensor
spectral indices which contain corrections coming from
the modified dispersion relations. In particular, these



modifications lead to a violation of the consistency rela-

tion of standard single-field inflation » = —8n; to
— 87’Lt
T = 1_73", (38)
2n—+4

in the case that the modified dispersion relations are iden-
tical for scalar and tensor perturbations. (Note that this
relation is singular for n = 4 as in that case n, = 0 while
r = 16¢.) This modification to the consistency relation of
standard inflation provides a potential observational test

for modified dispersion relations in slow-roll inflation.
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