日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Study on laser characteristics of Ho:YLF regenerative amplifiers: Operation regimes, gain dynamics, and highly stable operation points

MPS-Authors
/persons/resource/persons136094

Krötz,  Peter
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science (CFEL), Notkestraße 85, D-22607 Hamburg, Germany;
Department of Physics, University of Hamburg, 22761 Hamburg, Germany;

/persons/resource/persons187989

Chatterjee,  Gourab
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science (CFEL), Notkestraße 85, D-22607 Hamburg, Germany;

/persons/resource/persons136024

Miller,  R. J. Dwayne
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science (CFEL), Notkestraße 85, D-22607 Hamburg, Germany;
Centre for Ultrafast Imaging (CUI), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany;
Departments of Chemistry and Physics, University of Toronto, Toronto M5S 1A7, Canada;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Krötz, P., Ruehl, A., Calendron, A.-L., Chatterjee, G., Cankaya, H., Murari, K., Kaertner, F. X., Hartl, I., & Miller, R. J. D. (2017). Study on laser characteristics of Ho:YLF regenerative amplifiers: Operation regimes, gain dynamics, and highly stable operation points. Applied Physics B: Lasers and Optics, 123(4):. doi:10.1007/s00340-017-6704-0.


引用: https://hdl.handle.net/11858/00-001M-0000-002B-851E-9
要旨
We present a comprehensive study of laser pulse amplification with respect to operation regimes, gain dynamics, and highly stable operation points of Ho:YLF regenerative amplifiers (RAs). The findings are expected to be more generic than for this specific case. Operation regimes are distinguished with respect to pulse energy and the appearance of pulse instability, and are studied as a function of the repetition rate, seed energy, and pump intensity. The corresponding gain dynamics are presented, identifying highly stable operation points related to high gain build -up during pumping and high gain depletion during pulse amplification. These operation points are studied numerically and experimentally as a function of several parameters, thereby achieving, for our Ho:YLF RA, highly stable output pulses with measured fluctuations of only 0.19% (standard deviation).